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@ Generalized Continuum Model (GCM)
© GCM and Continuum Dislocations

© Conservation Laws for GCM

© Example of Constitutive Laws

O Concluding Remarks
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|. Basics on Plastic Deformation

@ Severe Plastic Deformation (SPD)

@ Relation with Dislocations

L Rakotomanana Continuum Dislocations : Generalized Continuum Model



Severe Plastic Deformation : Loading Examples
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Figure: Material Processing with Grain Refinement by Severe Plastic
Deformation : Strengthening of material. (a) HPT : High Pressure
Torsion
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SPD : HPT Experimental Results
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Figure: Optical Micrographs : Microstructures after HPT at the center,
half-way position and edge of the disk in a magnesium AZ61 alloy after
processing N turns at 423 K (Zhilayev & Langdon 2008).
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SPD : Dislocation and Grains Mechanisms

Initial structure Stage 1 Stage 2

Figure: Grain size refinement under SPD (Cao et al. 2018):

(1) Initial : formation of large size dislocations cell blocks containing dislocations and
dislocation cells structures;

(2) Formation of micro-bands and transformation of some nearly dislocations cells into
cells blocks;

(3) Formation of lamellar sub-grains containing numerous dislocations;

(4) Formation of well-developed lamellar sub-grains and some equiaxed sub-grains;
(5) Homogeneous distribution of equiaxed ultrafine grains or nano-grains.
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SPD : Mechanisms of Plastic Deformation

© Twinning and relative motions of grain with refinement are
mostly the mechanisms underlying plastic deformation.

@ Density of dislocations augments when the plastic deformation
increases.

© Asympotic response. For complicated deformation operating in
SPD, microstructure mostly reach a steady state at which further
deformation does not change the overall microstructure.
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Approach with Continuum Plasticity
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Figure: Stress o strain € curve of elementary traction. Slip and

Twinning of Crystallin Material
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MuD : Multiplicative Decomposition

Figure: (a) Additive Decomposition (small deformation) and (b)
Multiplicative Decomposition (Bilby et al. 1957).

Additive Decomposition: E = E¢ + EP (Green & Nagdhi 1965)

@ EP : primal variable
@ ¢ (E,EP) : Helmholtz free energy
@ E — E” : not necessarily an elastic strain (1966)

Application : Mostly used for small strains (despite Nagdhi 1990)
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MuD : Swift Review of Theories

@ Muiltiplicative Decomposition: F = F¢FP (Lee & Liu 1967)

o Dislocations & crystallin backgrounds : Kondo (1949), Bilby
(1957), Kroner (1959)

o Incompatible intermediate deformation (non Euclidean
configuration): e.g. Le & Stumpf, 1996

o Existence of numerous partitions of rate of deformations :
D=D°+DP,L=L®+LP,---, and problem of plastic spin.

Some problems: Unicity of intermediate configuration, choice of
plastic deformation and plastic spin and their objective rates,
covariance of model ...

@ More recent results:

e Rigorous relation with crystallin plasticity (Reina et al. 2017)

o Existence and uniqueness of FP (Reina & Conti 2017)

o Advances on rates of deformations : Lubarda (2004), Bruhns
(2009), Volokh (2013), ...
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MuD: Towards GND and Dislocations Approach

@ Geometrically Necessary Dislocation (GND): Use of
Multiplicative Decomposition leads to

o Measure of incompatibility G := (DetFP)~1FP RotFP
(Cermelli & Gurtin 2001, Reina & Conti 2014)
o .Z invariant iff Z (FP,VFP) = .7 (G)

Hypotheses : isovolume plastic strain, no plastic spin,...

@ Physically, SPD in metallic systems is mostly accompanied by
grain refinement (e.g. Zhylaiev & Langdon 2008), and by
generation and organization of high density of crystal defects
(e.g. Cao et al. 2018).

Observation: Metric captures change of shape but the SPD
involves the deformation incompatibilities and

discontinuous relative motions of sub-regions (grains).
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[11. Generalized Continuum Model

@ Goal: Define a model allowing density of dislocations and
disclinations within a continuum framework.

