Pseudo-geometric integrators

(Daria Loziienko)

Vladimir Salnikov CNRS & La Rochelle University

In the previous episodes...

Philosophy:

Geometry encodes the physics of the system

	Mechanical property	Geometric description	
classical classical mechanics (ODE)	conservation of energy	Poisson / symplectic	
	symmetries	Lie groups/algebras,	
	Symmetries	Cartan moving frames	
	dissipation / interaction power balance; constraints	(almost) Dirac	
	control	(singular) foliations	
modern	conservation of energy	multisymplectic	
classical	symmetries	Cartan moving frames	
mechanics (PDE)	dissipation / interaction	Stokes–Dirac	
	rot(grad) = 0, $div(rot) = 0$	$d^2 = 0 - DEC$	
	control	foliations	

Preserving this geometry in computations is fruitful

Classical story in modern language

Geometry behind: Courant algebroids, Dirac structures

On $\mathbb{T}M = TM \oplus T^*M$ (or more generally $E \oplus E^*$) Symmetric pairing: $\langle v \oplus \eta, v' \oplus \eta' \rangle = \eta(v') + \eta'(v)$, Dorfman bracket: $[v \oplus \eta, v' \oplus \eta']_D = [v, v']_{\text{Lie}} \oplus (\mathcal{L}_v \eta' - d\eta(v'))$.

A *Dirac structure* \mathcal{D} is a maximally isotropic (Lagrangian) subbundle of $\mathbb{T}M$ closed w.r.t. $[\cdot,\cdot]_D$

$$\mathcal{D}_{\Pi} = \mathit{graph}(\Pi^{\sharp}) = \{(\Pi^{\sharp}\alpha, \alpha)\} \qquad \mathcal{D}_{\omega} = \mathit{graph}(\omega^{\flat}) = \{(v, \iota_{v}\omega)\}$$

Dirac paths

Theorem 1. Let $D \subset \mathbb{T}M$ be a Dirac structure over M, $H \in C^{\infty}(M)$ be a Hamiltonian function and γ a path on M.

Assume that the basic 2-class $[\omega_D]$ vanishes, and let $\theta \in \Gamma(D^*)^{hor}$ be such that $d_D\theta = \omega_D$, then the following statements are equivalent:

- (i) The path γ is a Hamiltonian curve, i.e. $(\dot{\gamma}(t), dH_{\gamma(t)}) \in D$ for all t.
- (ii) All Dirac paths $\zeta:I\to D$ over γ (i.e. $\rho(\zeta)=\dot{\gamma}$) are critical points among the Dirac paths with the same end points of the following functional:

E.g.
$$\zeta \mapsto \int_{I} \frac{(\theta_{\gamma(t)}(\zeta(t)) + H(\gamma(t)))}{\sqrt{(-p_{\dot{z}}^{2} + H)}} dt$$
 (1)
 $\omega = d(p d_{\dot{z}})$

Implicit Lagrangian systems with magnetic terms

Theorem 2. Let $D \subset \mathbb{T}Q$ be a Dirac structure and $L: TQ \to \mathbb{R}$ a Lagrangian. Assume that the 2-form $\omega_D \in \Gamma(\Lambda^2 D^*)^{hor}$ admits a basic primitive $\theta \in \Gamma(D^*)^{hor}$. Then for $q: I \to Q$ the following are equivalent:

a) There exists a Dirac path $\zeta:I\to D$ such that $\rho(\zeta)=\dot q$ which is the critical point among Dirac paths with the same end points of

$$\int_{I} (L(\rho(\zeta(t))) + \theta(\zeta(t))) dt.$$
 (2)

b) For all $t \in I$, the following condition holds.

$$\left(\frac{\partial}{\partial t}\mathbb{F}L(\dot{q}(t)), \mathcal{D}_{\dot{q}(t)}L\right) \in \mathbb{D} = e^{\Omega}\pi^! D. \tag{3}$$

Example (Holonomic constraints)

