Some Topics in Continuum Dislocations : General Framework of Generalized Continuum Model

L Rakotomanana

IRMAR, UMR 6625, Université de RENNES 1, France

Différents points de vue sur la théorie des dislocations: physique, mécanique, mathématiques.

ENS Paris-Saclay, April 11th, 2025

Planning

- Basics on Plastic Deformation
- Generalized Continuum Model (GCM)
- GCM and Continuum Dislocations
- Conservation Laws for GCM
- Example of Constitutive Laws
- Concluding Remarks

I. Basics on Plastic Deformation

- Severe Plastic Deformation (SPD)
- Relation with Dislocations

Severe Plastic Deformation : Loading Examples

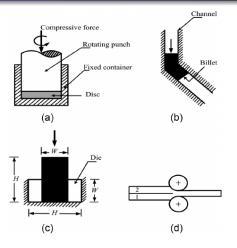
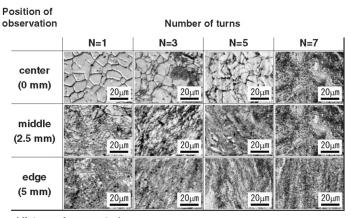


Figure: Material Processing with **Grain Refinement** by Severe Plastic Deformation : Strengthening of material. (a) **HPT : High Pressure Torsion**

SPD : HPT Experimental Results



(distance from center)

Figure: Optical Micrographs: Microstructures after HPT at the center, half-way position and edge of the disk in a magnesium AZ61 alloy after processing *N* turns at 423 K (Zhilayev & Langdon 2008).

SPD: Dislocation and Grains Mechanisms

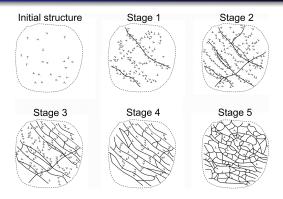


Figure: Grain size refinement under SPD (Cao et al. 2018):

- (1) Initial: formation of large size dislocations cell blocks containing dislocations and dislocation cells structures;
- (2) Formation of micro-bands and transformation of some nearly dislocations cells into cells blocks;
- (3) Formation of lamellar sub-grains containing numerous dislocations;
- (4) Formation of well-developed lamellar sub-grains and some equiaxed sub-grains;
- (5) Homogeneous distribution of equiaxed ultrafine grains or nano-grains.

SPD: Mechanisms of Plastic Deformation

- Twinning and relative motions of grain with refinement are mostly the mechanisms underlying plastic deformation.
- ② Density of dislocations augments when the plastic deformation increases.
- SPD, microstructure mostly reach a steady state at which further deformation does not change the overall microstructure.

MuD: Approach with Continuum Plasticity

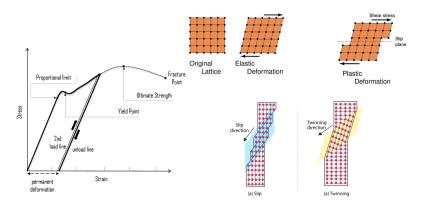


Figure: Stress σ strain ε curve of elementary traction. **Slip** and **Twinning** of Crystallin Material

MuD: Multiplicative Decomposition

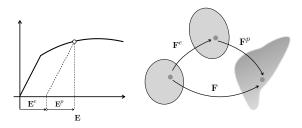


Figure: (a) Additive Decomposition (small deformation) and (b) **Multiplicative Decomposition** (Bilby et al. 1957).

Additive Decomposition: $\mathbf{E} = \mathbf{E}^e + \mathbf{E}^p$ (Green & Nagdhi 1965)

- **E**^p : primal variable
- $\phi(\mathbf{E}, \mathbf{E}^p)$: Helmholtz free energy
- $\mathbf{E} \mathbf{E}^p$: not necessarily an elastic strain (1966)

<u>Application</u>: Mostly used for **small strains** (despite Nagdhi 1990)

MuD: Swift Review of Theories

- **Multiplicative Decomposition**: $F = F^e F^p$ (Lee & Liu 1967)
 - Dislocations & crystallin backgrounds : Kondo (1949), Bilby (1957), Kröner (1959)
 - Incompatible intermediate deformation (non Euclidean configuration): e.g. Le & Stumpf, 1996
 - Existence of numerous partitions of rate of deformations : $\mathbf{D} = \mathbf{D}^e + \mathbf{D}^p$, $\mathbf{L} = \mathbf{L}^e + \mathbf{L}^p$, ..., and problem of plastic spin.

Some problems: Unicity of intermediate configuration, choice of plastic deformation and plastic spin and their objective rates, covariance of model ...

More recent results:

- Rigorous relation with crystallin plasticity (Reina et al. 2017)
- Existence and uniqueness of F^p (Reina & Conti 2017)
- Advances on rates of deformations: Lubarda (2004), Bruhns (2009), Volokh (2013), ...

MuD: Towards GND and Dislocations Approach

- Geometrically Necessary Dislocation (GND): Use of Multiplicative Decomposition leads to
 - Measure of incompatibility $\mathbf{G} := (\mathrm{Det} \mathbf{F}^p)^{-1} \mathbf{F}^p \ \overline{\mathrm{Rot}} \mathbf{F}^p$ (Cermelli & Gurtin 2001, Reina & Conti 2014)
 - \mathscr{F} invariant iff $\mathscr{F}\left(\mathsf{F}^p,\overline{\nabla}\mathsf{F}^p\right)=\mathscr{F}\left(\mathsf{G}\right)$

Hypotheses: isovolume plastic strain, no plastic spin,...

Physically, SPD in metallic systems is mostly accompanied by **grain refinement** (e.g. Zhylaiev & Langdon 2008), and by generation and organization of **high density of crystal defects** (e.g. Cao et al. 2018).

Observation: Metric captures change of shape but the SPD involves the deformation incompatibilities and

discontinuous relative motions of sub-regions (grains).

III. Generalized Continuum Model

- <u>Goal</u>: Define a model allowing density of dislocations and disclinations within a continuum framework.
- <u>Method</u>: Use of <u>differential geometry</u> for capturing incompatibilities of deformations.

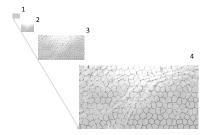


Figure: From (1): Simple Material Model to (4) Generalized Continuum Model. (Optical Micrographs of an Al alloy).

GCM: Existence of Numerous Length Scales

We remind we are always working at a **chosen length scale** of a continuum.

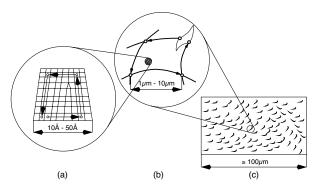


Figure: Crystal plasticity occurs at length scale (a); microscopic and continuum defects at scales (b) and (c) \Longrightarrow Rather working with Defects Density.

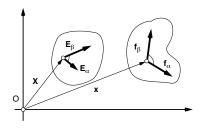
GCM : Geometry Background (Remind)

<u>Generalized Continuum</u> is a compact and connected manifold \mathscr{B} endowed with (Whyburn, 1935):

- ullet a metric tensor $oldsymbol{g}$ with components $g_{lphaeta}\left(\mathbf{x}
 ight)$
- ullet an affine connection abla with coefficients $\Gamma_{\alpha\beta}^{\gamma}(\mathbf{x})$

GCM: Metric (Shape Change)

Shape of grains and overall continuum is measured by metric



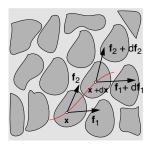
• Metric g measures local deformation : (length & angle) :

$$g_{lphaeta} = \mathbf{g}\left(\mathbf{f}_{lpha}, \mathbf{f}_{eta}
ight) := \mathbf{f}_{lpha} \cdot \mathbf{f}_{eta} \quad \Longrightarrow \quad \left\{ egin{array}{ll} \|\mathbf{f}_{lpha}\| &=& \sqrt{\mathbf{f}_{lpha} \cdot \mathbf{f}_{lpha}} \\ \cos\left(\mathbf{f}_{lpha}, \mathbf{f}_{eta}
ight) &=& rac{\mathbf{f}_{lpha} \cdot \mathbf{f}_{eta}}{\|\mathbf{f}_{lpha}\| \cdot \|\mathbf{f}_{eta}\|} \end{array}
ight.$$

• Triads $F_{\alpha}^{i}(\mathbf{X})$ defines local mapping $\mathbf{f}_{\alpha} = F_{\alpha}^{i} \mathbf{E}_{i}$

GCM: Connection (Defects and Motions) (Noll 1967)

Connection is a mathematical operator linking two grains. (Gonseth, 1929)



• Change of any f_{β} along dx: (linear with respect to $dx := dx^{\alpha}f_{\alpha}$)

$$\mathbf{f}_{\beta}(\mathbf{x}) \longrightarrow \mathbf{f}_{\beta}(\mathbf{x} + d\mathbf{x}) := \mathbf{f}_{\beta}(\mathbf{x}) + \nabla_{d\mathbf{x}}\mathbf{f}_{\beta} = \mathbf{f}_{\beta}(\mathbf{x}) + \nabla_{\mathbf{f}_{\alpha}}\mathbf{f}_{\beta} d\mathbf{x}^{\alpha}$$

• <u>Connection coefficients</u> calculated by noticing $\nabla_{\alpha} \equiv \nabla_{\mathbf{f}_{\alpha}}$ and projecting onto 1-form \mathbf{f}^{γ} : $\Gamma_{\alpha\beta}^{\gamma} := \mathbf{f}^{\gamma} (\nabla_{\alpha} \mathbf{f}_{\beta})$.