@ Method: Use of differential geometry for capturing
incompatibilities of deformations.

=

PEATS AR

Figure: From (1) : Simple Material Model to (4) Generalized Continuum
Model. (Optical Micrographs of an Al alloy).
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GCM: Existence of Numerous Length Scales

We remind we are always working at a chosen length scale of a
continuum.

(@) (b) (c)

Figure: Crystal plasticity occurs at length scale (a); microscopic and
continuum defects at scales (b) and (c) = Rather working with
Defects Density.
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GCM : Geometry Background (Remind)

Generalized Continuum is a compact and connected manifold %
endowed with (Whyburn, 1935):

@ a metric tensor g with components g, (x)

@ an affine connection V with coefficients FZB (x)

2025-04-01 17:59
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GCM : Metric (Shape Change)

Shape of grains and overall continuum is measured by metric

@ Metric g measures local deformation :  (length & angle) :

Hfall = ?x '%
8ap =8(fa,fg) =fo - f5 — cos (f,fs) = Sl
[[Foll-[[f]]

@ Triads F/ (X) defines local mapping f, = F E;
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GCM : Connection (Defects and Motions) (Noll 1967)

Connection is a mathematical operator linking two grains.
(Gonseth, 1929)

@ Change of any fz along dx: (linear with respect to dx := dx®f,)

fs (X) — f3 (X + dX) =f3 (X) + Vaxfg =f3 (X) + Vg g dx®

@ Connection coefficients calculated by noticing V, = V¢, and

projecting onto 1-form f7 : FZB =7 (Vaf3).
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V. Generalized Continuum Models for Continuum
Dislocations

Motivation : How to measure sharp gradients (defects and grain
refinement) in a continuum plasticity model ?

FIgU re: (a) One Single Crystal Mg after one Equal Canal Angular Pressing (ECAP) (Seds et al. 2012); (b) a
Polycrystalline Mg after four ECAP (Biswas et al. 2010).
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GCM : Sketch for approaching defects field

Consider a function f (X) on R with discontinuity at points
(X17X2a" : 7Xnan - OO)

f(X)
f(Xy)
T
. f(X2)
o —
XN X ox
X! X* X7 x!
X! x5

Figure: Discontinuous fields : (Left) Euclidean approach : Function

(field) is enriched, (Right) Riemann-Cartan approach : Domain

(manifold) is enriched (Accounting for additional field [f1], [%2], [f], [fa]
. o0 infinite number — density concept)
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GCM: Dislocations of Volterra (1906)

Individual dislocations (3D)

(a) Translations discontinuity and (b) Rotations discontinuity!

1See eg. : Kondo, 1955; Bilby et al., 1955; Kroner, 1963; Noll, 1967, Wang,
1967; Zorawski, 1967; Povstenko, 1987; Maugin, 1993, Le & Stumpf, 1996, R
1998, Zubov, 1997, Acharya & Bassani, 2000, ...
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GCM : Dislocations Density vs. Cartan Circuit Disclosure

Presence of defects as dislocations and disclinations may be
approached with a GCM | (Via defects density)

/
x=p(X,1) / g ?

‘ Ny
fz = ix—F(X) ] )y ﬂﬂ /
| ﬂﬂ 7 dx / /
3 / J |
3 , N
; dX = dX'E|+dX’Ey . )

! C
o el
dx dx = dX ' +d X

Figure: Cartan Circuit around Defect. Presence of defects induces a
disclosure of Cartan circuit
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GCM : Dislocations and Discontinuity of Fields

Consider a scalar field 0 (X) and vector field w (X) on a GCM #
(Example : density, velocity) at a point M

M"
M

e i (M + e fg)

e2 B (M) g9 fy (]W +ée1 fl)

Ml
— €1 f] (ﬂrf)
Figure: (Left) : Field discontinuity [ex. microcrack within a body];

(Right) Parallelogram of Cartan.