Let $F\subset TQ$ be a regular foliation, and $F^\circ\subset T^*Q$ its annihilator. The Dirac structure $D=F\oplus F^\circ$ always admits a basic potential, as the 2-form in Λ^2D^* is zero (there is no magnetic term). Then $\pi^!D$ is the Dirac structure associated to the pullback foliation $\pi^{-1}(F)$ and

$$e^{\Omega}\pi^!D=\{(w,\alpha)\in TT^*Q\oplus T^*T^*Q\mid \pi_*(w)\in F, \alpha-\Omega^{\flat}w\in \pi^{-1}(F)^{\circ}\}$$

Let $L: TQ \to \mathbb{R}$ be a Lagrangian. Then Theorem 2 yields that the integral curves of any implicit Lagrangian system $(X, \mathcal{D}L)$ for $e^{\Omega}\pi^!D$ are critical points of L among curves that are tangent to F. The condition (3) (belonging to \mathbb{D}) translates directly to the Euler-Lagrange equations for a system subject to holonomic constraints, which are classically spelled-out using the Lagrange multipliers.

Application. Implicit Lagrangian systems / constraints

Tulczyjew (70's), H. Yoshimura, J.E. Marsden (2006).

1. Geometry:

Almost Dirac structure:

$$\mathbb{D}_{\Delta_{Q}}((q,p)) = \{(w,\alpha) \in T_{(q,p)}T^{*}Q \times T_{(q,p)}^{*}T^{*}Q \mid w \in \Delta_{T^{*}Q}, \quad \alpha - \Omega^{\flat}w \in \Delta_{T^{*}Q}^{0}\}$$
(2)

2. Dynamics. $L \colon TQ \to \mathbb{R}$ – Lagrangian.

Its differential defines a mapping $dL: TQ \to T^*TQ$.

There are symplectomorphisms $\Omega^{\flat} \colon TT^*Q \to T^*T^*Q$ as well as $\kappa_Q \colon TT^*Q \to T^*TQ$, then $\gamma_Q := \Omega^{\flat} \circ \kappa_O^{-1} \colon T^*TQ \to T^*T^*Q$.

Define the *Dirac differential* $\mathcal{D}L := \gamma_Q \circ dL \colon TQ \to T^*T^*Q$. Locally: $(q, v) \to (q, \frac{\partial L}{\partial v}, -\frac{\partial L}{\partial q}, v)$.

Consider a partial vector field X, i.e. a mapping $X: \Delta_Q \oplus Leg(\Delta_Q) \subset TQ \oplus T^*Q \to TT^*Q$. It can be viewed as X(q,p), where p is given by the Legendre transform, and v is in the constraint distribution.

3. All together An *implicit Lagrangian system* is a triple (L, Δ_Q, X) , s.t. $(X, \mathcal{D}L) \in \mathbb{D}_{\Delta_Q}$ (eq. 2)

Locally this means $p = \frac{\partial L}{\partial v}$, $\dot{q} = v$, $\dot{q} \in \Delta$, and $\dot{p} - \frac{\partial L}{\partial q} \in \Delta^0(q) \Leftrightarrow \dot{p} - \frac{\partial L}{\partial q} = \sum_a \lambda_a \alpha^a$.

How to discretize?

$$\begin{cases} \alpha^{a}(v) = 0, & a = 1, ..., m. \\ \mathbf{p} = \frac{\partial L}{\partial \mathbf{v}}, & \frac{\mathrm{d}\mathbf{p}}{\mathrm{d}t} - \frac{\partial L}{\partial \mathbf{q}} = \sum_{a=1}^{m} \lambda_{a} \alpha^{a}. \end{cases}$$

The discrete Lagrangian $L_d = \Delta t \ L(\mathbf{q}^n, \mathbf{v}^n)$.