V. Generalized Continuum Models for Continuum Dislocations

<u>Motivation</u>: How to measure sharp gradients (defects and grain refinement) in a continuum plasticity model?

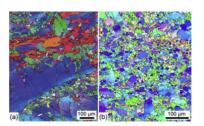


Figure: (a) One Single Crystal Mg after one Equal Canal Angular Pressing (ECAP) (Sedá et al. 2012); (b) a Polycrystalline Mg after four ECAP (Biswas et al. 2010).

GCM: Sketch for approaching defects field

Consider a function $f(\mathbf{X})$ on \mathbb{R} with **discontinuity** at points $(\mathbf{X}_1, \mathbf{X}_2, \cdots, \mathbf{X}_n, n \to \infty)$

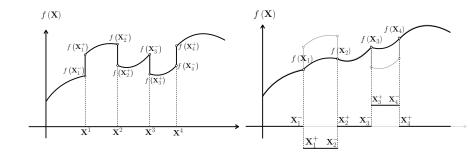
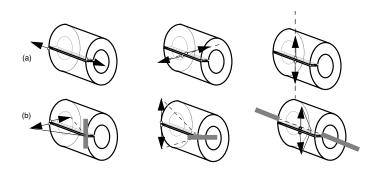


Figure: Discontinuous fields: (Left) **Euclidean approach**: Function (field) is enriched, (Right) **Riemann-Cartan approach**: Domain (manifold) is enriched (Accounting for additional field $[f_1]$, $[f_2]$, $[f_3]$, $[f_4]$... ∞ **infinite number** \longrightarrow **density concept**)

GCM: Dislocations of Volterra (1906)

Individual dislocations (3D)

(a) Translations discontinuity and (b) Rotations discontinuity¹



¹See eg.: Kondo, 1955; Bilby et al., 1955; Kröner, 1963; Noll, 1967, Wang, 1967; Zorawski, 1967; Povstenko, 1987; Maugin, 1993, Le & Stumpf, 1996, R 1998, Zubov, 1997, Acharya & Bassani, 2000, ...

GCM: Dislocations Density vs. Cartan Circuit Disclosure

Presence of defects as dislocations and disclinations may be approached with a GCM! (Via defects density)

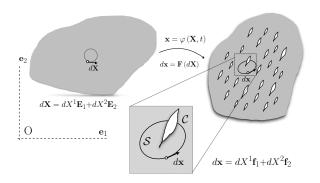


Figure: Cartan Circuit around Defect. Presence of defects induces a disclosure of Cartan circuit

GCM : Dislocations and Discontinuity of Fields

Consider a scalar field $\theta(X)$ and vector field $\mathbf{w}(X)$ on a GCM \mathscr{B} (Example : density, velocity) at a point M

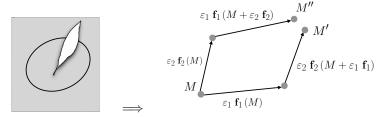


Figure: (Left): **Field discontinuity** [ex. microcrack within a body]; (Right) Parallelogram of Cartan.

We notice $\theta' := \theta(M')$, and $\theta'' := \theta(M'')$; and $\mathbf{w}' := \mathbf{w}(M')$, and $\mathbf{w}'' := \mathbf{w}(M'')$.

GCM: Dislocations Density and Geometric Variables

<u>Goal</u>: Define geometric variables modeling discontinuity of fields on a continuum

Theorem

Say an affinely connected manifold \mathcal{B} . Let consider two arbitrary vectors \mathbf{f}_1 and \mathbf{f}_2 at a point M, they define two paths of length ϵ_1 and ϵ_2 . Then:

$$\begin{cases} & \lim_{(\epsilon_1,\epsilon_2)\to 0} \frac{\left(\theta'-\theta''\right)}{\epsilon_1\epsilon_2} & = & \aleph\left(\mathbf{f}_1,\mathbf{f}_2\right)\left[\theta\right] \\ & \lim_{(\epsilon_1,\epsilon_2)\to 0} \frac{\left(\mathbf{w}'-\mathbf{w}''\right)}{\epsilon_1\epsilon_2} & = & \Re\left(\mathbf{f}_1,\mathbf{f}_2,\mathbf{w}\right) - \nabla_{\aleph(\mathbf{f}_1,\mathbf{f}_2)}\mathbf{w} \end{cases}$$

Proof ² Remind geometric definitions of torsion \aleph and curvature \Re :

$$\begin{array}{lll} \overset{\aleph}{\aleph}\left(\mathbf{f}_{1},\mathbf{f}_{2}\right)\left[\theta\right] &:= & \left(\nabla_{\mathbf{f}_{1}}\mathbf{f}_{2}-\nabla_{\mathbf{f}_{2}}\mathbf{f}_{1}\right)\left[\theta\right]-\left[\mathbf{f}_{1},\mathbf{f}_{2}\right]\left[\theta\right] \\ & & \\ \overset{\Re}{\aleph}\left(\mathbf{f}_{1},\mathbf{f}_{2},\mathbf{w}\right) &:= & \nabla_{\mathbf{f}_{1}}\nabla_{\mathbf{f}_{2}}\mathbf{w}-\nabla_{\mathbf{f}_{2}}\nabla_{\mathbf{f}_{1}}\mathbf{w}-\nabla_{\left[\mathbf{f}_{1},\mathbf{f}_{2}\right]}\mathbf{w} \end{array}$$

GCM: Sketch of the proof (1)

1) Consider a **scalar field** θ (M), we have respectively the relations:

$$\begin{cases} \theta(M_1) &= \theta(M + \varepsilon_1 \mathbf{f}_1) = \theta(M) + \nabla_{\varepsilon_1 \mathbf{f}_1(M)} \theta(M) \\ \theta(M') &= \theta(M_1 + \varepsilon_2 \mathbf{f}_2(M + \varepsilon_1 \mathbf{f}_1)) = \theta(M_1) + \nabla_{\varepsilon_2 \mathbf{f}_2(M + \varepsilon_1 \mathbf{f}_1)} \theta(M_1) \end{cases}$$

We obtain the value of scalar field at M' in terms of its value at M, by noticing $\theta(M') = \theta'$ and $\theta(M) = \theta$, :

$$\theta' = \theta + \varepsilon_{1} \nabla_{\mathbf{f}_{1}} \theta + \varepsilon_{2} \nabla_{\mathbf{f}_{2}} \theta + \varepsilon_{2} \varepsilon_{1} \nabla_{\nabla_{\mathbf{f}_{1}} \mathbf{f}_{2}} \theta + \varepsilon_{2} \varepsilon_{1} \nabla_{\mathbf{f}_{2}} \nabla_{\mathbf{f}_{1}} \theta + \varepsilon_{2} \varepsilon_{1}^{2} \nabla_{\mathbf{f}_$$

2) Similarly, we also obtain, $\theta\left(M^{"}\right)=\theta^{"}$,:

$$\theta'' = \theta + \varepsilon_2 \nabla_{\mathbf{f}_2} \theta + \varepsilon_1 \nabla_{\mathbf{f}_1} \theta + \varepsilon_1 \varepsilon_2 \nabla_{\nabla_{\mathbf{f}_2} \mathbf{f}_1} \theta + \varepsilon_1 \varepsilon_2 \nabla_{\mathbf{f}_1} \nabla_{\mathbf{f}_2} \theta + \varepsilon_1 \varepsilon_2^2 \nabla_{\nabla_{\mathbf{f}_2} \mathbf{f}_1} \nabla_{\mathbf{f}_2} \theta$$
(2)