We notice 8’ := 6 (M’), and 8" := 0 (M"); and w’ := w (M), and
w'i=w(M").
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GCM: Dislocations Density and Geometric Variables

Goal: Define geometric variables modeling discontinuity of
fields on a continuum

Say an affinely connected manifold . Let consider two arbitrary vectors
f; and f, at a point M, they define two paths of length e€; and ;. Then:

: ()
lim ~—2 = X(f,f)[0
(€1>;2)—>0 /6162 //) ( 1 2) [ ]
[ u pr— S _
(el’lgr)]_m €162 R (fl, f2, W) VN(fth)W

Proof 2 Remind geometric definitions of torsion X and curvature J:

N (fy, £2) [0]
R (f1, 2, w)

(Ve fa — Vi f1) [0] — [f1, f2] [0]
Vfl VfZW — VfZVflw — V[fhfz]w

2(Schouten Theorem. Partly R 1998, complete R 2021)
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GCM: Sketch of the proof (1)

1) Consider a scalar field 6 (M) , we have respectively the relations:

{ 6‘(/\//1) = 6‘(/\/7 +e1 f1) = Q(M) + Vglfl(M)e(M)
0 (M/) = 0 (M1 =+ €2f2 (M + Elfl)) =0 (Ml) + V52f2(/\//+€1f1) 0 (Ml)

We obtain the value of scalar field at M’ in terms of its value at M ,
by noticing 6 (M') = 6" and (M) =20, :

9 = 9—|—61Vf19+82Vf29+€251Vv,1f29+€2€1Vf2Vf19
+ EgsfvvflfQVfﬁ (1)
2) Similarly, we also obtain, 6 (M") = 6" :
0" = 0+eVypl+eaVi0+c16Vy, 1,0 + 162V, Vi, 0
+ ElégvaZfIszg (2)
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GCM: Sketch of the proof (2)

3) Similarly, consider a vector field with w :=w (M) ,:

/

W = WHeVEW+ VW + 661 Vy, ,W + 6261V, Vi W
+ sﬁvvﬁ& Viw (3)
and
w' = wteaVew+aViw + eV, W+ 6162V, Vi,w
+ €1€§va2f1Vf2W (4)
4) Final step:

(1) - (2) induces the first relation on torsion.

(3) - (4) induces the second result on curvature (and torsion). O

Remarque

Calculus is done exculsively at point M (then Fy%8). Without
curvature but with torsion, we may have vector field discontinuities.

L Rakotomanana
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GCM : Some Remarks on Plastic Deformation

@ Physical Plastic Deformation can be related to discontinuities of
scalar and vector fields. Continuum Plasticity might be
approached by GCM (Riemann-Cartan manifold) as geometric
foundations.

@ Two intrinsic elements of the connection V, torsion X and
curvature R clearly measure the density of these discontinuities
(dislocations density and grain refinement, relative motions of
grains) !

© One question is now if they are considered as :

@ Internal variables
@ Primal Variables (as for metric / strain)
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GCM: Covariance of the model . (Antonio & R 2011)

Goal: Define general shape of Lagrangian for GCM (Material
Frame Independent)

A GCM defined by the Lagrangian & = £ (gap, T 5, O\T')5) is

covariant if and only if:

sz(ga,g, nga mlﬂ)\)

Remarks :
@ Primal / internal variables are metric 8ap  torsion Nlﬂ , and
curvature D%Zﬁ/\ (Continuum physics : elasticity, fluid mechanics,

gravitation, electromagnetism, plastic deformation ... )

@ This theorem extends Cartan (1922) and Lovelock-Rund (1971,
1975) theorems from Riemann to Riemann-Cartan continuum.
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GCM : Main steps of the proof:

@ Consider change of coordinates (C*°-diffeomorphism)
ye =y~ (xi), and J& =0y, -
Write : g = J¢* Jf 8aBr -

@ Assume covariance + rules of tensors transformation (gas and ') ;)
L(gi Tk 8/|',’-‘J- + I_}J’-’l'f‘m) = L(8ap Mg s +Thsl3,)

ij?

© Decompose '] 5 and 0a Iy + FEAF';E into symmetric and
skew-symmetric tensors.

© Derivatives of .2 with respect to J?*, ...

