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In the previous episodes. ..



Philosophy:

Geometry encodes the physics of the system

Mechanical property Geometric description

conservation of energy

~

Lie groups/algebras,

symmetries

dissipation / interaction
power balance; constraints
control

Dirac

(singular) foliations

conservation of energy

symmetries
dissipation / interaction

rot(grad) = 0, div(rot) =0
control foliations

Stokes—Dirac

Preserving this geometry in computations is fruitful




Classical story in modern language
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Geometry behind: Courant algebroids, Dirac structures

On TM = TM & T*M (or more generally E & E*)
Symmetric pairing: < v @ n, v @ n' >=n(v')+17'(v),
Dorfman bracket: [v @& n, v/ @ 7']p = [v, V']Lie ® (Lvn' — dn(V")).

A Dirac structure D is a maximally isotropic (Lagrangian)
subbundle of TM closed w.r.t. [-,]p

-
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Dn = graph(M¥) = {(Mfa, o)} D,, = graph(w’) = {(v, ,w)}



Dirac paths

Theorem 1. Let D C TM be a Dirac structure over M,
H € C*°(M) be a Hamiltonian function and v a path on M.

Assume that the basic 2-class [wp] vanishes, and let § € [(D*)"°r
be such that dpf = wp, then the following statements are
equivalent:

(i) The path v is a Hamiltonian curve, i.e. (¥(t), dH,)) € D for
all t.

(ii) All Dirac paths ¢ : I — D over v (i.e. p(¢) =) are critical
points among the Dirac paths with the same end points of the
following functional:

= ¢ [ (0,0(c) + HG) de (1)
D=3 LCps+H)
w:o((P J}) Pyt
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Implicit Lagrangian systems with magnetic terms

Theorem 2. Let D C TQ be a Dirac structureand L: TQ — R a
Lagrangian. Assume that the 2-form wp € I'(A2D*)"°" admits a

basic primitive § € [(D*)°". Then for q : | — Q the following are
equivalent:

a) There exists a Dirac path ¢ : | — D such that p(¢) = ¢ which

is the critical point among Dirac paths with the same end
points of

[t + o)t @

/

b) For all t € I, the following condition holds.

((iFL(d(t)),Dq(t)L> €D =e?r'D. (3)



Example (Holonomic constraints)

Let F C TQ be a regular foliation, and F° C T*Q its annihilator.
The Dirac structure D = F & F° always admits a basic potential,
as the 2-form in A2D* is zero (there is no magnetic term). Then
7' D is the Dirac structure associated to the pullback foliation

7 1(F) and

er'D = {(w,a) € TT* QDT T*Q | me(w) € F,a—Qw € 77 L(F)°}

Let L: TQ — R be a Lagrangian. Then Theorem 2 yields that the
integral curves of any implicit Lagrangian system (X, DL) for
e D are critical points of L among curves that are tangent to F.
The condition (3) (belonging to D) translates directly to the
Euler-Lagrange equations for a system subject to holonomic
constraints, which are classically spelled-out using the Lagrange
multipliers.



Application. Implicit Lagrangian systems / constraints

Tulczyjew (70's), H. Yoshimura, J.E. Marsden (2006).
1. Geometry:

- Ag C TQ constraint distribution:
TT°Q______—=>T7Q Beald) = {v € TQ |wg(v) = O}
pullback At+g C TT*Q - preimage of Ag, and
AOT*Q its annihilator.
The canonical symplectic form € on
T*Q defines a mapping
TQ n Q X:TTQ—TTQ wa
R W

Dag((9:p)) = {(W,a) € TigmT*Q x T(; ) T°Q| o

Almost Dirac structure:

b 0
webrq a-PweAlo)} ()


iPad (2)

iPad (2)

iPad (2)

iPad (2)

iPad (2)

iPad (2)

iPad (2)

iPad (2)

iPad (2)


2. Dynamics. L: TQ — R — Lagrangian.

Its differential defines a mapping dL: TQ — T*TQ.