GCM: Sketch of the proof (2)

3) Similarly, consider a vector field with $\mathbf{w} := \mathbf{w}(M)$,:

$$\mathbf{w}' = \mathbf{w} + \varepsilon_1 \nabla_{\mathbf{f}_1} \mathbf{w} + \varepsilon_2 \nabla_{\mathbf{f}_2} \mathbf{w} + \varepsilon_2 \varepsilon_1 \nabla_{\nabla_{\mathbf{f}_1} \mathbf{f}_2} \mathbf{w} + \varepsilon_2 \varepsilon_1 \nabla_{\mathbf{f}_2} \nabla_{\mathbf{f}_1} \mathbf{w} + \varepsilon_2 \varepsilon_1^2 \nabla_{\nabla_{\mathbf{f}_1} \mathbf{f}_2} \nabla_{\mathbf{f}_1} \mathbf{w}$$

$$+ \varepsilon_2 \varepsilon_1^2 \nabla_{\nabla_{\mathbf{f}_1} \mathbf{f}_2} \nabla_{\mathbf{f}_1} \mathbf{w}$$
(3)

and

$$\mathbf{w}'' = \mathbf{w} + \varepsilon_2 \nabla_{\mathbf{f}_2} \mathbf{w} + \varepsilon_1 \nabla_{\mathbf{f}_1} \mathbf{w} + \varepsilon_1 \varepsilon_2 \nabla_{\nabla_{\mathbf{f}_2} \mathbf{f}_1} \mathbf{w} + \varepsilon_1 \varepsilon_2 \nabla_{\mathbf{f}_1} \nabla_{\mathbf{f}_2} \mathbf{w} + \varepsilon_1 \varepsilon_2^2 \nabla_{\nabla_{\mathbf{f}_2} \mathbf{f}_1} \nabla_{\mathbf{f}_2} \mathbf{w}$$
(4)

- 4) Final step:
- (1) (2) induces the first relation on torsion.
- (3) (4) induces the second result on curvature (and torsion). \Box

Remarque

Calculus is done **exculsively** at point M (then $\mathcal{T}_M\mathcal{B}$). Without curvature but with torsion, we may have vector field discontinuities.

GCM: Some Remarks on Plastic Deformation

- Physical Plastic Deformation can be related to discontinuities of scalar and vector fields. Continuum Plasticity might be approached by GCM (Riemann-Cartan manifold) as geometric foundations.
- ② Two intrinsic elements of the connection ∇, torsion № and curvature ℜ clearly measure the density of these discontinuities (dislocations density and grain refinement, relative motions of grains)!
- One question is now if they are considered as :
 - Internal variables
 - Primal Variables (as for metric / strain)

GCM: Covariance of the model \mathscr{L} (Antonio & R 2011)

Goal: Define general shape of Lagrangian for GCM (Material Frame Independent)

Theorem

A GCM defined by the Lagrangian $\mathcal{L} = \mathcal{L}(g_{\alpha\beta}, \Gamma^{\gamma}_{\alpha\beta}, \partial_{\lambda}\Gamma^{\gamma}_{\alpha\beta})$ is **covariant** if and only if:

$$\mathscr{L} = \mathscr{L}(\mathsf{g}_{\alpha\beta}, \ \aleph_{\alpha\beta}^{\gamma}, \ \mathfrak{R}_{\alpha\beta\lambda}^{\gamma})$$

Remarks:

- **Primal / internal variables** are metric $g_{\alpha\beta}$, torsion $\aleph_{\alpha\beta}^{\gamma}$, and curvature $\Re_{\alpha\beta\lambda}^{\gamma}$ (**Continuum physics** : elasticity, fluid mechanics, gravitation, electromagnetism, plastic deformation ...)
- This theorem extends **Cartan** (1922) and **Lovelock-Rund** (1971, 1975) theorems from Riemann to **Riemann-Cartan continuum**.

GCM: Main steps of the proof:

① Consider change of coordinates (C^{∞} -diffeomorphism) $y^{\alpha} = y^{\alpha}(x^{i})$, and $J_{i}^{\alpha} := \partial_{i}y^{\alpha}, \cdots$

Write:
$$g_{ij} = J_i^{\alpha} J_i^{\beta} g_{\alpha\beta}$$
, ...

- ② Assume covariance + rules of tensors transformation $(g_{\alpha\beta} \text{ and } \Gamma^{\gamma}_{\alpha\beta})$ $\mathscr{L}(g_{ij}, \Gamma^{k}_{ii}, \partial_{l}\Gamma^{k}_{ii} + \Gamma^{m}_{ii}\Gamma^{k}_{lm}) = \mathscr{L}(g_{\alpha\beta}, \Gamma^{\gamma}_{\alpha\beta}, \partial_{\lambda}\Gamma^{\gamma}_{\alpha\beta} + \Gamma^{\mu}_{\alpha\beta}\Gamma^{\gamma}_{\lambda\mu})$
- **3** Decompose $\Gamma_{\alpha\beta}^{\gamma}$ and $\partial_{\alpha}\Gamma_{\beta\lambda}^{\kappa} + \Gamma_{\beta\lambda}^{\xi}\Gamma_{\alpha\xi}^{\kappa}$ into symmetric and skew-symmetric tensors.
- **1** Derivatives of \mathscr{L} with respect to J_i^{α} , ...
- **5** Apply the Quotient Theorem ($\mathbf{h} = \text{tensor}$): $A^{\alpha\beta}h_{\alpha\beta} + B^{\alpha\beta\gamma}\nabla_{\gamma}h_{\alpha\beta}$ scalar $\Rightarrow A^{\alpha\beta}$, $B^{\alpha\beta\gamma}$ tensors.

GCM: Generalized Deformation

Generalized deformation of a GCM includes:

- **①** classical strain tensor represented by **metric** field $g_{\alpha\beta}$
- ② nucleation, drift, and annihilation of dislocations represented by fields of **torsion** $\aleph_{\alpha\beta}^{\gamma}$, and **curvature** $\Re_{\alpha\beta\lambda}^{\gamma}$.

Next step would be the search of conservation laws governing the deformation of \mathcal{B} .

VII. Conservation Laws for GCM (= Strain Gradient Plasticity)

Physics of GCM is defined by a Lagrangian $\mathscr{L} = \mathscr{L}(g_{\alpha\beta}, \aleph_{\alpha\beta}^{\gamma}, \Re_{\alpha\beta\gamma}^{\lambda})$

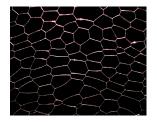


Figure: Left: Plastic deformation of (Metallic alloy, set of microcosms); Right: Spacetime in Loop Quantum Gravitation (set of "quanta").

Goal: Derive conservation laws for **GCM**.

Principle of General Covariance (PGC)

For the general case, we have the action

$$\mathscr{S} := \int_{\mathscr{B}} \mathscr{L} \omega_n$$
, with $\omega_n = \mathrm{RC}$ volume – form

• Principle of General Covariance. ³ (e.g. Souriau 1975, Duval & Künzle 1978, R 2018) The basic method is to express variation of action resulting from the **Lie derivatives**, neglecting $\mathcal{O}(d\lambda)$,:

$$\delta_{\xi} \mathscr{S} = d\lambda \int_{\mathscr{B}} \left(\sigma^{\alpha\beta} \mathcal{L}_{\xi} g_{\alpha\beta} + \sum_{\gamma}^{\alpha\beta} \mathcal{L}_{\xi} \aleph_{\alpha\beta}^{\gamma} + \Xi_{\lambda}^{\alpha\beta\mu} \mathcal{L}_{\xi} \Re_{\alpha\beta\mu}^{\lambda} \right) \omega_{n}$$
$$= 0$$

Conservation laws are deduced when the trajectory is shifted while the action is left unchanged. Infinitesimal active diffeomorphisms are defined by Lie derivative variations

$$(\mathcal{L}_{\xi}g_{lphaeta},\ \mathcal{L}_{\xi}\aleph_{lphaeta}^{\gamma},\ \mathcal{L}_{\xi}\Re_{lphaeta\mu}^{\lambda})$$

³This Principle can be extended to Noether-Klein method and furnishes identities in addition to conservation laws by pointing out the variations ξ , $\nabla \xi$, $\nabla \varphi = 0$

GCM: Generalized Deformation (alternative form)

