Problémes différentiels causaux
fractionnaires et irrationnels :

outils pour la simulation de systémes linéaires
ou faiblement non linéaires

Thomas Hélie, CNRS

Equipe S3AM
Laboratoire des Sciences et Technologies de la Musique et du Son
IRCAM — CNRS - Sorbonne Université — Ministére de la Culture
Paris, France

- CFM 2022 -

Congrés Frandcais de Mécanique
Mini-Symposium "Rencontres Mathématiques-Mécanique"
31 aoiit 2022
Nantes, France



Outline

© Introduction

@ Linear fractional/irrational systems: integral representations and
simulation (coll.: D. Matignon & R. Mignot)

© Weakly nonlinear irrational systems and Volterra series (coll.: M. Hasler &
V. Smet)

© Conclusion



Outline

© Introduction
@ Linear Time Invariant causal operators and Laplace transform
o Causal one-half integrator /*/2
@ Zoology of fractional and irrational) operators(/systems)
o Integral representations: basic ideas on I*
@ Questions about generalizations



Outline

© Introduction
@ Linear Time Invariant causal operators and Laplace transform



Linear Time Invariant (LTI) causal operators & Laplace Transform

Set of signals: £ = {x : R = R or C, defined almost everywhere s.t. (i) & (i)}
(i)  causality: Vt<0, x(t)=0,
(ii) integrability: VT > 0, fOT |x(t)|dt is convergent.

Laplace transform at s € C: L[x](s) = X(s) := [, e *'x(t)dt,

(iii) defined if fooo le**x(t)| dt is convergent.
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General theorems (complementary results for L1, L2, distributions, etc.)

Existence: 3la € R s.t. (iii) is false if Re(s) < a and true if Re(s) > a .
Analyticity: for all s € C} := {s € C|Re(s) > a} (Rk: Ct_=cC, Cr = 0).
Fourier transform: F[x](f) := X(2inf), if a <0 (x = IR of a strictly stable system).

Theorems on integral, differential and LTI operators

Integrator [I'x](t) := [ x(r)dr: L[I'x](s) = EX(S), if s € Cfp o
Derivative [D'x](t) := x'(t): L[D*x](s) = s X(s) — x(0F),  if x|+ is C° and
JAo, to > 0,Vt > to, |X(t)| < Aoeat (ifx is C° on R, x(0") = 0 and D' = sx).

Convolution operator [h* x](t fR ) x(t — 7)d7: L[hxx](s) = H(s) X(s).
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(e and s € C{, e.g. positive s) — O(z,5)=A(s)e”V*? (and B = 0)

(a) = q(z,t) = K A(s) v/se”V®%, so that at z = 0, (d) = Kk A(s) /s = X(s)
sz

Result: ©(z,s) = T \[

At z =0, the temperature §(z = 0, t) evolves as = I*/2 of the heat flow x(t)

X(s) and ©(z =0,s) = X(s)
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Integrator /*/? Hi(s) =1/+/5 (= H(s)? =1/s)
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y(t): W(Z7 t)a 8ZW(07 t):—X(t)

Ha(s) = e~V /\/5

Flared lossy acoustic pipe

Hs(s)=2r(s)e*"/[s+T(s)]
with [(s)=v/s?+es3/2+ 1

— long memory: Vt>0, h(t)=14/mt, hs(t)~+/2/(7t) cos(t—m/4)

— singularities of Hi(s): poles and cuts in Re(s) <0
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Case of the fractional integrator /12 (Hy(s)=1//s)

o Consider s = pe’® € C with p > 0 and 8 €] — 7, 7]
o /s = ,/pe'’/? generalizes the square-root which is positive on s € R"

o For these choices, argy/s = 4 €] — Z, Z] and there is a jump of
Hi(s) = 1/y/s when s crosses R~

R~ is called a cut of Hi(s) and the jump at —§ € R™ is
_ i —i 2j

Hi(—€+i07) — Hi(—¢+i0")=— — —="—

. ) i ) VE V€ WVE

@ Why choosing the cut R™ (thatis 6 €] —m,7]) ?
(i) Causal stable system = H analytic in Re(s) > 0
(ii) It is “natural” to preserve the Hermitian symmetry since a
real system = Hi(5) = Hi(s) in Re(s) >0
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Basic idea: Laplace inverse transform and adapted Bromwich contour

Let ] = e’ 1p+(t) be the causal exponential.