There are symplectomorphisms Q”: TT*Q — T*T*Q as well as
kQ: TT*Q — T*TQ, then vg :=Q o kg : T*TQ — T*T*Q.

Define the Dirac differential DL := ygodL: TQ — T*T*Q.

Locally: (q,v) — (g, 367 —3%,7 v).

Consider a partial vector field X, i.e. a mapping

X:Ag® Leg(AQ) CTROT*Q — TT*Q.

It can be viewed as X(gq, p), where p is given by the Legendre
transform, and v is in the constraint distribution.

3. All together An implicit Lagrangian system is a triple
(L,Ag, X), s.t. (X,DL) € Da, (eq. 2)

Locally this means p = aw g=v, g€ A, and
p—en(q)ep— =3, a"



How to discretize?

a?(v)=0, a=1,...,m.
dp L &

oL a

= F= — - =— = Aa0f.

p ov’ dt aq ; alx

The discrete Lagrangian Ly = At L(q",v").

Discrete equations:
1 JL
a ,n - __ _ . n+l _ _— d
<ag,v'>=0, a=1,....m; p = At Dur
L9 <ad v >

a1 Olg  Olg
P _M8V"+aq”_;)\a ov"

Explicitly p” and p"*1, and v" — approximates the velocity,
qn+1 _ qn qn+1 _ qnfl

containing q", e.g. v7 := orvl i = ——
ning 9~ €8 At OAt

2d 4+ m equations for 2d + m unknowns.



Simulations: Dirac 1 vs Euler

Baby example

; O

m

Description of Ag and Ar.q:
Q=R?
Constraint ¢(x,y) := x2 + y2 — 2 = 0. Simulations : Dirac 1 vs Dirac 2
The distribution Ag is generated by £ = y% - x%.
in the kernel of ¢ = d¢ = 2(xdx + ydy).

{ \ [ \

1 ]

Lagrangian differential and Legendre transform u \.//

m

The Lagrangian is L = 2(x? + y?) — mgy. The associated
Lagrangian differential
DL=(q, 5.~ 5. v) = ((x.y). (m%. my), (0, mg). (. ).

All together

Simulations : Dirac 2 vs All Stars

Dirac order 1(M.Leok, T.Ohsawa)
-5 €AY 0952115
dq Dirac order 2 (V.5.)
> 0.00204053
Trapezium 2(implicit and cheating)
00128399
oty — Adams-Bashforth 3 (cheating)
xx+yy =0 — 0.000136601
Runge-Kutta 4 (stll cheating)
94100

X = Ax

y=-mg+iy



Real example Simulations : Dirac 2 vs Dirac 1

Buckling

Ziegler-Bigoni system

Application. Geometric degree of nonconservativity (cf. J.Lerbet,
M.Aldowaiji, N.Challamel, O Kirillov, F.Nicot, F.Darve)

Simulations : Dirac vs classical methods Simulations : Dirac 1 vs Dirac 2
Exercise: Compare with Jean Lerbet!

Details:

o V.S., A.Hamdouni, From modelling of systems with constraints to
generalized geometry and back to numerics, ZAMM 2019;

o D. Razafindralandy, V.S., A. Hamdouni, A. Deeb, Some robust
integrators for large time dynamics, AMSES, 2019.



How to honestly discretize? What is wrong?

Symplectic Euler for g = H,, p= —H,

o= ¢"+ At-H)

+1 . +1
p" = p"—At-Hy

d L &
Dirac methods for o?(v) =0, p= %, d—lz - gq = Z Aol

1 oL
<adv'>=0, a=1,...,m; p"H d

o 1 0lg  Olg T~ 9 <ad,v">
?’ P At 6v”+8q" _Z)\a ov"

a=1
1 1 -1
. , qn+ _ qn qn+ _ qn

iW/"éf v ::Torv” = A T
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Wishful thinking and reality

AKA geometric integrators
Letter to Ded Moroz*(want to be theorem)

We discretize the equations in such a way that the Dirac structure
is preserved exactly, hence the physical properties are also

preserved exactly. )
AKA pseudo-geometric

Reply (actual theorem) integrators of order (*, p)

We discretize the equations in such a way that the Dirac structure
is preserved up to(some powenof At, hence the physical properties
are also preserved up to some|(other) power of At.