We consider equivalent set of variables (contortion \mathcal{T} , LC gradient of contortion $\nabla \mathcal{T}$) to avoid the use of ∇ which implicitly includes \aleph :

$$\begin{cases}
\Gamma_{\alpha\beta}^{\gamma} - \overline{\Gamma}_{\alpha\beta}^{\gamma} &:= \mathcal{T}_{\alpha\beta}^{\gamma} \\
\Re_{\alpha\beta\lambda}^{\gamma} - \overline{\Re}_{\alpha\beta\lambda}^{\gamma} &:= \overline{\nabla}_{\alpha}\mathcal{T}_{\lambda\beta}^{\gamma} - \overline{\nabla}_{\beta}\mathcal{T}_{\lambda\alpha}^{\gamma} + \left(\mathcal{T}_{\beta\mu}^{\gamma}\mathcal{T}_{\alpha\lambda}^{\mu} - \mathcal{T}_{\alpha\mu}^{\gamma}\mathcal{T}_{\beta\lambda}^{\mu}\right)
\end{cases}$$

with the **Levi-Civita** (metric) connection $\overline{\nabla}$:

$$\overline{\Gamma}_{\alpha\beta}^{\gamma} := (1/2)g^{\gamma\lambda} \left(\partial_{\alpha} g_{\lambda\beta} + \partial_{\beta} g_{\alpha\lambda} - \partial_{\lambda} g_{\alpha\beta} \right) \qquad \rightarrow \qquad \overline{\Re}_{\alpha\beta\lambda}^{\gamma}$$

The main reason of using of these two equivalent dislocations variables is to avoid torsion implicitly present in connection ∇ .

Lagrangian of the form $\mathscr{L}(g_{\alpha\beta},\mathcal{T}_{\alpha\beta}^{\gamma},\overline{\nabla}_{\lambda}\mathcal{T}_{\alpha\beta}^{\gamma})$

GCM action takes an alternative form:

$$\mathscr{S} := \int_{\mathscr{B}} \mathscr{L} \left(g_{\alpha\beta}, \mathcal{T}_{\alpha\beta}^{\gamma}, \overline{\nabla}_{\lambda} \mathcal{T}_{\alpha\beta}^{\gamma} \right) \omega_{\mathbf{n}}$$

w. volume-form $\omega_n := e^{\vartheta(\mathbf{g}, \mathcal{T})} \overline{\omega}_n$ for divergence theorem (R 2025).

Q Constitutive laws. Dual variables are obtained from action variation: $\delta \mathscr{S} = \int_{\mathscr{B}} \left(\sigma^{\alpha\beta} \ \delta g_{\alpha\beta} + \Sigma_{\gamma}^{\alpha\beta} \ \delta \mathcal{T}_{\alpha\beta}^{\gamma} + \Xi_{\gamma}^{\lambda\alpha\beta} \ \delta \overline{\nabla}_{\lambda} \mathcal{T}_{\alpha\beta}^{\gamma} \right) \omega_{n}$

$$\begin{cases}
\sigma^{\alpha\beta} & := \frac{\partial \mathcal{L}}{\partial g_{\alpha\beta}} + \mathcal{L}\left(\frac{\partial \vartheta}{\partial g_{\alpha\beta}} - \frac{g^{\alpha\beta}}{2}\right) & \text{Stress} \\
\Sigma_{\gamma}^{\alpha\beta} & := \frac{\partial \mathcal{L}}{\partial \mathcal{T}_{\alpha\beta}^{\gamma}} + \mathcal{L}\frac{\partial \vartheta}{\partial \mathcal{T}_{\alpha\beta}^{\gamma}} & \text{Micro - Stress} \\
\Xi_{\gamma}^{\lambda\alpha\beta} & := \frac{\partial \mathcal{L}}{\partial \overline{\nabla}_{\lambda}\mathcal{T}_{\alpha\beta}^{\gamma}} & \text{Polar Stress}
\end{cases}$$

GCM: Principle of General Covariance

1 Variational Formulation. For any local translation $\xi(\mathbf{x})$ generating active diffeomorphism, the PGC takes the form of:

$$\delta\mathscr{S} = \int_{\mathscr{B}} \left[\sigma^{\alpha\beta} \ \mathcal{L}_{\xi} g_{\alpha\beta} + \sum_{\gamma}^{\alpha\beta} \ \mathcal{L}_{\xi} \mathcal{T}_{\alpha\beta}^{\gamma} + \Xi_{\gamma}^{\lambda\alpha\beta} \ \mathcal{L}_{\xi} \overline{\nabla}_{\lambda} \mathcal{T}_{\alpha\beta}^{\gamma} \right] \omega_{n} = 0$$

This is considered as an extension of Principle of Virtual Power.

② The **Principle Virtual Power (PVP** is given by (Gurtin & Anand 2005), assuming $\mathbf{F} := \mathbf{F}^e \mathbf{F}^p \to \mathbf{D}^p := \left\{ \dot{\mathbf{F}}^p \ \mathbf{F}^{p-1} \right\}$:

$$\delta \mathscr{W}_i := \int_{\mathscr{B}} \left(\mathbf{S}^e : \dot{\mathbf{F}}^e + \mathbf{T}^p : \mathbf{D}^p + \mathbf{T}^p : \overline{\nabla} \mathbf{D}^p \right) dV = 0$$

where conditions are : $\mathbf{D}^p = \mathbf{D}^{p\mathrm{T}}$, $\mathrm{Tr}\mathbf{D}^p \equiv 0$.

3 To make **PVP covariant**, \mathbf{D}^p and $\nabla \mathbf{D}^p$ should be merged into the time rate of unique variable $\dot{\mathbf{G}}$ where $\mathbf{G} := (\mathrm{Det}\mathbf{F}^p)^{-1}\mathbf{F}^p$ $\overline{\mathrm{Rot}}\mathbf{F}^p$ (Cermelli & Gurtin 2001).

CCM : Classical Continuum Model $\mathscr{L}(g_{\alpha\beta})$

① Constitutive laws. The "stress" σ is defined as :

$$\mathscr{S} := \int_{\mathscr{B}} \mathscr{L} \; \overline{\omega}_n \quad \Longrightarrow \quad \sigma^{\alpha\beta} := \frac{\partial \mathscr{L}}{\partial g_{\alpha\beta}} - \frac{\mathscr{L}}{2} \; g^{\alpha\beta}$$

2 Conservation laws.

Theorem

Consider a classical continuum model $(\mathcal{B}, \mathbf{g}, \overline{\nabla})$ with a Lagrangian function $\mathcal{L}(g_{\alpha\beta})$. Then :

$$\overline{
abla}_{lpha}\sigma_{\gamma}^{lpha}=0$$

Proof: Write the PGC:

$$\begin{array}{rcl} \Delta \mathscr{S} & := & \int \sigma^{\alpha\beta} \,\, \mathcal{L}_{\xi} g_{\alpha\beta} \,\, \overline{\omega}_{\mathsf{n}} \\ \\ \mathcal{L}_{\xi} \,\, g_{\alpha\beta} & = & \xi^{\gamma} \,\, \overline{\nabla}_{\gamma} g_{\alpha\beta} + g_{\gamma\beta} \,\, \overline{\nabla}_{\alpha} \xi^{\gamma} + g_{\alpha\gamma} \,\, \overline{\nabla}_{\beta} \xi^{\gamma} \end{array}$$

Integrate by parts and shift the boundary flux terms to obtain:

$$-\int_{\mathscr{R}} 2 \, \xi^{\gamma} \, \overline{\nabla}_{\alpha} \sigma^{\alpha}_{\gamma} \, \overline{\omega}_{n} = 0$$

CCM: Remark on Stress for Large Strain (R 2022)

Say **local transformation** $d\mathbf{x} = \mathbf{F}(d\mathbf{X})$ (Pfaffian), with the spatial, initial material, and deformed material bases:

$$(\mathbf{e}_i, i = 1, 2, 3), \quad (\mathbf{E}_{\alpha}, \alpha = 1, 2, 3), \quad (\mathbf{f}_{\alpha}, \alpha = 1, 2, 3), \quad \mathbf{f}_{\alpha} := \mathbf{F}(\mathbf{E}_{\alpha})$$

Consider the stress tensor σ and J := Det F. Its projections hold:

• "Cauchy" σ and Kirchhoff τ stresses,

$$\sigma \to \tau := J\sigma$$
 to give $J\mathbf{e}^i \cdot \sigma \left(\mathbf{e}^j\right) = J \sigma^{ij}$

• First Piola-Kirchhoff stress $P := J\sigma F^{-T}$

$$\mathbf{e}^{i} \cdot \tau \left(\mathbf{f}^{\beta} \right) = J \mathbf{e}^{i} \cdot \sigma \left(\mathbf{F}^{-\mathrm{T}} (\mathbf{E}^{\beta}) \right) = \mathbf{e}^{i} \cdot J \sigma \mathbf{F}^{-\mathrm{T}} \left(\mathbf{E}^{\beta} \right) := P^{i\beta}$$

• Second Piola-Kirchhoff stress $S := JF^{-1}\sigma F^{-T}$

$$\mathbf{f}^{\alpha} \cdot \tau \left(\mathbf{f}^{\beta} \right) = J \mathbf{F}^{-\mathrm{T}} (\mathbf{E}^{\alpha}) \cdot \sigma \left(\mathbf{F}^{-\mathrm{T}} (\mathbf{E}^{\beta}) \right) = \mathbf{E}^{\alpha} \cdot J \mathbf{F}^{-1} \sigma \mathbf{F}^{-\mathrm{T}} \left(\mathbf{E}^{\beta} \right) := \mathcal{S}^{\alpha\beta}$$

We deal with the same tensor σ projected onto different bases!