Discrete equations:

$$<\alpha_d^a, \mathbf{v}^n>=0, \quad a=1,\ldots,m; \quad \mathbf{p}^{n+1}=\frac{1}{\Delta t}\frac{\partial L_d}{\partial \mathbf{v}^n}$$

$$\mathbf{p}^{n} - \frac{1}{\Delta t} \frac{\partial L_{d}}{\partial \mathbf{v}^{n}} + \frac{\partial L_{d}}{\partial \mathbf{q}^{n}} = \sum_{n=1}^{m} \lambda_{a} \frac{\partial < \alpha_{d}^{a}, \mathbf{v}^{n} >}{\partial \mathbf{v}^{n}}$$

Explicitly \mathbf{p}^n and \mathbf{p}^{n+1} , and \mathbf{v}^n – approximates the velocity, containing \mathbf{q}^n , e.g. $\mathbf{v}^n := \frac{\mathbf{q}^{n+1} - \mathbf{q}^n}{\Delta t}$ or $\mathbf{v}^n := \frac{\mathbf{q}^{n+1} - \mathbf{q}^{n-1}}{2\Delta t}$.

2d + m equations for 2d + m unknowns.

Baby example

Description of Δ_Q and Δ_{T^*Q} :

$$Q=\mathbb{R}^2$$
,

Constraint
$$\phi(x, y) := x^2 + y^2 - l^2 = 0$$
.

The distribution Δ_Q is generated by $\xi = y \frac{\partial}{\partial x} - x \frac{\partial}{\partial y}$. in the kernel of $\psi = \mathrm{d}\phi = 2(x\mathrm{d}x + y\mathrm{d}y)$.

Lagrangian differential and Legendre transform.

The Lagrangian is $L = \frac{m}{2}(\dot{x}^2 + \dot{y}^2) - mgy$. The associated Lagrangian differential

 $\mathcal{D} \bar{L} = (q, \frac{\partial L}{\partial v}, -\frac{\partial L}{\partial q}, v) = ((x, y), (m\dot{x}, m\dot{y}), (0, mg), (\dot{x}, \dot{y})).$

All together

$$\dot{q} \in \Delta_Q,$$
 $p = \frac{\partial L}{\partial v}$
 $\dot{q} = v,$ $\dot{p} - \frac{\partial L}{\partial q} \in \Delta_Q^0$

$$x\dot{x} + y\dot{y} = 0$$

$$\ddot{x} = \lambda x$$

$$\ddot{y} = -mg + \lambda y$$

Simulations: Dirac 1 vs Fuler

Simulations: Dirac 1 vs Dirac 2

Simulations: Dirac 2 vs All Stars

Real example

Application. Geometric degree of nonconservativity (cf. J.Lerbet, M.Aldowaii, N.Challamel, O.Kirillov, F.Nicot, F.Darve)

Simulations: Dirac vs classical methods

Simulations: Dirac 2 vs Dirac 1

Simulations: Dirac 1 vs Dirac 2

Exercise: Compare with Jean Lerbet!

Details:

- V.S., A.Hamdouni, From modelling of systems with constraints to generalized geometry and back to numerics, ZAMM 2019;
- D. Razafindralandy, V.S., A. Hamdouni, A. Deeb, Some robust integrators for large time dynamics, AMSES, 2019.

How to honestly discretize? What is wrong?

Symplectic Euler for
$$\dot{q} = H_p$$
, $\dot{p} = -H_q$

$$q^{n+1} := q^n + \Delta t \cdot H_p^n$$

$$p^{n+1} := p^n - \Delta t \cdot H_q^{n+1}$$

Dirac methods for
$$\alpha^a(v) = 0$$
, $\mathbf{p} = \frac{\partial L}{\partial \mathbf{v}}$, $\frac{\mathrm{d}\mathbf{p}}{\mathrm{d}t} - \frac{\partial L}{\partial \mathbf{q}} = \sum_{n=1}^m \lambda_a \alpha^a$.

