Pseudo-geometric integrators

(Daria Loziienko)

Vladimir Salnikov

CNRS \& La Rochelle University

In the previous episodes...

Philosophy:

Geometry encodes the physics of the system

	Mechanical property	Geometric description
classical classical mechanics (ODE)	conservation of energy	Poisson / symplectic
	symmetries	Lie groups/algebras, Cartan moving frames
	dissipation / interaction power balance; constraints	(almost) Dirac
	control	(singular) foliations
modernclássicalmechanics(PDE)	conservation of energy	multisymplectic
	symmetries	Cartan moving frames
	dissipation / interaction	Stokes-Dirac
	$\operatorname{rot}(\mathrm{grad})=0, \operatorname{div}(\mathrm{rot})=0$	$d^{2}=0-$ DEC
	control	foliations

Preserving this geometry in computations is fruitful

Classical story in modern language

Geometry behind: Courant algebroids, Dirac structures

On $\mathbb{T} M=T M \oplus T^{*} M$ (or more generally $E \oplus E^{*}$)
Symmetric pairing: $<v \oplus \eta, v^{\prime} \oplus \eta^{\prime}>=\eta\left(v^{\prime}\right)+\eta^{\prime}(v)$,
Dorfman bracket: $\left[v \oplus \eta, v^{\prime} \oplus \eta^{\prime}\right]_{D}=\left[v, v^{\prime}\right]_{\text {Lie }} \oplus\left(\mathcal{L}_{v} \eta^{\prime}-\mathrm{d} \eta\left(v^{\prime}\right)\right)$.
A Dirac structure \mathcal{D} is a maximally isotropic (Lagrangian) subbundle of $\mathbb{T} M$ closed w.r.t. $[\cdot, \cdot]_{D}$

$\wedge T^{*} M$
$\mathcal{D}_{\Pi}=\operatorname{graph}\left(\Pi^{\sharp}\right)=\left\{\left(\Pi^{\sharp} \alpha, \alpha\right)\right\}$
$\mathcal{D}_{\omega}=\operatorname{graph}\left(\omega^{b}\right)=\left\{\left(v, \iota_{v} \omega\right)\right\}$

Dirac paths

Theorem 1. Let $D \subset \mathbb{T} M$ be a Dirac structure over M, $H \in C^{\infty}(M)$ be a Hamiltonian function and γ a path on M.

Assume that the basic 2-class $\left[\omega_{D}\right]$ vanishes, and let $\theta \in \Gamma\left(D^{*}\right)^{\text {hor }}$ be such that $d_{D} \theta=\omega_{D}$, then the following statements are equivalent:
(i) The path γ is a Hamiltonian curve, ie. $\left(\dot{\gamma}(t), d H_{\gamma(t)}\right) \in D$ for all t.
(ii) All Dirac paths $\zeta: I \rightarrow D$ over γ (ie. $\rho(\zeta)=\dot{\gamma}$) are critical points among the Dirac paths with the same end points of the following functional:

Egg.
$D=\operatorname{groph} \omega$
$\omega=d(p d q) \quad \sqrt{1} \frac{\left(\theta_{\gamma(t)}(\zeta(t))+H(\gamma(t))\right)}{} d t$

Implicit Lagrangian systems with magnetic terms

Theorem 2. Let $D \subset \mathbb{T} Q$ be a Dirac structure and $L: T Q \rightarrow \mathbb{R}$ a Lagrangian. Assume that the 2-form $\omega_{D} \in \Gamma\left(\Lambda^{2} D^{*}\right)^{\text {hor }}$ admits a basic primitive $\theta \in \Gamma\left(D^{*}\right)^{h o r}$. Then for $q: I \rightarrow Q$ the following are equivalent:
a) There exists a Dirac path $\zeta: I \rightarrow D$ such that $\rho(\zeta)=\dot{q}$ which is the critical point among Dirac paths with the same end points of

$$
\begin{equation*}
\int_{I}(L(\rho(\zeta(t)))+\theta(\zeta(t))) d t \tag{2}
\end{equation*}
$$

b) For all $t \in I$, the following condition holds.