Weitzenböck Continuum Model $\mathscr{L}:=\mathscr{L}(\mathsf{g}_{\alpha\beta},\mathcal{T}_{\alpha\beta}^{\gamma})$

① Constitutive laws. We remind the two dual variables :

$$\sigma^{lphaeta} := rac{\partial \mathscr{L}}{\partial \mathsf{g}_{lphaeta}} + \mathscr{L}\left(rac{\partial artheta}{\partial \mathsf{g}_{lphaeta}} - rac{\mathsf{g}^{lphaeta}}{2}
ight), \quad oldsymbol{\Sigma}_{\gamma}^{lphaeta} := rac{\partial \mathscr{L}}{\partial \mathcal{T}_{lphaeta}^{\gamma}} + \mathscr{L}rac{\partial artheta}{\partial \mathcal{T}_{lphaeta}^{\gamma}}$$

In RG, dual variables $\sigma^{\alpha\beta}$ and $\Sigma^{\alpha\beta}_{\gamma}$ are respectively called energy-momentum and hypermomentum (Hehl et al. 1976).

Conservations laws.

Theorem

Consider a Weitzenböck Continuum Model $(\mathcal{B}, \mathbf{g}, \nabla)$ with a Lagrangian function $\mathcal{L}(g_{\alpha\beta}, \mathcal{T}_{\alpha\beta}^{\gamma})$. Then :

$$\overline{
abla}_{eta} ilde{\sigma}_{
ho}^{eta}+\mathcal{T}_{lphaeta}^{lpha}\,\, ilde{\sigma}_{
ho}^{eta}=0$$

with the generalized stress $\tilde{\sigma}^{\beta}_{\rho}$:

$$\tilde{\sigma}_{\rho}^{\beta} := \sigma_{\rho}^{\beta} + \frac{1}{2} \left(- \frac{\sum_{\rho}^{\alpha \gamma}}{\rho} \, \mathcal{T}_{\alpha \gamma}^{\beta} + \frac{\sum_{\gamma}^{\beta \alpha}}{\gamma} \, \mathcal{T}_{\rho \alpha}^{\gamma} + \frac{\sum_{\gamma}^{\alpha \beta}}{\gamma} \, \mathcal{T}_{\alpha \rho}^{\gamma} \right)$$

WCM : Proof (1)

- 1. Invariance of Poincaré.
 - Express the PGC as variation due to active diffeomorphism:

$$\delta_{\xi} \int_{\mathscr{B}} \mathscr{L} \omega_{n} = \int_{\mathscr{B}} (\sigma^{\alpha\beta} \mathcal{L}_{\xi} g_{\alpha\beta} + \Sigma_{\gamma}^{\alpha\beta} \mathcal{L}_{\xi} \mathcal{T}_{\alpha\beta}^{\gamma}) \omega_{n} = 0$$

2 Compute the Lie derivatives (tedious !)

$$\left\{ \begin{array}{ll} \mathcal{L}_{\xi} \mathbf{g}_{\alpha\beta} & = & \overline{\nabla}_{\alpha} \xi_{\beta} + \overline{\nabla}_{\beta} \xi_{\alpha} + \mathbf{g}_{\alpha\gamma} \mathcal{T}_{\rho\beta}^{\gamma} \xi^{\rho} + \mathbf{g}_{\gamma\beta} \mathcal{T}_{\rho\alpha}^{\gamma} \xi^{\rho} \\ \mathcal{L}_{\xi} \mathcal{T}_{\alpha\beta}^{\gamma} & = & \xi^{\rho} \overline{\nabla}_{\rho} \mathcal{T}_{\alpha\beta}^{\gamma} - \mathcal{T}_{\alpha\beta}^{\rho} \overline{\nabla}_{\rho} \xi^{\gamma} + \mathcal{T}_{\rho\beta}^{\gamma} \overline{\nabla}_{\alpha} \xi^{\rho} + \mathcal{T}_{\alpha\rho}^{\gamma} \overline{\nabla}_{\beta} \xi^{\rho} \end{array} \right.$$

We write the integrand (terms in brackets):

$$\begin{split} \delta_{\xi} \mathscr{L} &= \sigma^{\alpha\beta} \left(\overline{\nabla}_{\alpha} \xi_{\beta} + \overline{\nabla}_{\beta} \xi_{\alpha} \right) + \sigma^{\alpha\beta} \left(g_{\alpha\gamma} \mathcal{T}_{\rho\beta}^{\gamma} + g_{\gamma\beta} \mathcal{T}_{\rho\alpha}^{\gamma} \right) \xi^{\rho} \\ &+ \left(\Sigma_{\gamma}^{\alpha\beta} \overline{\nabla}_{\rho} \mathcal{T}_{\alpha\beta}^{\gamma} \right) \xi^{\rho} \\ &+ \Sigma_{\gamma}^{\alpha\beta} \left(-\mathcal{T}_{\alpha\beta}^{\rho} \overline{\nabla}_{\rho} \xi^{\gamma} + \mathcal{T}_{\rho\beta}^{\gamma} \overline{\nabla}_{\alpha} \xi^{\rho} + \mathcal{T}_{\alpha\rho}^{\gamma} \overline{\nabla}_{\beta} \xi^{\rho} \right) = 0 \end{split}$$

It should vanish for all compatible diffeomorphisms (as for PVP).

WCM : Proof (2)

2. Global Invariance. By considering uniform ξ , we deduce an identity:

$$\sigma^{\alpha\beta}\left(g_{\alpha\nu}\mathcal{T}^{\nu}_{\rho\beta}+g_{\nu\beta\nu}\mathcal{T}^{\nu}_{\rho\alpha}\right)+\Sigma^{\alpha\beta}_{\gamma}\overline{\nabla}_{\rho}\mathcal{T}^{\gamma}_{\alpha\beta}=0$$

3. Local Invariance. We consider **non uniform** translations $\xi(\mathbf{x})$, factorize by $\overline{\nabla}_{\beta}\xi^{\rho}$, integrate by part, and drop all terms in divergence (for the sake of the simplicity) and obtain:

$$\int_{\mathscr{B}} \tilde{\sigma}_{\rho}^{\beta} \, \overline{\nabla}_{\beta} \xi^{\rho} \, \omega_{n} = \int_{\mathscr{B}} \left[\nabla_{\beta} \left(\tilde{\sigma}_{\rho}^{\beta} \xi^{\rho} \right) - \left(\overline{\nabla}_{\beta} \tilde{\sigma}_{\rho}^{\beta} + \mathcal{T}_{\alpha\beta}^{\alpha} \, \tilde{\sigma}_{\rho}^{\beta} \right) \xi^{\rho} \right] \omega_{n} = 0$$

by defining a generalized stress measure:

$$2\tilde{\sigma}_{\rho}^{\beta} := 2 \; \sigma_{\rho}^{\beta} - \frac{\sum_{\rho}^{\alpha \gamma}}{\rho} \; \mathcal{T}_{\alpha \gamma}^{\beta} + \frac{\sum_{\gamma}^{\beta \alpha}}{\gamma} \; \mathcal{T}_{\rho \alpha}^{\gamma} + \frac{\sum_{\gamma}^{\alpha \beta}}{\gamma} \; \mathcal{T}_{\alpha \rho}^{\gamma} \qquad \Box$$

Remarque

Presence of the contortion in the conservation laws is due to the use of Levi-Civita connection but Riemann-Cartan volume-form.