@ Apply the Quotient Theorem (h = tensor):
A hyg + BY¥PIV g scalar = AP, BPY tensors. O
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GCM: Generalized Deformation

Generalized deformation of a GCM includes:
@ classical strain tensor represented by metric field g3

@ nucleation, drift, and annihilation of dislocations represented by
fields of torsion X7 ;, and curvature R ;.

Next step would be the search of conservation laws governing the
deformation of 4.
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VII. Conservation Laws for GCM ( = Strain
Gradient Plasticity)

Physics of GCM is defined by a Lagrangian .¥ = Z(g.s, Nl},, §Rﬁ%)

Figure: Left: Plastic deformation of (Metallic alloy, set of microcosms);
Right: Spacetime in Loop Quantum Gravitation (set of "quanta”).

Goal : Derive conservation laws for GCM.
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Principle of General Covariance (PGC)

For the general case, we have the action

54 ::/ &L wp, with w, = RC volume — form

@ Principle of General Covariance. 3 (e.g. Souriau 1975, Duval &
Kiinzle 1978, R 2018) The basic method is to express variation of
action resulting from the Lie derivatives, neglecting (d\),:

(;55” = d/\/ ( Bﬁgga5+zaﬂ£5N(¥B _Qdﬂﬁgfﬂ”“)
B
=0
@ Conservation laws are deduced when the trajectory is shifted

while the action is left unchanged. Infinitesimal active
diffeomorphisms are defined by Lie derivative variations

(Legap, LeRYg, LeRg,)

3This Principle can be extended to Noether-Klein method and furnishes
identities in addition to conservation laws by pointing out the variations=¢, V&,
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GCM: Generalized Deformation (alternative form)

We consider equivalent set of variables (contortion 7, LC gradient
of contortion VT) to avoid the use of V which implicitly includes X:

rlﬂ - r?xﬁ = 7:5
=Y s - =
%?xﬂ/\ - §Rozﬁ)\ = leT;ﬂ - vﬁlr)l\ya + (7?”7:5)\ - 7;7#778/&)

with the Levi-Civita (metric) connection V:

ﬁig = (1/2)87* (9a8rs + 0p8ax — 0rEap) — R

The main reason of using of these two equivalent dislocations
variables is to avoid torsion implicitly present in connection V.
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(h

Lagrangian of the form Z(g.s, 7';3, VaTh)

@ GCM action takes an alternative form:

S = / gaﬂ» V)\ﬁ )

w. volume-form w, := e’®7) &, for divergence theorem (R 2025).

@ Constitutive laws. Dual variables are obtained from action
variation: 6. = [ (aaﬁ 08ap + Zﬁ;‘ﬁ 67'076 + Ei"ﬁ 5§A7::3) w

1% of
oB = 02 ( 9 — g) Stress
%gfsf a%gaﬁ ?
Z?‘/ﬁ = @ + .9 @ Micro — Stress
IANeZ
Zraf = 37 Polar Stress
! oV ,\7;"ﬁ
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GCM: Principle of General Covariance

@ Variational Formulation. For any local translation £ (x) generating
active diffeomorphism, the PGC takes the form of:

B

This is considered as an extension of Principle of Virtual Power.

@ The Principle Virtual Power (PVP is given by (Gurtin & Anand
2005), assuming F := F¢FP — DP := {|':p Fp—l}:

(W,-::/ (se:Fe+TP:DP+TP:WDP)dV:0
B

where conditions are : D? = DPT, TrDP = 0.

© To make PVP covariant, D? and VDP should be merged into the
time rate of unique variable G where G := (DetFP)~1FP RotF?
(Cermelli & Gurtin 2001).
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CCM : Classical Continuum Model £ (g.3)

@ Constitutive laws. The "stress” o is defined as :

yZ:/o%wn = .= —— g
7

@ Conservation laws.