$$
\begin{equation*}
\left(\frac{\partial}{\partial t} \mathbb{F} L(\dot{q}(t)), \mathcal{D}_{\dot{q}(t)} L\right) \in \mathbb{D}=e^{\Omega} \pi^{!} D \tag{3}
\end{equation*}
$$

Example (Holonomic constraints)

Let $F \subset T Q$ be a regular foliation, and $F^{\circ} \subset T^{*} Q$ its annihilator. The Dirac structure $D=F \oplus F^{\circ}$ always admits a basic potential, as the 2 -form in $\Lambda^{2} D^{*}$ is zero (there is no magnetic term). Then $\pi^{!} D$ is the Dirac structure associated to the pullback foliation $\pi^{-1}(F)$ and
$e^{\Omega} \pi^{!} D=\left\{(w, \alpha) \in T T^{*} Q \oplus T^{*} T^{*} Q \mid \pi_{*}(w) \in F, \alpha-\Omega^{b} w \in \pi^{-1}(F)^{\circ}\right\}$

Let $L: T Q \rightarrow \mathbb{R}$ be a Lagrangian. Then Theorem 2 yields that the integral curves of any implicit Lagrangian system ($X, \mathcal{D} L$) for $e^{\Omega} \pi^{!} D$ are critical points of L among curves that are tangent to F. The condition (3) (belonging to \mathbb{D}) translates directly to the Euler-Lagrange equations for a system subject to holonomic constraints, which are classically spelled-out using the Lagrange multipliers.

Application. Implicit Lagrangian systems / constraints

Tulczyjew (70's), H. Yoshimura, J.E. Marsden (2006).

1. Geometry:

$\Delta_{Q} \subset T Q$ constraint distribution:
$\Delta_{Q}(q)=\left\{v \in T_{q} Q \mid \omega_{q}^{a}(v)=0\right\}$. $\Delta_{T^{*} Q} \subset T T^{*} Q$ - preimage of Δ_{Q}, and $\Delta_{T * Q}^{0}$ its annihilator.
The canonical symplectic form Ω on $T^{*} Q$ defines a mapping $\Omega^{b}: T T^{*} Q \rightarrow T^{*} T^{*} Q$.

Almost Dirac structure:

$$
\begin{align*}
\mathbb{D}_{\Delta_{Q}}((q, p))= & \left\{(w, \alpha) \in T_{(q, p)} T^{*} Q \times T_{(q, p)}^{*} T^{*} Q \mid\right. \\
& \left.\left.w \in \Delta_{T^{*} Q}, \quad \alpha-\Omega^{b} w \in \Delta_{T^{*} Q}^{0}\right)\right\} \tag{2}
\end{align*}
$$

2. Dynamics. $L: T Q \rightarrow \mathbb{R}$ - Lagrangian.

Its differential defines a mapping $\mathrm{d} L: T Q \rightarrow T^{*} T Q$.
There are symplectomorphisms $\Omega^{b}: T T^{*} Q \rightarrow T^{*} T^{*} Q$ as well as $\kappa_{Q}: T T^{*} Q \rightarrow T^{*} T Q$, then $\gamma_{Q}:=\Omega^{b} \circ \kappa_{Q}^{-1}: T^{*} T Q \rightarrow T^{*} T^{*} Q$.

Define the Dirac differential $\mathcal{D L}:=\gamma_{Q} \circ \mathrm{~d} L: T Q \rightarrow T^{*} T^{*} Q$. Locally: $(q, v) \rightarrow\left(q, \frac{\partial L}{\partial v},-\frac{\partial L}{\partial q}, v\right)$.

Consider a partial vector field X, i.e. a mapping $X: \Delta_{Q} \oplus \operatorname{Leg}\left(\Delta_{Q}\right) \subset T Q \oplus T^{*} Q \rightarrow T T^{*} Q$.
It can be viewed as $X(q, p)$, where p is given by the Legendre transform, and v is in the constraint distribution.
3. All together An implicit Lagrangian system is a triple $\left(L, \Delta_{Q}, X\right)$, s.t. $(X, \mathcal{D} L) \in \mathbb{D}_{\Delta_{Q}}$ (eq. 2)