WCM : Some remarks (1)

- Literature. Similar conservation equations were obtained in the past obtained for
 - Relative Gravitation (e.g. Souriau 1975, Hehl et al. 1975, Lompay & Petrov 2013, ...),
 - Newton-Cartan Gravitation (e.g. Duval & Künzle, 1978),
 - Noll materially uniform continua (e.g. Noll 1967, R 1998).
- ② The generalized stress tensor (not necessarily symmetric) $\tilde{\sigma}^{\beta}_{\rho}$ extends the classical Cauchy stress σ^{β}_{ρ} .
- **1** The generalized stress includes **two contributions**: "macro" σ_{ρ}^{α} and "micros" $\Sigma_{\gamma}^{\alpha\beta}\mathcal{T}_{\rho\beta}^{\gamma}$ due to change of grain structure and dislocations density associated to plastic deformation.

WCM : Remarks (on the micro-stress / hypermomentum)

The hypermomentum / micro-stress $\sum_{\gamma}^{\alpha\beta}$ consists in three terms (Mindlin 1964, Hehl et al. 1976, 1977, Gordeeva et al. 2010):

$$\Sigma_{\gamma}^{lphaeta} = \Sigma_{\gamma}^{[lpha,eta]} + rac{\delta_{\gamma}^{lpha}}{n} \; \overline{\Sigma}^{eta} + \overline{\Sigma}_{\gamma}^{(lpha,eta)}$$

• Spin-angular momentum / Rotatory micro-stress

$$\Sigma_{\gamma}^{[\alpha,\beta]}$$
 skew symmetric part

Proper hypermomentum / Proper micro-stress

$$\Sigma_{\gamma}^{(\alpha,\beta)}$$
 symmetric part and $\Sigma_{\alpha}^{(\alpha,\beta)} = \overline{\Sigma}^{\beta}$ dilatational

• Traceless proper hypermomentum / Traceless proper micro-stress

$$\overline{\Sigma}_{\gamma}^{(lpha,eta)} := \Sigma_{\gamma}^{(lpha,eta)} - rac{\delta_{\gamma}^{lpha}}{n} \; \overline{\Sigma}^{eta}$$

Generalized Continuum Model $\mathscr{L}:=\mathscr{L}(\mathsf{g}_{lphaeta},\mathcal{T}_{lphaeta}^{\gamma},\overline{ abla}_{\lambda}\mathcal{T}_{lphaeta}^{\gamma})$

Theorem

Consider a Generalized Continuum Model $(\mathscr{B}, \mathbf{g}, \nabla)$ with a Lagrangian function $\mathscr{L} := \mathscr{L}(\mathbf{g}_{\alpha\beta}, \mathcal{T}_{\alpha\beta}^{\gamma}, \overline{\nabla}_{\lambda} \mathcal{T}_{\alpha\beta}^{\gamma})$. Then :

$$\overline{
abla}_{eta} ilde{\sigma}_{
ho}^{eta}+\mathcal{T}_{lphaeta}^{lpha}\,\, ilde{\sigma}_{
ho}^{eta}=0$$

with the **generalized stress** $\tilde{\sigma}_{\rho}^{\beta}$:

$$\widetilde{\sigma}_{\rho}^{\beta} := \sigma_{\rho}^{\beta} + \frac{1}{2} \left(-\Sigma_{\rho}^{\alpha\gamma} \mathcal{T}_{\alpha\gamma}^{\beta} + \Sigma_{\gamma}^{\beta\alpha} \mathcal{T}_{\rho\alpha}^{\gamma} + \Sigma_{\gamma}^{\alpha\beta} \mathcal{T}_{\alpha\rho}^{\gamma} \right) \\
+ \frac{1}{2} \left(-\Xi_{\rho}^{\lambda\alpha\gamma} \overline{\nabla}_{\lambda} \mathcal{T}_{\alpha\gamma}^{\beta} + \Xi_{\gamma}^{\beta\alpha\lambda} \overline{\nabla}_{\rho} \mathcal{T}_{\alpha\lambda}^{\gamma} + \Xi_{\gamma}^{\lambda\beta\alpha} \overline{\nabla}_{\lambda} \mathcal{T}_{\rho\alpha}^{\gamma} + \Xi_{\gamma}^{\lambda\alpha\beta} \overline{\nabla}_{\lambda} \mathcal{T}_{\alpha\rho}^{\gamma} \right)$$

Generalized stress includes $\Xi_{\gamma}^{\lambda\alpha\beta}$ that corresponds to (mass) quadrupole moment in Relative Gravitation (Dixon 1970, Souriau 1974, Bayley & Israel 1975).

GCM: Proof (1)

• Express the PGC involving arbitrary active diffeomorphism:

$$\begin{split} \delta_{\xi} \int_{\mathscr{B}} \mathscr{L} \, \omega_n &= \int_{\mathscr{B}} \left[\sigma^{\alpha\beta} \mathcal{L}_{\xi} \mathsf{g}_{\alpha\beta} + \Sigma_{\gamma}^{\alpha\beta} \mathcal{L}_{\xi} \mathcal{T}_{\alpha\beta}^{\gamma} + \Xi_{\gamma}^{\lambda\alpha\beta} \mathcal{L}_{\xi} \overline{\nabla}_{\lambda} \mathcal{T}_{\alpha\beta}^{\gamma} \right] \omega_n = 0 \end{split}$$
 with the Lie derivatives $\mathcal{L}_{\xi} \mathsf{g}_{\alpha\beta}$ and $\mathcal{L}_{\xi} \mathcal{T}_{\alpha\beta}^{\gamma}$.

• Compute the **Lie derivative** of the covariant derivative:

$$\begin{array}{lcl} \mathcal{L}_{\xi} \overline{\nabla}_{\lambda} \mathcal{T}_{\alpha\beta}^{\gamma} & = & \underline{\xi}^{\rho} \ \overline{\nabla}_{\rho} \overline{\nabla}_{\lambda} \mathcal{T}_{\alpha\beta}^{\gamma} - \overline{\nabla}_{\lambda} \mathcal{T}_{\alpha\beta}^{\rho} \overline{\nabla}_{\rho} \xi^{\gamma} \\ & + & \overline{\nabla}_{\rho} \mathcal{T}_{\alpha\beta}^{\gamma} \overline{\nabla}_{\lambda} \xi^{\rho} + \overline{\nabla}_{\lambda} \mathcal{T}_{\rho\beta}^{\gamma} \overline{\nabla}_{\alpha} \xi^{\rho} + \overline{\nabla}_{\lambda} \mathcal{T}_{\alpha\rho}^{\gamma} \overline{\nabla}_{\beta} \xi^{\rho} \end{array}$$

• Consider a **uniform** ξ **field**, then we obtain the **identity**:

$$\sigma^{\alpha\beta}\left(g_{\alpha\gamma}\mathcal{T}_{\rho\beta}^{\gamma}+g_{\gamma\beta}\mathcal{T}_{\rho\alpha}^{\gamma}\right)+\Sigma_{\gamma}^{\alpha\beta}\overline{\nabla}_{\rho}\mathcal{T}_{\alpha\beta}^{\gamma}+\Xi_{\gamma}^{\lambda\alpha\beta}\overline{\nabla}_{\rho}\overline{\nabla}_{\lambda}\mathcal{T}_{\alpha\beta}^{\gamma}=0$$

GCM: Proof (2)

• Use of same method as previously for **non-uniform** ξ , we factorize the remaining term by $\overline{\nabla}_{\beta}\xi^{\rho}$, and obtain :

$$\begin{split} \delta_{\xi} \mathcal{L} &= \sigma^{\alpha\beta} \left(\overline{\nabla}_{\alpha} \xi_{\beta} + \overline{\nabla}_{\beta} \xi_{\alpha} \right) \\ &+ \Sigma_{\gamma}^{\alpha\beta} \left(-T_{\alpha\beta}^{\rho} \overline{\nabla}_{\rho} \xi^{\gamma} + T_{\rho\beta}^{\gamma} \overline{\nabla}_{\alpha} \xi^{\rho} + T_{\alpha\rho}^{\gamma} \overline{\nabla}_{\beta} \xi^{\rho} \right) \\ &- \Xi_{\rho}^{\lambda\alpha\gamma} \overline{\nabla}_{\lambda} T_{\alpha\gamma}^{\beta} \overline{\nabla}_{\beta} \xi^{\rho} + \Xi_{\gamma}^{\beta\alpha\lambda} \overline{\nabla}_{\rho} T_{\alpha\lambda}^{\gamma} \overline{\nabla}_{\beta} \xi^{\rho} \\ &+ \Xi_{\gamma}^{\lambda\beta\alpha} \overline{\nabla}_{\lambda} T_{\rho\alpha}^{\gamma} \overline{\nabla}_{\beta} \xi^{\rho} + \Xi_{\gamma}^{\lambda\alpha\beta} \overline{\nabla}_{\lambda} T_{\alpha\rho}^{\gamma} \overline{\nabla}_{\beta} \xi^{\rho} \end{split}$$

ullet The proof of the theorem follows. \Box

Note: Use of other vector field ξ allows us to obtain other conservation laws or identities (linear, angular momentum, ...).