Consider a classical continuum model (#,g,V) with a Lagrangian
function £(gup). Then :

ﬁaaﬁ =0
Proof: Write the PGC:
NS = /UO‘B Le8op @n
Le 8ap = & V,8ap+ 8y Val + 8ay V&'

Integrate by parts and shift the boundary flux terms to obtain:

7/25760403‘5,,:0 O
B
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CCM : Remark on Stress for Large Strain (R 2022)

Say local transformation dx = F (dX) (Pfaffian), with the spatial,
initial material, and deformed material bases:

(e;,i:1,2,3), (E(xva:17273)7 (f(“(}: 123) f(x = F(Ery)

Consider the stress tensor ¢ and J := DetF. lts projections hold:

@ "Cauchy” o and Kirchhoff T stresses,
oc—=T1:=Jo to give Jei~a(ej):Jaij

o First Piola-Kirchhoff stress P := JoF~T

e - 7(f)=Je o (FT(E’)) =€ JoF T (E’) := P

@ Second Piola-Kirchhoff stress S := JF~1gF~7T

for (f7) = JF"T(E*)-0 (F"T(E?)) = E*-JF'oF T (E?) := 57

We deal with the same tensor o projected onto different bases !
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Weitzenbock Continuum Model .2 := Z(gus, T.);)

of

© Constitutive laws. We remind the two dual variables :

0.2 09 gob 0.2 29
ab .= £ -2 Yo = — 4 ——
7 Ogas <3ga6 2 ) L 0T " 0705

In RG, dual variables *? and X7 are respectively called
energy-momentum and hypermomentum (Hehl et al. 1976).

@ Conservations laws.

Consider a Weitzenbock Continuum Model (#,g, V) with a
Lagrangian function £(gag,T.)). Then :

Vb + T2 65 =0

with the generalized stress &7 :

1
58 — 58 B B af
afi=aiie 5 (CBET T2 R T R )
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WCM : Proof (1)

1. Invariance of Poincaré.

© Express the PGC as variation due to active diffeomorphism:
55/ Lwn = / (0°7 Legap + 57 LeT5) wn =0
B B

@ Compute the Lie derivatives (tedious !)

Legap = Vabp+ Vaba +8arT 58" + 85T HE"
LeT)s = VT = TagVel) + T Va& + T3,V 80

© We write the integrand (terms in brackets):
(55.,2” = O'aﬁ (ﬁ(xgﬂ + ﬁ,@ga) + Uaﬁ (ga'y,];yﬁ + gvﬁﬁl) Eﬂ
+ (Zﬁﬂ?pfjﬁ) ¢
+ xos (4;566,)57 + T Vel + mﬁﬁgﬂ) —0

It should vanish for all compatible diffeomorphisms (as for PVP).
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WCM : Proof (2)

2. Global Invariance. By considering uniform &, we deduce an identity:
07 (8o Tofs + 8vn Tpa) + 257V T s = O
3. Local Invariance. We consider non uniform translations £ (x),

factorize by V3£”, integrate by part, and drop all terms in divergence
(for the sake of the simplicity) and obtain:

[T o= [ 195 0he) — (T 4 7 20 ) =0
by defining a generalized stress measure:

=8 ._ o B _soy 7B | yha of
250 =200 — X TL 4T+ T, O

Remarque

Presence of the contortion in the conservation laws is due to the use of
Levi-Civita connection but Riemann-Cartan volume-form.
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WCM : Some remarks (1)

@ Literature. Similar conservation equations were obtained in the
past obtained for

o Relative Gravitation (e.g. Souriau 1975, Hehl et al. 1975,
Lompay & Petrov 2013, ... ),

o Newton-Cartan Gravitation (e.g. Duval & Kiinzle, 1978),

o Noll materially uniform continua (e.g. Noll 1967, R 1998).

@ The generalized stress tensor (not necessarily symmetric) 55
extends the classical Cauchy stress aff.