Locally this means $p=\frac{\partial L}{\partial v}, \dot{q}=v, \dot{q} \in \Delta$, and

$$
\dot{p}-\frac{\partial L}{\partial q} \in \Delta^{0}(q) \Leftrightarrow \dot{p}-\frac{\partial L}{\partial q}=\sum_{a} \lambda_{a} \alpha^{a} .
$$

How to discretize?

$$
\begin{cases}\alpha^{a}(v)=0, & a=1, \ldots, m \\ \mathbf{p}=\frac{\partial L}{\partial \mathbf{v}}, & \frac{\mathrm{~d} \mathbf{p}}{\mathrm{~d} t}-\frac{\partial L}{\partial \mathbf{q}}=\sum_{a=1}^{m} \lambda_{a} \alpha^{a}\end{cases}
$$

The discrete Lagrangian $L_{d}=\Delta t L\left(\mathbf{q}^{n}, \mathbf{v}^{n}\right)$.
Discrete equations:

$$
\begin{array}{r}
<\alpha_{d}^{a}, \mathbf{v}^{n}>=0, \quad a=1, \ldots, m ; \quad \mathbf{p}^{n+1}=\frac{1}{\Delta t} \frac{\partial L_{d}}{\partial \mathbf{v}^{n}} \\
\mathbf{p}^{n}-\frac{1}{\Delta t} \frac{\partial L_{d}}{\partial \mathbf{v}^{n}}+\frac{\partial L_{d}}{\partial \mathbf{q}^{n}}=\sum_{a=1}^{m} \lambda_{a} \frac{\partial<\alpha_{d}^{a}, \mathbf{v}^{n}>}{\partial \mathbf{v}^{n}}
\end{array}
$$

Explicitly \mathbf{p}^{n} and \mathbf{p}^{n+1}, and \mathbf{v}^{n} - approximates the velocity, containing \mathbf{q}^{n}, e.g. $\mathbf{v}^{n}:=\frac{\mathbf{q}^{n+1}-\mathbf{q}^{n}}{\Delta t}$ or $\mathbf{v}^{n}:=\frac{\mathbf{q}^{n+1}-\mathbf{q}^{n-1}}{2 \Delta t}$.
$2 d+m$ equations for $2 d+m$ unknowns.

Baby example

Description of Δ_{Q} and $\Delta_{T^{*} Q}$:
$Q=\mathbb{R}^{2}$,
Constraint $\phi(x, y):=x^{2}+y^{2}-1^{2}=0$.
The distribution Δ_{Q} is generated by $\xi=y \frac{\partial}{\partial x}-x \frac{\partial}{\partial y}$.
in the kernel of $\psi=\mathrm{d} \phi=2(x \mathrm{~d} x+y \mathrm{~d} y)$.

Lagrangian differential and Legendre transform.

The Lagrangian is $L=\frac{m}{2}\left(\dot{x}^{2}+\dot{y}^{2}\right)-m g y$. The associated Lagrangian differential
$\mathcal{D L}=\left(q, \frac{\partial L}{\partial v},-\frac{\partial L}{\partial q}, v\right)=((x, y),(m \dot{x}, m \dot{y}),(0, m g),(\dot{x}, \dot{y}))$.

All together

$$
\begin{array}{cc}
\dot{q} \in \Delta_{Q}, & p=\frac{\partial L}{\partial v} \\
\dot{q}=v, & \dot{p}-\frac{\partial L}{\partial q} \in \Delta_{Q}^{0} \\
x \dot{x}+y \dot{y}=0 \\
\ddot{x}=\lambda x \\
\ddot{y}=-m g+\lambda y
\end{array}
$$

Simulations: Dirac 1 vs Euler

[^0]Dirac order 1(M.Leok, T.Ohsawa) $\rightarrow 0.952115$ Dirac order 2 (V.S.)
$\rightarrow 0.00204053$
Trapezium 2(implicit and cheating) $\rightarrow 0.0128399$
Adams-Bashforth 3 (cheating) $\rightarrow 0.000136601$
Runge-Kutta 4 (still cheating) $\rightarrow 9.4 \cdot 10^{-8}$

Buckling

Application. Geometric degree of nonconservativity (cf. J.Lerbet, M.Aldowaji, N.Challamel, O.Kirillov, F.Nicot, F.Darve)

Simulations: Dirac 1 vs Dirac 2

Exercise: Compare with Jean Lerbet!
Details:

- V.S., A. Hamdouni, From modelling of systems with constraints to generalized geometry and back to numerics, ZAMM 2019; - D. Razafindralandy, V.S., A. Hamdouni, A. Deeb, Some robust integrators for large time dynamics, AMSES, 2019.