Gifts (algorithm) P

— Write a (possibly implicit) Runge—Kutta method for each type of
variables, with different undetermined coefficients.

— Suppose at the n-th step the variables belong to the Dirac
structure, compute the error at the (n + 1)-st step

— Maximize the order of the error by a good choice of coefficients.

“ Santa Claws
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Theorem. Consider Gn+1 = dn + hbih + hb2/2_, _ o
Pni1 = pn+ hbih + hboh, Va1 = v(vy+ hbily + hbyk), where
h = v(vn + haih + hah)...

1. The numerical method above is of second order provided that
bi+by=1, by + by =1, b3y + bodoy + brd1o + boday = %
biai1 + brag + brais + brax = 3.

2. It preserves the Legendre transformation at least up to the
third order prowded that by + bp = by + by = 1,

bia11 + bpap1 + brapy + brarn =
b1311 + by + bodx + b1d1n =
3. It preserves the constraints at Ieast up to the third order
provided that b1d11 + bodo + 151512 + bydy = %,

biai1 + boap1 + braip + brax =
W/fﬂ DL [

b1a11 + b1d12 + byax1 + byaxn =

biai1 + biaiz + baz + brazy =
bi+by=1, b+ b =1, 51+b2—1-

Y

I\J\I—‘l\)\l—l

NM—M\)M—-NM—AI\)

b1311 + b1312 + bodo1 + brax =
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Pendulum

Step Method Energy error | Constraint error | time,sec
10~2 | RKD-2 (1) 102 1072 1.64
1073 | RKD-2 (1) 1074 107° 7.27
107* | RKD-2 (1) 10-° 1077 80.36
10~2 | RKD-2 (2) 102 1073 1.63
1073 | RKD-2 (2) 1074 107° 6.64
10~* | RKD-2 (2) 1076 1077 50.30
1072 | Dirac-2 13.26 2.72 x 1072 0.25
103 | Dirac-2 1.8 1.5 x 1073 2.24
10~* | Dirac-2 1.9 x 1071 1.4 x107* 24.63




Chaplygin sleigh

Step Method Energy error | Constraint error | time,sec
1072 [ RKD-2 (1) | 7x107° 5x 107° 23.77
1073 | RKD-2 (1) | 7 x 1078 5x 1078 95.84
10~* | RKD-2 (1) | 7 x 10710 5x 10710 700.14
1072 [ RKD-2 (2) | 7x107° 5x 107° 11.75
1073 | RKD-2 (2) | 7 x 1078 5x 1078 59.95
107* | RKD-2 (2) | 7x 10710 5x 10710 416.48
1072 | Dirac2 | 7.9x1073 1072 1.62
1073 | Dirac2 | 7.6 x107* 1073 18.05
10~* | Dirac-2 1.2 x107* 10~4 223.83




Good remarks
1. We recover symplectic Runge-Kutta methods

2. There are a lot of coefficients, but this is
algorithmic —> paper in J. of Programming and
Computer Software


iPad (2)
Good remarks

iPad (2)
1. We recover symplectic Runge-Kutta methods

2. There are a lot of coefficients, but this is algorithmic —> paper in J. of Programming and Computer Software 


Other remarks / work in progress

1. We understood why Marsden inspired method was
not really geometric.

1.bis it was

pseudo-geometric of

order (1,2)

2. Dirac-2 was not
much better: something
like order (1,2 ; 2,3)

3. TODO: | still want it to be (honestly) variational
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Trugarez deoc'h evit bezan bet
o selaou ac'hanon!
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