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Géométrie généralisée pour la modélisation en mécanique

• Some history and motivation

• Dirac dynamics
- Reminder about Dirac structures
- Lie algebroids and cohomology
- Variational approach to Dirac dynamics

• Applications
- Constraint systems (slightly) revisited
- Impicit Lagrangian systems
- Structure preserving numerics

(some in progress, j/w Oscar Cosserat, Aziz Hamdouni, Camille
Laurent-Gengoux, Daria Loziienko, Alexei Kotov, Leonid Ryvkin)
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In the previous episodes...



Philosophy:
Geometry encodes the physics of the system

Mechanical property Geometric description

classical
classical
mechanics
(ODE)

conservation of energy Poisson / symplectic

symmetries
Lie groups/algebras,
Cartan moving frames

dissipation / interaction
(almost) Dirac

power balance; constraints
control (singular) foliations

modern
classical

mechanics
(PDE)

.

conservation of energy multisymplectic
symmetries Cartan moving frames

dissipation / interaction Stokes–Dirac
rot(grad) = 0, div(rot) = 0 d2 = 0 – DEC

control foliations

Preserving this geometry in computations is fruitful



Very classical story

Canonical case:
given H : T ∗Q → R

q̇ =
∂H

∂p
, ṗ = −∂H

∂q

Symplectic geometry

ω =
∑
i

dpi ∧ dqi

ιXH
ω = dH

More general case:
given H : M → R and
an antisymmetric J(x)

ẋ = J(x)
∂H

∂x

Poisson geometry
{·, ·} on : C∞(M)

XH = {H, ·}

ẋ = {H, x}
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Classical story in modern language



Classical story in modern language



Beyond: port-Hamiltonian, constraint Lagrangian
Traditional references: J. Marsden, H. Yoshimura (ILS);
A. van der Schaft, B. Maschke (PHS)

ε2

ε1

α3 

α1 α2 

3

1

Conjecture (VS): Everything is port-Hamiltonian.
Geometry: (almost) Dirac structures for both classes



What is the conceptual difference?



Classical story revisited (Tulczyjew)
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Classical story revisited (Tulczyjew)



Season 2, Episode 1:
What is Dirac dynamics?

Main ingredients.



Geometry behind: Courant algebroids, Dirac structures
On TM = TM ⊕ T ∗M (or more generally E ⊕ E ∗)
Symmetric pairing: < v ⊕ η, v ′ ⊕ η′ >= η(v ′) + η′(v),
Dorfman bracket: [v ⊕ η, v ′ ⊕ η′]D = [v , v ′]Lie ⊕ (Lvη′ − dη(v ′)).

A Dirac structure D is a maximally isotropic (Lagrangian)
subbundle of TM closed w.r.t. [·, ·]D

T*M

TM

Π
#

DΠ

v=Π
#( )

D

DΠ = graph(Π]) = {(Π]α, α)} Dω = graph(ω[) = {(v , ιvω)}



Dirac structures: general

Choose a metric on M ⇒ TM ⊕ T ∗M ∼= TM ⊕ TM,
Introduce the eigenvalue subbundles E± = {v ⊕±v}
of the involution (v , α) 7→ (α, v). Clearly, E+

∼= E− ∼= TM.
T*M

DE+
E-𝒪

TM

≅TM
≅TM

(Almost) Dirac structure – graph of an
orthogonal operator O ∈ Γ(End(TM)):
(v , α) = ((id−O)w , g((id +O)w , ·))
Dirac structure = almost Dirac +
(Jacobi-type) integrability condition:

g
(
O−1∇(id−O)ξ1

(O)ξ2, ξ3

)
+ cycl(1, 2, 3) = 0

Remark. If the operator (id +O) is invertible, one recovers DΠ with
Π = id−O

id +O (Cayley transform), integrability ⇔ [Π,Π]SN = 0.

Remark. Lie algebroid structure:
ρ = (id−O), C k

ij = (id−O)mi Γk
mj − (i ↔ j) +Om;k

j Omi

Remark. The same, using degree 1 DG-manifolds
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Reminder about Lie algebroids

Definition

Let M be a smooth manifold. A Lie algebroid (A, ρ, [·, ·]) is given
by a finite-dimensional vector bundle A, a vector bundle morphism
ρ : A→ TM, called anchor and a (R-bilinear) Lie bracket on the
sections of A

[·, ·] : Γ(A)× Γ(A)→ Γ(A)

satisfying for all f ∈ C∞(M), s, s ′ ∈ Γ(A):

[s, fs ′] = f [s, s ′] + ρ(s)(f ) · s ′.