e+ioco
o Causal convolution kernel: hi(t) = lim Hi(s)eS'ds
e—0t e—ioco
o Residue theorem: 35— ¢ Hi(s)eTds = > ep Resuyy €l
@ Bromwich contour Cg,,» with (R, a, b) — (+00,0",07)
Im(s)

Im(s}
J A
R
dl
L b Ref(s) Re(s)
———————— e 2| .

o | h(t) +0— [ pu(—€)e g +0 = 0 | with
w(—¢€) = Hi(=&+i07)—Hi(=&+i0h) 1

2im ‘n'\/g
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Basic idea: Integral representations

o Kernel: | hi(t) = ["u(—€)e7¢tde | with pu(—€) = i
@ Input/Output system: a continuous aggregation of convolutions with
damped exponential

Y(8) = [hrwx(2) = / e xe x(D]de

Ti e =¢(—&,t)
@ Time-realization:
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Basic idea: Integral representations

o Kernel: | hi(t) = 0 Tp(—€)e e | with p(—€) = %\/g

Input/Output system: a continuous aggregation of convolutions with
damped exponential

Y(8) = [hrwx(2) = / e xe x(D]de

Time-realization: =e(=¢61)
{ 8t¢(7£7 t) = 7£¢(7€7 t) + X(t)7 ¢(7£7 0)207 Vé- >0
y(8) = [ m(=&)¢(—¢, t)de

@ Transfer functlon aggregation of first order systems

( 575) ( :siga V£>O
Ha(s)= %: U~ F (€, 5)de

_ 0+°° Hs(;?dé (: %), for Re(s) >0
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Questions about generalizations

Summary:
@ Determine the singularities (poles and cuts) of H(s).
@ Compute their associated residues and jumps

@ Derive an integral representation from an adapted Bromwich contour and
the residue theorem

@ long memory (damping slower than any exponential) < infinite continuous
aggregation of exponentials

Questions:
@ Are such integral representations always well-posed ?

@ How to perform accurate approximations and simulations in the time
domain 7
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Definitions

@ Many transfer functions can be decomposed as follows, in some right-half
complex plane C} := {Re(s) > a},

r M(dy)
ZZ s—k;k o s—7"

k=1 I=1

@ which translates in the time domain into the following decomposition of
the impulse response:

h(t)—zzm, (et [@rm@). foreso
C

k=1 I=1

@ The integral part can be realized by a dynamical system:

Ocp(y,t) = oy, t) +u(t), &(v,0)=0, Vyecd

y(t) = /qﬁ%



Technical conditions

@ A well-posedness condition must be fulfilled:

/

o When measure M has a density 41, and the curve C admits a C'-regular
parametrization & — (&) which is non-degenerate (7'(£) # 0), we have:

. H(y+iv'e) —H(y—ive
() -ty OISO

M(d~v)

— | <0
a+l—vy
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Method M1: approximation by interpolation of the state

@ Approximation of the state ¢(v, t), for {7, }o<p<p+1 C C
37, 1) = 0 $p(t) No(7), where g (t) = ¢(7, 1).

® {Ap},<,<p are cont. piecewise lin. interpolating functions.



Method M1: approximation by interpolation of the state

@ Approximation of the state ¢(v, t), for {7, }o<p<p+1 C C
~ P
t) = ,_1 o(t) Ao(7), where ¢p(t) = H(7p, t).
® {Ap},<,<p are cont. piecewise lin. interpolating functions.

@ The corresponding realization reads:

Oepp(t) = Y op(t) +u(t),1<p<P,
P
0 = R Y meoul) withip= [ uINO)D
p=1 p—1:7p+1lc

@ The corresponding transfer function has the structure:

Fuls) = 22[ ]

@ Convergence results can be proved, as dim. P — oo.
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Step 1: re-interpreting Sobolev spaces

@ Optimization in the frequency domain, stemming from

h(f) = lim H(e + 2irf)
e—0t
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o Norms in L?, or Sobolev spaces H*, are defined as:
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where s € R tunes the balance between low and high frequencies.



Method M2: optimization
Step 1: re-interpreting Sobolev spaces

@ Optimization in the frequency domain, stemming from

h(f) = lim H(e + 2inf)
e—0t
o Norms in L?, or Sobolev spaces H*, are defined as:
1Al e :/ ws(F) [HQimf)|? df , with wa(f) = (1 + 4 F2)° .
R¢

where s € R tunes the balance between low and high frequencies.

o For specific applications, more general frequency dependent weights can
be used: bounded frequency range, logarithmic scale, relative error
measurement, bounded dynamics ...