How to honestly discretize? What is wrong?
Symplectic Euler for $\dot{q}=H_{p}, \quad \dot{p}=-H_{q}$

$$
\begin{aligned}
q^{n+1} & :=q^{n}+\Delta t \cdot H_{p}^{n}< \\
p^{n+1} & :=p^{n}-\Delta t \cdot H_{q}^{n+1}
\end{aligned}
$$

Dirac methods for $\alpha^{a}(v)=0, \quad \mathbf{p}=\frac{\partial L}{\partial \mathbf{v}}, \quad \frac{\mathrm{~d} \mathbf{p}}{\mathrm{~d} t}-\frac{\partial L}{\partial \mathbf{q}}=\sum_{a=1}^{m} \lambda_{a} \alpha^{a}$.

$$
<\alpha_{d}^{a}, \mathbf{v}^{n}>=0, \quad a=1, \ldots, m ; \quad \mathbf{p}^{n+1}=\frac{1}{\Delta t} \frac{\partial L_{d}}{\partial \mathbf{v}^{n}}
$$

$$
\begin{array}{r}
\mathbf{p}^{n-\frac{1}{\Delta t}} \frac{\partial L_{d}}{\partial \mathbf{v}^{n}}+\frac{\partial L_{d}}{\partial \mathbf{q}^{n}}=\sum_{a=1}^{m} \lambda_{a} \frac{\partial<\alpha_{d}^{a}, \mathbf{v}^{n}>}{\partial \mathbf{v}^{n}} \\
\mathbf{v}^{n}:=\frac{\mathbf{q}^{n+1}-\mathbf{q}^{n}}{\Delta t} \operatorname{or}^{\mathbf{v}^{n}}:=\frac{\mathbf{q}^{n+1}-\mathbf{q}^{n-1}}{2 \Delta t}
\end{array}
$$

Wishful thinking and reality

AKA geometric integrators

Letter to Bed Moroz* ${ }^{*}$ want to be theorem)

We discretize the equations in such a way that the Dirac structure is preserved exactly, hence the physical properties are also preserved exactly.

AKA pseudo-geometric

Reply (actual theorem) integrators of order (*, p)
We discretize the equations in such a way that the Dirac structure is preserved up to some power of Δt, hence the physical properties are also preserved up to some (other) power of Δt.

Gifts (algorithm)

- Write a (possibly implicit) Runge-Kutta method for each type of variables, with different undetermined coefficients.
- Suppose at the n-th step the variables belong to the Dirac structure, compute the error at the $(n+1)$-st step
- Maximize the order of the error by a good choice of coefficients.
* Santa Claus

Theorem. Consider $q_{n+1}=q_{n}+h b_{1} l_{1}+h b_{2} l_{2}$,
$p_{n+1}=p_{n}+h \tilde{b}_{1} \tilde{I}_{1}+h \tilde{b}_{2} \tilde{I}_{2}, \quad v_{n+1}=v\left(v_{n}+h \bar{b}_{1} \bar{I}_{1}+h \bar{b}_{2} \bar{I}_{2}\right)$, where $I_{1}=v\left(v_{n}+h \bar{a}_{11} \bar{I}_{1}+h \bar{a}_{12} \bar{I}_{2}\right) \ldots$