Dirac methods for
$$\alpha^{a}(v) = 0$$
, $\mathbf{p} = \frac{\partial L}{\partial \mathbf{v}}$, $\frac{\mathbf{r}}{\mathrm{d}t} - \frac{\partial \mathbf{q}}{\partial \mathbf{q}} = \sum_{a=1}^{n} \lambda_{a} \alpha^{a}$

$$<\alpha_d^a, \mathbf{v}^n>=0, \quad a=1,\ldots,m; \quad \mathbf{p}^{n+1}=\frac{1}{\Delta t}\frac{\partial L_d}{\partial \mathbf{v}^n}$$

$$\mathbf{p}^{n} - \frac{1}{\Delta t} \frac{\partial L_{d}}{\partial \mathbf{v}^{n}} + \frac{\partial L_{d}}{\partial \mathbf{q}^{n}} = \sum_{a=1}^{m} \lambda_{a} \frac{\partial < \alpha_{d}^{a}, \mathbf{v}^{n} >}{\partial \mathbf{v}^{n}}$$

$$\mathbf{v}^{n} := \frac{\mathbf{q}^{n+1} - \mathbf{q}^{n}}{\Delta t} \text{ or } \mathbf{v}^{n} := \frac{\mathbf{q}^{n+1} - \mathbf{q}^{n-1}}{2\Delta t}$$

$$<\alpha_d^a, \mathbf{v}^n>=0, \quad a=1,\ldots,m; \quad \mathbf{p}^{n+1}=\frac{1}{\Delta t}\frac{\partial L_d}{\partial \mathbf{v}^n}$$

$$\mathbf{p}^n-\frac{1}{\Delta t}\frac{\partial L_d}{\partial \mathbf{v}^n}+\frac{\partial L_d}{\partial \mathbf{v}^n}=\sum_{k=1}^m \lambda_k \frac{\partial A_d}{\partial \mathbf{v}^n}$$

Wishful thinking and reality

AKA geometric integrators

Letter to Ded Moroz*(want to be theorem)

We discretize the equations in such a way that the Dirac structure is preserved exactly, hence the physical properties are also preserved exactly.

AKA pseudo-geometric

Reply (actual theorem) integrators of order (*, p)

We discretize the equations in such a way that the Dirac structure is preserved up to some power of Δt , hence the physical properties are also preserved up to some (other) power of Δt .

Gifts (algorithm)

- Write a (possibly implicit) Runge-Kutta method for each type of variables, with different undetermined coefficients.
- Suppose at the n-th step the variables belong to the Dirac structure, compute the error at the (n+1)-st step
- Maximize the order of the error by a good choice of coefficients.

* Santa Claus

Theorem. Consider $q_{n+1} = q_n + hb_1I_1 + hb_2I_2$, $p_{n+1} = p_n + h\tilde{b}_1\tilde{I}_1 + h\tilde{b}_2\tilde{I}_2$, $v_{n+1} = v(v_n + h\bar{b}_1\bar{I}_1 + h\bar{b}_2\bar{I}_2)$, where $I_1 = v(v_n + h\bar{a}_{11}\bar{I}_1 + h\bar{a}_{12}\bar{I}_2)$...