Method M2: optimization
Step 2: building up specific weights for audio applications

For audio applications, w(f) can be adapted and modified according to the
following requirements:

Q a bounded frequency range f € [f~, f*]: w(f) 1js— riy(F);
@ a frequency log-scale: w(f)/f;
@ a relative error measurement: w(f)/|H(2inf)|?

@ a relative error on a bounded dynamics: W(f)/(Sat/.,,@(f))2 where the
saturation function Saty,e with threshold © is defined by

[ |HQixf)| if [H(2inf)| > ©On
Satne(f) = { Oy otherwise

Note: normalization of the samples is desirable in most audio applications,
before the sequence is sent to DAC audio converters.



Method M2: optimization
Step 3: Regularized criterion with equality constraints

@ The regularized criterion reads:

CR(M)=/R+

o Equality constraints for H“( D at prescribed frequency points n;, 1 <j < J
are taken into account thanks to a Lagrangian C,, by adding to C:

2

P
Hu(2imf) = H(2imf) | w(f)df + > eplupl,
p=1

—(d-
H (2imm;) — Hu( 1)(2i7r771)
E}%e E* )
d)(n: —~(d) ..
H' (2imn,) — H, ~ (2imny)



Method M2: optimization
Step 4: Discrete criterion

o Discrete version of the criterion for frequencies increasing from f; = f_ to

fne1 = fr is, with s, = 2inf,:

N

Clu)~ )y wn

n=1

@ In matrix notations, this rewrites

H.(sn) — H(sn)

2 fn+1
with w, :/ w(f)df.
f

n

Cor(1) = (Mp — h) W (Mp — ) + p'Eps + §Re(€* [k — N,u]),

model

constraint model
regularization
weights

data

constaints

with

rTsmzg

Nx(P+Pz2)
JX(P+P2)

(P+ P2) x (P+ P2)
N x N

N x1

Jx1



Method M2: optimization
Step 5: Closed-form solution

e If J =0 (no constraint), the solution reduces to
p=M"'H,
where M =%Re (M*WMJrE) and Hz?}%e(M*Wh).
@ For J > 1, the solution reads:
p=M"[H+NN" (k- NM'H)],

where N = NM™IN' is invertible for non-redundant constraints, and
N denotes [Re(N*), Sm(N)]
k' denotes [Re(k'), Sm(k*)]



Outline

e Linear fractional/irrational systems: integral representations and
simulation (coll.: D. Matignon & R. Mignot)

@ Examples of applications



Academic example: Hi(s) = 1/v/s, pi(—=¢€) = 1/(m/§)

Magnitude Phase
i i -3 H T H
T S CER T GRS SN TER T
) = 27§ w=2r
]\f‘agmtude Phase
1 ) Y T T T
B Qpreeres speRsnne
== \
A N
wEbos e, fioe iR oo
10— 10-? 1 107 10¢ 0-+ 10-2 1 JET
w=2rf w=2rf

Top: Interpolation, P = 16. Bottom: Optimization, P = 10.



Fractional auto-regressive system: Hs(s) = 1/(s® + 0.1s%/2 + s1/2 4+ 0.1)
(poles and R™)

Phase Magnitude Phase

@
AEERE

by

time (in s; nnnnn

T fmeGing

Left: Interpolation, P = 18. Right: Optimization, P = 18.
(-..): polesonly. (——): cutonly. (—): poles and cut.



Bessel kernel: 2 cuts =/ + R~

Ha(s) = 1/Vs2 + 1, piz (=€) =1/ (ny/E(21 =€)

Magnitude

“o

i | 2 S0 | JL 1 W ez 1 e 0
w w

By
&

AVANMAAARAAAAAAN

Te w4 a s we m e e m a

time (in s)

-t
o 36 4 6 90 i w40 & 90 3@

Magnitude Phase

—

time (in s)

Left: Interpolation, P = 10. Right: Optimization, P = 10.



Trumpet-like instrument (I)

Decomposition into elementary subsystems.

4 e s
Ko - —»[delay T = i ——‘ delay 7o = - | P4
= s . Qo(s ) . 3(s’
» . i 21(5) ~—{delay 73 = 22(s) ~—{delay 19 |=— Qs( )
Transfer functions of interest:
o Reflection between pi and p;

o Transmission between pj and pa.