GCM: Comment on Generalized Stress

Roughly speaking, the **generalized stress** includes three contributions:

- the classical **Cauchy stress** / energy-momentum $\sigma^{\alpha\beta}$ deforms the underlying continuum shape.
- 2 the **micro-stress** / hypermomentum current $\sum_{\gamma}^{\alpha\beta} \mathcal{T}_{\rho\beta}^{\gamma}$ (and $\sum_{\gamma}^{\alpha\beta} \mathcal{T}_{\alpha\rho}^{\gamma}$) induces change of density of dislocations / defects at each point (discontinuity of scalar field)
- **1** the **polar stress** / (mass) quadrupole moment : $\frac{\sum_{\gamma}^{\lambda\alpha\beta} \overline{\nabla}_{\lambda} \mathcal{T}_{\rho\beta}^{\gamma}}{\sum_{\lambda} \mathcal{T}_{\alpha\rho}^{\gamma}}$ (and $\frac{\sum_{\gamma}^{\lambda\alpha\beta} \overline{\nabla}_{\lambda} \mathcal{T}_{\alpha\rho}^{\gamma}}{\sum_{\lambda} \mathcal{T}_{\alpha\rho}^{\gamma}}$) drives the relative motions of grains / continuum microcosms (discontinuity of vector field).

VI. Generalized Continuum Model and Example of Constitutive Laws

In this **particular case**, the two variables $\mathcal{T}_{\alpha\beta}^{\gamma}$, and $\nabla_{\lambda}\mathcal{T}_{\alpha\beta}^{\gamma}$ capturing evolutions of density of dislocations are considered as **internal variables**.

GCM: Overall Thermodynamic Process

A **Thermodynamical Process** of a particular GCM is assumed to be defined by the set (Coleman & Gurtin 1967):

- **1** spatial position of each point $M \in \mathcal{B}$: $\mathbf{x} = \varphi(\mathbf{X}, t)$;
- 2 temperature $\theta(M, t)$;
- 3 stress tensor $\sigma(M, t)$ (micro-stress $\Sigma(M, t)$ and polar stress $\Xi(M, t)$) and external body force $\rho \mathbf{b}(M, t)$;
- entropy s(M, t);
- **1** Helmholtz free energy $\phi(M, t)$;
- **1** heat flux $\mathbf{q}(M, t)$;
- $\mathbf{0}$ heat source r(M, t)
- **3** Extended set of Internal Variables: contortion \mathcal{T} and its LC-covariant derivative $\overline{\nabla}\mathcal{T}$ (Ramaniraka & R 2000, R 2003).

GCM: Objective rate of tensors (R 1998)

Definition

(\mathscr{B} -derivative) Let **A** be a tensor of type (p,q) on \mathscr{B} . The time derivative of **A** with respect to \mathscr{B} is a tensor of the same type as **A**, which satisfies for any p-uplet of vectors $(\mathbf{f}_1,...,\mathbf{f}_p)$ and for any q-uplet of 1-forms $(\omega^1,...,\omega^q)$, macroscopically embedded in \mathscr{B} ,:

$$\frac{d^{\mathscr{B}}\mathbf{A}}{dt}\left(\mathbf{f}_{1},...,\mathbf{f}_{p},\omega^{1},...,\omega^{q}\right)\equiv\frac{d}{dt}\left[\mathbf{A}(\mathbf{f}_{1},\cdots,\mathbf{f}_{p},\omega^{1},\cdots,\omega^{q})\right]$$

Generalized Continuum Model: The \mathscr{B} -derivatives of the primal / internal variables are given by:

$$\zeta_g := \frac{1}{2} \frac{d^{\mathscr{B}} \mathbf{g}}{dt}, \qquad \zeta_{\mathcal{T}} := \frac{d^{\mathscr{B}} \mathcal{T}}{dt}, \qquad \zeta_{\overline{\nabla} \mathcal{T}} := \frac{d^{\mathscr{B}} \overline{\nabla} \mathcal{T}}{dt}$$

Definition includes all so-called objective rate of tensor of classical continuum mechanics (and Lie derivatives on RC manifolds) (R 2022)

GCM: Constitutive laws of rate-independent material

Theorem

A Generalized Continuum Model of the rate type \mathscr{B} is defined by constitutive tensor functions: $\Im = \{\sigma, \Sigma, \Xi, \phi, s\}$:

$$\Im = \widetilde{\Im} \left(\mathbf{g}, \mathcal{T}, \overline{\nabla} \mathcal{T}, \zeta_{\mathcal{g}}, \zeta_{\mathcal{T}}, \zeta_{\overline{\nabla} \mathcal{T}} \right)$$

Then the free energy ϕ takes necessarily the form $\phi = \tilde{\phi}\left(\mathbf{g}, \mathcal{T}, \overline{\nabla} \mathcal{T}\right)$ and the entropy inequality as:

$$\mathbf{J}_g:\zeta_g+\mathbf{J}_{\mathcal{T}}:\zeta_{\mathcal{T}}+\mathbf{J}_{\overline{\nabla}\mathcal{T}}:\zeta_{\overline{\nabla}\mathcal{T}}\geq 0$$

with worth dual dissipation variables $(\mathbf{J}_g, \mathbf{J}_{\mathcal{T}}, \mathbf{J}_{\overline{\nabla}_{\mathcal{T}}})$.

Proof Extension of Coleman & Noll theorem (R 2003) \Box . To ensure the **Entropy Inequality**, introduce a **Dissipation Potential** ψ which is positive, convex and zero when the rates are equal to zero (Moreau 1970, Germain 1973).

GCM: Principle of Maximum Dissipation (v. Mises, 1928)

Evolution of defects may be derived by means of the Principle of Maximum Dissipation. (e.g. Hackl et al. 2007, 2011, 2024)

• Principle of **Maximum Dissipation** (constrained optimization):

$$\operatorname{Max}\left\{\psi\left(\zeta_{\mathcal{T}},\zeta_{\overline{\nabla}\mathcal{T}}\right) \quad \text{such that} \quad \psi-\left(\mathbf{J}_{\mathcal{T}}:\zeta_{\mathcal{T}}+\mathbf{J}_{\overline{\nabla}\mathcal{T}}:\zeta_{\overline{\nabla}\mathcal{T}}\right)\equiv0\right\}$$

• Introduce a extended dissipation function to maximize:

$$\psi_{\text{ext}} := \psi + \lambda \left[\psi - (\mathbf{J}_{\mathcal{T}} : \zeta_{\mathcal{T}} + \mathbf{J}_{\overline{\nabla}_{\mathcal{T}}} : \zeta_{\overline{\nabla}_{\mathcal{T}}}) \right]$$

 Necessary stationarity conditions from derivatives to obtain three (in)-equations:

$$\begin{cases} (1+\lambda)\frac{\partial\psi}{\partial\zeta_{\mathcal{T}}} - \lambda \, \mathbf{J}_{\mathcal{T}} &= 0 & [\quad \ni 0\quad]\\ (1+\lambda)\frac{\partial\psi}{\partial\zeta_{\overline{\nabla}\mathcal{T}}} - \lambda \, \mathbf{J}_{\overline{\nabla}\mathcal{T}} &= 0 & [\quad \ni 0\quad]\\ \psi - (\mathbf{J}_{\mathcal{T}}:\zeta_{\mathcal{T}} + \mathbf{J}_{\overline{\nabla}\mathcal{T}}:\zeta_{\overline{\nabla}\mathcal{T}}) &= 0 \end{cases}$$