© The generalized stress includes two contributions: " macro” ag
and "micros” Z?Y‘BT'}; due to change of grain structure and
dislocations density associated to plastic deformation.
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WCM : Remarks (on the micro-stress / hypermomentum)

The hypermomentum / micro-stress ny‘ﬁ consists in three terms (Mindlin
1964, Hehl et al. 1976, 1977, Gordeeva et al. 2010):

6(1 o .
B _ylapl L 2 58 F(@h)
YOP =2+ . I+,
@ Spin-angular momentum / Rotatory micro-stress

Z[YQ’B] skew symmetric part
@ Proper hypermomentum / Proper micro-stress
Zg""ﬂ) symmetric part and Z(a""ﬁ) = fﬁ dilatational
@ Traceless proper hypermomentum / Traceless proper micro-stress
0¥ _

+(a,B) L B y B
=) - Y
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Generalized Continuum Model . = X(gaog,mﬁj—,v/\f

Consider a Generalized Continuum Model (%, g, V) with a Lagrangian
function £ 1= £ (gap, T,j5, VAT, ). Then :

Vdh + T 55 =0

with the generalized stress &/ :

1

=B . B «a B Ba af

Gy = ohts (== T2 + 26> T, + 228 77)
1

+ 5 (CFVINTE + EUVL T + ZOVATL + 23V T)

V.
Generalized stress includes =2°” that corresponds to (mass)

quadrupole moment in Relative Gravitation (Dixon 1970, Souriau 1974,
Bayley & Israel 1975).

L Rakotomanana

Continuum Dislocations : Generalized Continuum Model



GCM: Proof (1)

@ Express the PGC involving arbitrary active diffeomorphism:

(55/ ,iﬂwn:/ aﬂﬁggag-i-z ﬁgTy +‘ ﬁgvAﬁ}wn—O
B

G

with the Lie derivatives L¢g,g and 5572/3-

@ Compute the Lie derivative of the covariant derivative:
Egﬁﬂjﬁ = ¢V VATY VAT? Vp@
+ TIY AEP+VA7;}3Va5p+§A7j]p§5§P

a

@ Consider a uniform ¢ field, then we obtain the identity:

07 (8o T + 81 Ton ) + T3V, Ty + 220V, VA T, = 0
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GCM: Proof (2)

@ Use of same method as previously for non-uniform ¢, we factorize
the remaining term by V&”, and obtain :

5L = 0 (Vaés+Vsa)
+ xof (—T;ﬁpg7 + T Val? + mﬁﬁgp)
— S VNTY, Vet + 250NV, T, Vpe?
+ ZP VLT VptP + 0P VT, Vae?

@ The proof of the theorem follows. [

Note: Use of other vector field £ allows us to obtain other conservation
laws or identities (linear, angular momentum, ...).
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GCM: Comment on Generalized Stress

Roughly speaking, the generalized stress includes three contributions:

© the classical Cauchy stress / energy-momentum ¢®? deforms the
underlying continuum shape.

@ the micro-stress / hypermomentum current Z?fﬁm (and

Zaﬁ’ﬁ]p) induces change of density of dislocations / defects at each

point (discontinuity of scalar field)

© the polar stress / (mass) quadrupole moment : =3*°V, 7, (and

’\MV,\K)) drives the relative motions of grains / continuum
microcosms (discontinuity of vector field).
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VI. Generalized Continuum Model and Example of
Constitutive Laws

In this particular case, the two variables 7 ), and V7, capturing
evolutions of density of dislocations are considered as internal variables.
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GCM: Overall Thermodynamic Process

A Thermodynamical Process of a particular GCM is assumed to be
defined by the set (Coleman & Gurtin 1967):

@ spatial position of each point M € B : x = (X, t);
@ temperature 0 (M, t);

© stress tensor o (M, t) (micro-stress X (M, t) and polar stress
= (M, t)) and external body force pb (M, t);

Q entropy s(M, t);

© Helmholtz free energy ¢ (M, t);
Q heat flux q (M, t);

@ heat source r (M, t)

@ Extended set of Internal Variables : contortion T and its
LC-covariant derivative V7 (Ramaniraka & R 2000, R 2003).
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GCM: Objective rate of tensors (R 1998)

Definition

(AB-derivative) Let A be a tensor of type (p, g) on A. The time
derivative of A with respect to 4 is a tensor of the same type as A,
which satisfies for any p-uplet of vectors (fi, ..., f,) and for any g-uplet of
1-forms (w?, ...,w9), macroscopically embedded in 4,:

dZA d
T (fl,-“,fpawla"-awq) = E[A(fla 7fp,w17"' ?wq)]