Trumpet-like instrument (I1): various choices of the cuts

e with 3 Horizontal cuts, with a Cross cut

|Hao(s)] (dB) N arg(Hw(S)) (rad) |Hio(s)| (dB) arg(Hig(s)) (rad)

—10 10" —10-2 =TT r EETERET T S —102 —10° —10-

e Remark: the values of H(s) in C{ do not depend on the choice of the cut!



Trumpet-like instrument (I11)

Time-domain representation

o
‘
Sl A BV AN o]
¢ if VAN
1l r—all |l‘ llull v
Kl H
NI
L - - ‘ ‘
I W L
0

!

|
l lf-.{W\,‘;l PV AR st bl

o i (T3 2 gt I3 05
Time ¢ (s. )

Frequency-domain rep.

s oo
rm;uunr} f(Hz.)

E1511'1i|lz'm ¥ S (Ha)”

Real-time simulations in Pure-Data environment on optimized models with
P < 10 for each quadripole Qx: bounded freq. range, log-scale & relat. error.
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© Weakly nonlinear irrational systems and Volterra series (coll.: M. Hasler &
V. Smet)
@ Model: damped nonlinear traveling wave
@ Volterra series
@ Solution
@ Realization
@ Approximation and results



Outline

© Weakly nonlinear irrational systems and Volterra series (coll.: M. Hasler &
V. Smet)
@ Model: damped nonlinear traveling wave



PUprSG (audio effects and sound synthesis)

m Simulate the realistic propagation of a
progressive plane wave in a pipe

p(0,t) . } p(x,t)

= Include the nonlinearity responsible for
the brightness of « brass sounds » at
fortissimo nuances (Ipl<160 dB spl)

m Low-cost input/output relation
Choice: Volterra series




1. Nonlinear acoustic model
(planar progressive wave)

m [Mak97] adimensional version:
For x>0, t>0, 8_\.1)4—8,1)-{-,4([)) = g(,pz
Boundary Cnd.: p(x =0.t ) = polt ) ‘-(input)
m Damping models A(p):

Simplest: Ao(p) =0 p ;
1/2
Realistic (brass instr., [MJ00]): A1(p) =01 d "' p



Tribute to Joél Gilbert

Modern Acoustics and Signal Processing

— v \ Murray Campbell
” w® Joél Gilbert
e . Arnold Myers

N The Science
of Brass
Instruments

Joél Gilbert (1963-2022)

Research director, CNRS SASA
Laboratory of Acoustics, Le Mans University “prESS
(7 2 [ — @ Springer

Medal of the French Acoustical Society, 2022
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@ Volterra series



Definition and properties

m \olterra series with kernels {hn}nene

00 s
y(t)y=>_ //hn(’,- RAL dt, dt,
B {h"} a=1 I
~— - -
sum of multi-convolutions

+00
= Convergence: lu(t)| < p radius of the series Y _ ||hn||, "
(not studied here) n=1

m Laplace transform: transfer kernels H,(s1, ,sn)
(analytic for stable causal system on Re(s;.) > 0)



Interconnexion laws

Denoting 8, =§58;..:8 @

- Sum : Ph 2 Illill (/).f'/’!l) ui(t) {f”} u(t
-1 cE
Hy(s1.)) = Fu(s1:) +Gulsi) ——! {gn}
| PrOdUCt s+ pr = min (pyr, py)
n—I| ) {.l.n} ofi)
Hy(s1m) = ZFp(“‘l:p)Gn—p(l'/H-l:n) = Dy ==
p=1 {on}
m Cascade : v > vy SOI pr I 0
Hy(si)) = Fu(s1:0) Gi(S1n) L] L g |

where 51., =5 +52+.. 45,
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@ Solution



Kernels {/" },ex- and cancelling
system

m For x>0, 50, 9,p+9,p+ aka,k/zp = ga,pz

% i Xk
m X-parameterized kernels (B Yoens



Kernels {/" },ex- and cancelling
system

= For x>0, 0, 9,p3,p+ aid’p = L7

m x-parameterized kernels { ;"

k
}n(—ZN*
m Zero system:

+a+ "

polr) {h.:‘.k} p(x.1)

&



Kernels {/:“},en- and cancelling

system

= For x>0, 0, 9,p3,p+ aid’p = L7

i i X,k
m X-parameterized kernels {hy" } nen+

m Zero system:

e

A

.