1. The numerical method above is of second order provided that $b_{1}+b_{2}=1, \tilde{b}_{1}+\tilde{b}_{2}=1, \tilde{b}_{1} \tilde{a}_{11}+\tilde{b}_{2} \tilde{a}_{21}+\tilde{b}_{1} \tilde{a}_{12}+\tilde{b}_{2} \tilde{a}_{22}=\frac{1}{2}$,
$b_{1} a_{11}+b_{2} a_{21}+b_{1} a_{12}+b_{2} a_{22}=\frac{1}{2}$.
2. It preserves the Legendre transformation at least up to the third order provided that $b_{1}+b_{2}=\tilde{b}_{1}+\tilde{b}_{2}=1$,
$\tilde{b}_{1} a_{11}+\tilde{b}_{2} a_{21}+\tilde{b}_{2} a_{22}+\tilde{b}_{1} a_{12}=\frac{1}{2}$,
$\tilde{b}_{1} \bar{a}_{11}+\tilde{b}_{2} \bar{a}_{21}+\tilde{b}_{2} \bar{a}_{22}+\tilde{b}_{1} \bar{a}_{12}=\frac{1}{2}$.
3. It preserves the constraints at least up to the third order provided that $\tilde{b}_{1} \tilde{a}_{11}+\tilde{b}_{2} \tilde{a}_{21}+\tilde{b}_{1} \tilde{a}_{12}+\tilde{b}_{2} \tilde{a}_{22}=\frac{1}{2}$,
$b_{1} a_{11}+b_{2} a_{21}+b_{1} a_{12}+b_{2} a_{22}=\frac{1}{2}$,
$b_{1} \bar{a}_{11}+b_{1} \bar{a}_{12}+b_{2} \bar{a}_{21}+b_{2} \bar{a}_{22}=\frac{1}{2}$,
$\bar{b}_{1} a_{11}+\bar{b}_{1} a_{12}+\bar{b}_{2} a_{21}+\bar{b}_{2} a_{22}=\frac{1}{2}$,
psendo-Dirxc
$\bar{b}_{1} \bar{a}_{11}+\bar{b}_{1} \bar{a}_{12}+\bar{b}_{2} \bar{a}_{21}+\bar{b}_{2} \bar{a}_{22}=\frac{1}{2}$,
$b_{1}+b_{2}=1, \tilde{b}_{1}+\tilde{b}_{2}=1, \bar{b}_{1}+\bar{b}_{2}=1$.

Pendulum

Step	Method	Energy error	Constraint error	time,sec
10^{-2}	RKD-2 (1)	10^{-2}	10^{-2}	1.64
10^{-3}	RKD-2 (1)	10^{-4}	10^{-5}	7.27
10^{-4}	RKD-2 (1)	10^{-6}	10^{-7}	80.36
10^{-2}	RKD-2 (2)	10^{-2}	10^{-3}	1.63
10^{-3}	RKD-2 (2)	10^{-4}	10^{-5}	6.64
10^{-4}	RKD-2 (2)	10^{-6}	10^{-7}	50.30
10^{-2}	Dirac-2	13.26	2.72×10^{-2}	0.25
10^{-3}	Dirac-2	1.8	1.5×10^{-3}	2.24
10^{-4}	Dirac-2	1.9×10^{-1}	1.4×10^{-4}	24.63

Chaplygin sleigh

Step	Method	Energy error	Constraint error	time,sec
10^{-2}	RKD-2 (1)	7×10^{-6}	5×10^{-6}	23.77
10^{-3}	RKD-2 (1)	7×10^{-8}	5×10^{-8}	95.84
10^{-4}	RKD-2 (1)	7×10^{-10}	5×10^{-10}	
10^{-2}	RKD-2 (2)	7×10^{-6}	5×10^{-6}	11.75
10^{-3}	RKD-2 (2)	7×10^{-8}	5×10^{-8}	59.95
10^{-4}	RKD-2 (2)	7×10^{-10}	5×10^{-10}	416.48
10^{-2}	Dirac-2	7.9×10^{-3}	10^{-2}	1.62
10^{-3}	Dirac-2	7.6×10^{-4}	10^{-3}	18.05
10^{-4}	Dirac-2	1.2×10^{-4}	10^{-4}	223.83

Good remarks

1. We recover symplectic Runge-Kutta methods
2. There are a lot of coefficients, but this is algorithmic \longrightarrow paper in J. of Programming and Computer Software

Other remarks / work in progress

1. We understood why Marsden inspired method was not really geometric.
1.bis it was
pseudo-geometric of
order (1,2)
2. Dirac-2 was not much better: something
like order (1,2 ; 2,3)
3. TODO: I still want it to be (honestly) variational

Trugarez deoc'h evit bezañ bet o selaou ac'hanon!

[^0]: Simulations: Dirac 2 vs All Stars