GCM: Non-smooth Evolution Rule

• Define a new Lagrange multiplier $\Lambda = (\lambda + 1)/\lambda$, and assume a homogeneous function ψ of degree 1 to deduce:

$$\left\{ \begin{array}{lll} \mathbf{J}_{\mathcal{T}} & = & \Lambda \frac{\partial \psi}{\partial \zeta_{\mathcal{T}}} \\ \mathbf{J}_{\overline{\nabla} \mathcal{T}} & = & \Lambda \frac{\partial \psi}{\partial \zeta_{\overline{\nabla} \mathcal{T}}} \end{array} \right. \text{ extended to } \left\{ \begin{array}{lll} \mathbf{J}_{\mathcal{T}} & \in & \partial \psi_{\zeta_{\mathcal{T}}} \left(\zeta_{\mathcal{T}}, \zeta_{\overline{\nabla} \mathcal{T}} \right) \\ \mathbf{J}_{\overline{\nabla} \mathcal{T}} & \in & \partial \psi_{\zeta_{\overline{\nabla} \mathcal{T}}} \left(\zeta_{\mathcal{T}}, \zeta_{\overline{\nabla} \mathcal{T}} \right) \end{array} \right.$$

 Invert by using Legendre-Fenchel transform (e.g. Rockafellar, 1970):

$$\psi^*\left(\mathbf{J}_{\mathcal{T}},\mathbf{J}_{\overline{\nabla}_{\mathcal{T}}}\right) := \operatorname{Sup}_{\left(\zeta_{\mathcal{T}},\zeta_{\overline{\nabla}_{\mathcal{T}}}\right)}\left[\mathbf{J}_{\mathcal{T}}:\zeta_{\mathcal{T}}+\mathbf{J}_{\overline{\nabla}_{\mathcal{T}}}:\zeta_{\overline{\nabla}_{\mathcal{T}}}-\psi\left(\zeta_{\mathcal{T}},\zeta_{\overline{\nabla}_{\mathcal{T}}}\right)\right]$$

• Use conjugate function ψ^* to obtain **Defects Evolution Rule**:

$$\begin{cases}
\zeta_{\mathcal{T}} = \frac{\partial \psi^*}{\partial \mathbf{J}_{\mathcal{T}}} \\
\zeta_{\overline{\nabla}_{\mathcal{T}}} = \frac{\partial \psi^*}{\partial \mathbf{J}_{\zeta_{\overline{\nabla}_{\mathcal{T}}}}}
\end{cases} \text{ extended to }
\begin{cases}
\zeta_{\mathcal{T}} \in \partial \psi^*_{\mathbf{J}_{\mathcal{T}}}(\mathbf{J}_{\mathcal{T}}, \mathbf{J}_{\overline{\nabla}_{\mathcal{T}}}) \\
\zeta_{\overline{\nabla}_{\mathcal{T}}} \in \partial \psi^*_{\mathbf{J}_{\overline{\nabla}_{\mathcal{T}}}}(\mathbf{J}_{\mathcal{T}}, \mathbf{J}_{\overline{\nabla}_{\mathcal{T}}})
\end{cases}$$

$$\left\{ \begin{array}{ccc} \zeta_{\mathcal{T}} & \in & \partial \psi_{\mathbf{J}_{\mathcal{T}}}^{*} \left(\mathbf{J}_{\mathcal{T}}, \mathbf{J}_{\overline{\nabla}_{\mathcal{T}}} \right) \\ \\ \zeta_{\overline{\nabla}_{\mathcal{T}}} & \in & \partial \psi_{\mathbf{J}_{\overline{\nabla}_{\mathcal{T}}}}^{*} \left(\mathbf{J}_{\mathcal{T}}, \mathbf{J}_{\overline{\nabla}_{\mathcal{T}}} \right) \end{array} \right.$$

GCM: Normal Dissipative Material (from R 2003)

1 Indicator function (\simeq rate-independent plasticity): A choice of convex, homogeneous of degree one Dissipation Potential $\psi = \hat{\psi}\left(\zeta_{\mathcal{T}}, \zeta_{\overline{\nabla}\mathcal{T}}\right)$ that vanishes when rates are zero:

$$\hat{\psi}^{*}(\mathbf{J}_{\mathcal{T}}, \mathbf{J}_{\overline{\nabla}\mathcal{T}}) := \operatorname{Sup}_{\zeta_{\mathcal{T}}, \zeta_{\overline{\nabla}\mathcal{T}}} \left[\mathbf{J}_{\mathcal{T}} : \zeta_{\mathcal{T}} + \mathbf{J}_{\overline{\nabla}\mathcal{T}} : \zeta_{\overline{\nabla}\mathcal{T}} - \hat{\psi}(\zeta_{\mathcal{T}}, \zeta_{\overline{\nabla}\mathcal{T}}) \right] \\
= \begin{cases}
0 & \text{if } (\mathbf{J}_{\mathcal{T}}, \mathbf{J}_{\overline{\nabla}\mathcal{T}}) \in \mathscr{C} \\
\infty & \text{if } (\mathbf{J}_{\mathcal{T}}, \mathbf{J}_{\overline{\nabla}\mathcal{T}}) \notin \mathscr{C}
\end{cases}$$

allows us to satisfy the entropy inequality!

2 The **Helmholtz Free Energy** ϕ takes the form of:

$$\phi = \hat{\phi}\left(\mathbf{g}, \mathcal{T}, \overline{\nabla} \mathcal{T}\right)$$

Remarque

 $\zeta_{\mathcal{T}}$ and $\zeta_{\overline{\nabla}\mathcal{T}}$ are the **covariant rate of defects evolution** analogous to plastic deformation rates $\mathbf{D}^p := \dot{\mathbf{F}}^p \ \mathbf{F}^{p-1}$ and $\overline{\nabla} \mathbf{D}^p$ used in the framework of GND e.g. (Cermelli & Gurtin 2001).

VIII. Concluding Remark

Figure: GCM of continuum dislocations and way of Life

Strain Gradient Plasticity including density of dislocations may be worthily modeled with Generalized Continuum Model (i.e. Riemann-Cartan manifold) with metric $g_{\alpha\beta}$ for shape change, torsion $\aleph_{\alpha\beta}^{\gamma}$ (resp. $\mathcal{T}_{\alpha\beta}^{\gamma}$) for translational dislocations, and curvature $\Re_{\alpha\beta\lambda}^{\gamma}$ (resp. $\overline{\nabla}_{\lambda}\mathcal{T}_{\alpha\beta}^{\gamma}$) for rotational dislocations.

Lalaonirina Rakotomanana Ravelonarivo

Some Thoughts Concerning the Vacuum Spacetime and the Cosmological Constant: Gravitation and Electromagnetism

April 9, 2025

"We end our panoramic tour of **Generalized Continuum Mechanics** by mentioning an original geometric solution as presented in the book of Rakotomanana (2003), which offers a representation of a material manifold - that is **everywhere dislocated** - with the appropriate generalized **gradient operator**." (Maugin, 2013)

Merci pour votre attention!

Some papers and books

- Antonio Tamarasselvame N, Rakotomanana L. On the form-invariance of Lagrangean function for higher gradient continuum, in Mechanics of Generalized Continua, Ed. by H Altenbach, G Maugin, V Erofeev, Springer-Verlag, 2011, pp 291-322.
- Futhazar G, Le Marrec L, Rakotomanana LR. Covariant gradient continua applied to wave propagation within defected material, Archive for Applied Mechanics, 2014.
- Rakotomanana RL. Contribution à la modélisation géométrique et thermodynamique d'une classe de milieux faiblement continus, Archives for Rational Mechanics and Analysis 141, 1998, pp 199-236.
- Rakotomanana RL. A geometric approach to thermomechanics of dissipating continua, in Progress in Mathematical Physics Series, Birkhaüser, Boston, 2003.
- Rakotomanana RL. Covariance and Gauge Invariance in Continuum Physics, in Progress in Mathematical Physics Series, Birkhaüser, Cham, 2018.
- Rakotomanana RL. More on the Geometric Approach for Gravitation Coupled with Electromagnetism within a Riemann-Cartan Vacuum Spacetime, https://hal.archives-ouvertes.fr/hal-03216920, 2021, pp 1-19.
- Rakotomanana RL, Curnier A, Leyvraz PF. An objective anisotropic elastic plastic model and algorithm
 applicable to bone mechanics, European J. Mechanics/A 10, 3, pp 327-342, 1991.
- Ramaniraka NA, Rakotomanana LR. Models of continuum with microcrack distribution, Mathematics and Mechanics of Solids 5, 2000, pp 301-336.
- Rakotomanana RL. Some Thoughts Concerning Spacetime Models in Cosmology: Role of Gravitation and Electromagnetism. Proceedings The 17th Marcel Grossmann Meetings, Jul 2024, Pescara, Italy.