Fun facts about Lie algebroids
• Lie algebroids can be alternatively defined as differential graded
manifolds of degree 1. In particular, there is a degree 1
(Lichnerowicz) differential dA : Γ(Λ•A∗)→ Γ(Λ•A∗):

(dAη)(ξ1, ..., ξn+1) =
∑
i

(−1)i+1ρ(ξi )(η(ξ1, ..., ξ̂i , .., ξn+1))

+
∑
i<j

(−1)i+jη([ξi , ξj ], ξ1, ..., ξ̂i , ..., ξ̂j , .., ξn+1)

It satisfies d2
A = 0 and induces the so-called Lie algebroid

cohomology and H•(A).
The anchor ρ induces a morphism H•dR(M)→ H•(A).
• A Lie algebroid always induces a singular foliation on M:
ρ(A) ⊂ TM is involutive, hence M =

⊔
αNα such that

TNα = ρ(A)|Nα for all Nα (immersed connected submanifolds).
Moreover, the bracket on A restricts to well-defined brackets on
A|Nα , turning A|Nα → Nα into Lie algebroids.



Basic cohomology of Lie algebroids

Definition Let A
ρ→ TM be a Lie algebroid over the smooth

manifold M. We define:
- The subspace of ρ-horizontal forms at m ∈ M as:

(Λ•A∗m)hor := {α ∈ Λ•A∗m | ιvα = 0 ∀v ∈ ker(ρm : Am → TmM)}

- The subspaces of ρ-basic forms:

Γ(Λ•A∗)bas = {α ∈ Γ(Λ•A∗) | αm and (dAα)m are horizontal for all m}

- The basic cohomology of A as the quotient

H•bas(A) =
ker(dA : Γ(Λ•A∗)bas → Γ(Λ•A∗)bas)

Image(dA : Γ(Λ•A∗)bas → Γ(Λ•A∗)bas)



Basic forms – fun facts

Lemma

Let A be an algebroid, N ⊂ M a leaf of A and η ∈ Γ((ΛkA∗)hor ) a
ρ-horizontal form.

- η|N is a horizontal k-form on the restricted Lie algebroid
A|N → N, i.e. it induces a unique k-form ηN ∈ Ωk(N).

- η is completely determined by the collection
{ηN | N leaf of A}.

- When η is basic, we have (dAη)N = dηN .
- Let [η] = 0 ∈ Hk

bas(A), then [ηN ] = 0 ∈ Hk
dR(N) for all leaves

N of the algebroid A.



Season 2, Episode 2:
Variational approach



The natural basic two-cocycle of a Dirac structure

Let D ⊂ TM be a Dirac structure. We define ωD ∈ Γ(Λ2D∗) by

ωD((v , α), (w , β)) = α(w)− β(v).

Since D is isotropic, ωD((v , α), (w , β)) = 2α(w) = −2β(v), i.e.
ωD is horizontal.

Since D is involutive ωD is closed in Dirac cohomology, i.e.
dDωD = 0, and hence ωD is basic. It thus yields a natural class in
H2

bas(D). Hence, in view of Lemma on basic forms:

Lemma Let D ⊂ TM be a Dirac structure.

- There is a naturally induced basic cocycle ωD ∈ Γ(Λ2D∗)bas

associated to any Dirac structure D.
- If [ωD ] = 0 ∈ H2

bas(D), then for any leaf N of D,
[(ωD)N ] = 0 ∈ H2

dR(N).



Dirac paths

Theorem 1. Let D ⊂ TM be a Dirac structure over M,
H ∈ C∞(M) be a Hamiltonian function and γ a path on M.

Assume that the basic 2-class [ωD ] vanishes, and let θ ∈ Γ(D∗)hor

be such that dDθ = ωD , then the following statements are
equivalent:

(i) The path γ is a Hamiltonian curve, i.e. (γ̇(t), dHγ(t)) ∈ D for
all t.

(ii) All Dirac paths ζ : I → D over γ (i.e. ρ(ζ) = γ̇) are critical
points among the Dirac paths with the same end points of the
following functional:

ζ 7→
∫
I

(
θγ(t)(ζ(t)) + H(γ(t))

)
dt (1)



Inspiration from Tulczyjew’s business
Definition. Let L : TQ → R a (possibly degenerate) Lagrangian.

a) Tulczyjew’s differential – map u 7→ DuL := κ(duL), where
κ : T ∗TQ → T ∗T ∗Q is the Tulczyjew isomorphism. Its image
is a submanifold of T ∗T ∗Q.

b) Legendre – map from TQ to T ∗Q: FL(v) for every v ∈ TqQ:

∂

∂t

∣∣∣
t=0

L(v + tw) = 〈FL(v),w〉

c) We denote by Leg = FL(TQ) ⊂ T ∗Q the image of FL.
d) We call partial vector fields on Leg sections1 of Γ(TT ∗Q)|Leg.
c) An integral curve of a partial vector field X on Leg is a path

t 7→ ut ∈ TQ such that d
dtFL(ut) = XFL(ut).

d) An implicit Lagrangian system for an almost Dirac structure
D ⊂ TT ∗Q is a pair (X , L), with X a partially defined vector
field on Leg, such that (X (FL(u)),DuL) ∈ D for all u in TQ.

1For E a vector bundle over a manifold X and Y ⊂ X an arbitrary subset
(not necessarily a manifold), we denote by Γ(E)|Y restrictions to Y of smooth
sections of E in a neighborhood of Y in X .



Operations with Dirac structures

Definition Let D ⊂ TM be a subbundle.