- **1.** The numerical method above is of **second order** provided that $b_1+b_2=1,\ \tilde{b}_1+\tilde{b}_2=1,\ \tilde{b}_1\tilde{a}_{11}+\tilde{b}_2\tilde{a}_{21}+\tilde{b}_1\tilde{a}_{12}+\tilde{b}_2\tilde{a}_{22}=\frac{1}{2},\ b_1a_{11}+b_2a_{21}+b_1a_{12}+b_2a_{22}=\frac{1}{2}.$
- **2.** It preserves the Legendre transformation at least up to the **third order** provided that $b_1+b_2=\tilde{b}_1+\tilde{b}_2=1,$ $\tilde{b}_1a_{11}+\tilde{b}_2a_{21}+\tilde{b}_2a_{22}+\tilde{b}_1a_{12}=\frac{1}{2},$ $\tilde{b}_1\bar{a}_{11}+\tilde{b}_2\bar{a}_{21}+\tilde{b}_2\bar{a}_{22}+\tilde{b}_1\bar{a}_{12}=\frac{1}{2}.$
- **3.** It preserves the constraints at least up to the **third order** provided that $\tilde{b}_1\tilde{a}_{11}+\tilde{b}_2\tilde{a}_{21}+\tilde{b}_1\tilde{a}_{12}+\tilde{b}_2\tilde{a}_{22}=\frac{1}{2},$ $b_1a_{11}+b_2a_{21}+b_1a_{12}+b_2a_{22}=\frac{1}{2},$ $b_1\bar{a}_{11}+b_1\bar{a}_{12}+b_2\bar{a}_{21}+b_2\bar{a}_{22}=\frac{1}{2},$ $b_1\bar{a}_{11}+\bar{b}_1a_{12}+\bar{b}_2a_{21}+\bar{b}_2a_{22}=\frac{1}{2},$ $b_1\bar{a}_{11}+\bar{b}_1a_{12}+\bar{b}_2\bar{a}_{21}+\bar{b}_2\bar{a}_{22}=\frac{1}{2},$ $b_1\bar{a}_{11}+\bar{b}_1\bar{a}_{12}+\bar{b}_2\bar{a}_{21}+\bar{b}_2\bar{a}_{22}=\frac{1}{2},$ $b_1+b_2=1,\ \tilde{b}_1+\tilde{b}_2=1,\ \tilde{b}_1+\bar{b}_2=1.$

Pendulum

Step	Method	Energy error	Constraint error	time,sec
10^{-2}	RKD-2 (1)	10^{-2}	10^{-2}	1.64
10^{-3}	RKD-2 (1)	10^{-4}	10^{-5}	7.27
10^{-4}	RKD-2 (1)	10^{-6}	10^{-7}	80.36
10^{-2}	RKD-2 (2)	10^{-2}	10^{-3}	1.63
10^{-3}	RKD-2 (2)	10^{-4}	10^{-5}	6.64
10^{-4}	RKD-2 (2)	10^{-6}	10^{-7}	50.30
10^{-2}	Dirac-2	13.26	2.72×10^{-2}	0.25
10^{-3}	Dirac-2	1.8	$1.5 imes 10^{-3}$	2.24
10^{-4}	Dirac-2	1.9×10^{-1}	$1.4 imes 10^{-4}$	24.63

Chaplygin sleigh

Step	Method	Energy error	Constraint error	time,sec
10^{-2}	RKD-2 (1)	7×10^{-6}	5×10^{-6}	23.77
10^{-3}	RKD-2 (1)	$7 imes 10^{-8}$	5×10^{-8}	95.84
10^{-4}	RKD-2 (1)	$7 imes 10^{-10}$	$5 imes 10^{-10}$	700.14
10^{-2}	RKD-2 (2)	7×10^{-6}	5×10^{-6}	11.75
10^{-3}	RKD-2 (2)	7×10^{-8}	5×10^{-8}	59.95
10^{-4}	RKD-2 (2)	7×10^{-10}	$5 imes 10^{-10}$	416.48
10^{-2}	Dirac-2	7.9×10^{-3}	10^{-2}	1.62
10^{-3}	Dirac-2	$7.6 imes 10^{-4}$	10^{-3}	18.05
10^{-4}	Dirac-2	1.2×10^{-4}	10^{-4}	223.83

Good remarks

- 1. We recover symplectic Runge-Kutta methods
- 2. There are a lot of coefficients, but this is algorithmic —> paper in J. of Programming and Computer Software

Other remarks / work in progress

- We understood why Marsden inspired method was not really geometric.
 bis it was pseudo-geometric of order (1,2)
- 2. Dirac-2 was not much better: something like order (1,2; 2,3)

3. TODO: I still want it to be (honestly) variational

Trugarez deoc'h evit bezañ bet o selaou ac'hanon!