Generalized Continuum Model: The Z-derivatives of the primal /
internal variables are given by:

¢ 1 d%g Cr = dZT Cor e d?NT
€79 T4t 7= Tdr VT = T gt

Definition includes all so-called objective rate of tensor of classical
continuum mechanics (and Lie derivatives on RC manifolds) (R 2022)
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GCM: Constitutive laws of rate-independent material

A Generalized Continuum Model of the rate type % is defined by
constitutive tensor functions: S = {0, X, =, $, s} :

S=S(g, T, VT, ¢, (T Cor)

Then the free energy ¢ takes necessarily the form ¢ = ¢ (8. 7,VT)
and the entropy inequality as:

Je G +tdr:i(rt+dsr (e 20

with worth dual dissipation variables (3¢, 37, J< ).

Proof Extension of Coleman & Noll theorem (R 2003) . To ensure
the Entropy Inequality, introduce a Dissipation Potential ) which is
positive, convex and zero when the rates are equal to zero (Moreau 1970,
Germain 1973).
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GCM: Principle of Maximum Dissipation (v. Mises, 1928)

Evolution of defects may be derived by means of the Principle of
Maximum Dissipation. (e.g. Hackl et al. 2007, 2011, 2024)

@ Principle of Maximum Dissipation (constrained optimization):
Max {9 (¢7,(s7) such that ¢ — (7 : (7 + Jor @ (o) =0}
@ Introduce a extended dissipation function to maximize:
Vext =Y+ A — (7 : {7+ o Gop)l

@ Necessary stationarity conditions from derivatives to obtain three
(in)-equations:

oy

o0
(1+ ) Mgy =0 [ 30 ]
o
V-7 :¢rt+dsr ) = 0
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GCM: Non-smooth Evolution Rule

@ Define a new Lagrange multiplier A = (A4 1)/, and assume a
homogeneous function ) of degree 1 to deduce:

Jy = Jr € ¢ (C1)Gor)

o
A@
371/-; extended to
= A

o = T

Jor € o, ((7.Co7)

@ Invert by using Legendre-Fenchel transform (e.g. Rockafellar,
1970):

O o) = Sup (e o) BT Gr H dor s Gor = 0 (G o]

@ Use conjugate function y* to obtain Defects Evolution Rule :

o* %
(r = af ¢ro€ oYy (1, der)
317#—* extended to
CVT = 8.]4* CﬁT € ad)-TVT (JTa JVT)
vT
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GCM: Normal Dissipative Material (from R 2003)

© Indicator function (~ rate-independent plasticity): A choice of
convex, homogeneous of degree one Dissipation Potential
Y =1 (C7, (7) that vanishes when rates are zero:

A

VT der) = SupCT’CVT [JT S g i b (¢, CvT)}

0 if (Jrdo) €
o if (I dop) €€

allows us to satisfy the entropy inequality !

@ The Helmholtz Free Energy ¢ takes the form of:
¢=0(gT.VT)

Remarque

(7 and (g5 are the covariant rate of defects evolution analogous to

plastic deformation rates DP := FP FP~1 and VDP used in the framework
of GND e.g. (Cermelli & Gurtin 2001).
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VIIl. Concluding Remark

Figure: GCM of continuum dislocations and way of Life

Strain Gradient Plasticity including density of dislocations may be
worthily modeled with Generalized Continuum Model (i.e.
Riemann-Cartan manifold) with metric g, for shape change, torsion Nlﬂ
(resp. 7)) for translational dislocations, and curvature 3t/ ;, (resp.

v,\@ﬁ) for rotational dislocations.
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® Birkhauser
Birkhauser

"We end our panoramic tour of Generalized Continuum Mechanics by mentioning an
original geometric solution as presented in the book of Rakotomanana (2003), which
offers a representation of a material manifold - that is everywhere dislocated - with
the appropriate generalized gradient operator.” (Maugin, 2013)
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