- For all φ : M ′ → M, we denote by φ!D the set

φ!Dm′ :=
{

(X , φ∗β) with X ∈ Tm′M
′, β ∈ T ∗φ(m′)M|(φ∗(X ), β) ∈ Dφ(m′)

}
When D is an (almost-)Dirac structure call φ!D the pullback of D.

- Let ω be a 2-form ω ∈ Ω2(M), we denote by eωD the set

eωD = {(v , β + ιvω) | (v , β) ∈ D}

and call it the gauge transform of D.

Lemma Let D ⊂ TM be a Dirac structure and M ′ be a manifold.
- For any smooth map φ : M ′ → M, φ!D is a Dirac structure on M ′.
- For any closed 2-form ω ∈ Ω2(M), eωD is a Dirac structure on M.



Implicit Lagrangian systems with magnetic terms

Given D ⊂ TQ a Dirac structure on Q, consider
(i) its pull back π!D on T ∗Q through the canonical base map
π : T ∗Q → Q, then
(ii) the gauge transformation eΩπ!D of this pull-back with respect
to the canonical symplectic 2-form Ω.

Definition Let D ⊂ TQ be a Dirac structure on Q. We call
constrained magnetic Lagrangian system an implicit Lagrangian
system for the Dirac structure D = eΩπ!D ⊂ TT ∗Q as above.



Implicit Lagrangian systems with magnetic terms

Theorem 2. Let D ⊂ TQ be a Dirac structure and L : TQ → R a
Lagrangian. Assume that the 2-form ωD ∈ Γ(Λ2D∗)hor admits a
basic primitive θ ∈ Γ(D∗)hor . Then for q : I → Q the following are
equivalent:

a) There exists a Dirac path ζ : I → D such that ρ(ζ) = q̇ which
is the critical point among Dirac paths with the same end
points of ∫

I
(L(ρ(ζ(t))) + θ(ζ(t)))dt. (2)

b) For all t ∈ I , the following condition holds.(
∂

∂t
FL(q̇(t)),Dq̇(t)L

)
∈ D = eΩπ!D. (3)



Season 2, Episode 3:
Applications and examples



Example (Classical symplectic magnetic terms)

Let Q be any manifold, ω ∈ Ω2
cl(Q) and D = Γω ⊂ TQ. Let

L : TQ → R be a Lagrangian. Then eΩπ!D = ΓΩ+π∗ω ⊂ TT ∗Q.

As H•basic(D) = H•dR(M), the 2-form on D admits a basic potential
if and only if ω is de-Rham exact, i.e. ω = dθ, θ ∈ Ω1(Q).

Assume that the Legendre transform FL : TQ → T ∗Q is bijective,
and denote the Legendre transfrom of the Lagrangian by H, i.e.

H(p) = 〈p, (FL)−1p〉 − L ◦ (FL)−1(p)

In this case DL is simply dH. Theorem 2 yields that the critical
points of L(q, q̇) + θ(q̇) correspond under the Legendre transform
to integral curves of the Hamiltonian flow of H for the symplectic
structure Ω + π∗ω.

Hence (X , dH) is an implicit Lagrangian system with respect to
eΩπ!D if and only if the vector field X is the Hamiltonian vector
field of H with respect to Ω + π∗ω.



Example (Holonomic constraints)

Let F ⊂ TQ be a regular foliation, and F ◦ ⊂ T ∗Q its annihilator.
The Dirac structure D = F ⊕ F ◦ always admits a basic potential,
as the 2-form in Λ2D∗ is zero (there is no magnetic term). Then
π!D is the Dirac structure associated to the pullback foliation
π−1(F ) and

eΩπ!D = {(w , α) ∈ TT ∗Q⊕T ∗T ∗Q | π∗(w) ∈ F , α−Ω[w ∈ π−1(F )◦}

Let L : TQ → R be a Lagrangian. Then Theorem 2 yields that the
integral curves of any implicit Lagrangian system (X ,DL) for
eΩπ!D are critical points of L among curves that are tangent to F .
The condition (3) (belonging to D) translates directly to the
Euler-Lagrange equations for a system subject to holonomic
constraints, which are classically spelled-out using the Lagrange
multipliers.



Instead of conclusion: work in progress
Poisson.
Let D ⊂ TM be the graph of a Poisson structure π. Then the Lie
algebroid D is isomorphic to T ∗M and H•(D) ∼= H•π(M) is known
as the Poisson cohomology. The class of ωD in H•(D) corresponds
to the class of π in H2

π(M). The class of ω in the finer cohomology
H•bas(D) is zero if and only if π ∈ X2(M) admits a primitive
E ∈ X(M) (a vector field E satisfying LEπ = π), which is tangent
to the Poisson structure, i.e. is a section of ρ(D) ⊂ TM.
Question: reformulate the Theorem 2.

Other Dirac structure. Pick your favourite one.

Generalizations.
– Interpret obstructions
– Almost Dirac? → “almost classes”
– ...

Discretization and numerics – very long story
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Merci pour votre attention!