@)

polr) {h.:‘.k} p(x.1)

m From laws:

@'I;}'.A (S1n)+ H* (s1:0)




Kernels {/:“},en- and cancelling

system

= For x>0, 0, 9,p3,p+ aid’p = L7

v ‘ Xk
m X-parameterized kernels {hy" } nen+

m Zero system:

+a+ "

_polt) {h.:‘.k} | pLx.r)

m From laws:

. S IR - .
alH,:‘ ($1:m)+ [~"I:n+ak (»"I:H)I] H,;“ (Sl:n)
n-1

Z H}‘r'k (“'l:p)H):.—kl’(""”":" )
p=1



Kernels {/:“},en- and cancelling

system

= For x>0, 0, 9,p3,p+ aid’p = L7

i i X,k
m X-parameterized kernels {hy" } nen+

m Zero system:

+a+ "

polr) {h.:‘.k} p(x.1)

m From laws:

. S IR - .
()\H,:‘ (S1:n)+ [~"I:11+ak (»"I:M)I] H,;“ (»"I:n)

n-1
ZH (s1: p n-/) ‘IH—I n)
p=I1



Kernels {/:“},en- and cancelling

system

= For x>0, 0, 9,p3,p+ aid’p = L7

i i X,k
m X-parameterized kernels {hy" } nen+

m Zero system:

+a+ "

polr) {h.:‘.k} p(x.1)

m From laws:

(’)\H'M (S1:n)+ [KI/:\M'*'(ZL (‘/I\u)é] H};'k(»"l:n)

n-1

B~
_—"Iu ZH ‘lp n-/) ‘IH—In) @
p=1



Kernels {/" },ex- and cancelling
system

= For x>0, 0, 9,p3,p+ aid’p = L7

v ‘ Xk
m X-parameterized kernels {hy" } nen+

m Zero system: opp—
polr) {/l',‘,'k} | plx.1) b 0
m From laws:
QH (s1a)+ [T+ o (57) | i (510
o - s Linear ODEs
—5Stn ZH}{ (“'l:p)Hn'_p(S;H—I:n) = 0

&

p=1



Boundary cnd. and solution

mIf x=0 ,then p(x=0.1)=po(r) (Identity system)
H’I‘:M(.\‘l) =1 and H="’(s14) = 0 ifn>2



Boundary cnd. and solution

mIf x=0 ,then p(x=0.1)=po(r) (Identity system)
H'I_M(\l) =1 and H,:_U (s1:p) = 0 ifn>2
m Solution: H*(si) = Gi*sie 1 with

koo —ays2 wave delay
G (s1n) = e @i

n—1
GI‘I“(S]ZH) = B-S’I\HZ/ ) (‘ .’)ng(sll’) Tn I’(Y”H" dg

& p=1


Thomas Helie

Thomas Helie
wave delay


Boundary cnd. and solution

mIf x=0 ,then p(x=0,)=po(r) (Identity system)
H.[\:UJ\(.“) =31 and H;:=U.A(Sl:”) =0 lf1122

m Solution: H¥(si.) = G*(si)e ™ with

G:J\(-"I:n) - e,a‘_\;—'
n_l X ’\4' g 3 £
G,‘,"(S];,,) = ‘I;S’IIJ Zl/()e_a‘(“’"J_("_.’)G;A(Slzp)(",.',’fp(slwl:n)d‘i
- - /,=.
m First kernels (k=0
Gi%s,) = e%*
Gt = B ey

20



Boundary cnd. and solution

mf =0 then plx=0,t) = po(t) (Identity SyStem)
H',_M(\l) =1 and H="’(s14) = 0 ifn>2

m Solution: H*(si.) =G¥*(si)e = with

& z
G; (s1m) = e %

n—1
G,‘,"(Sl;,,) — E-‘/I\HZ/ G (\ ")CISA(MP) i I’(Y’}H S é

m First kernels/ (k=1)

Gl(s,) = e MHA

ﬁﬁ?z e AxVISItR _e ax(\/S1+/52)

Gyl (s12) = 52
> (s1:2) 20 _\/_(;I-E-SZ'l'\/ﬁ*'\/“‘2
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@ Realization



Deriving simple realizable
structures

How to realize first kernels
without multi-convolutions ?

n=1: linear filter (mono-conv.)

What about n=2 ?



Elementary 2"d order system

m Elementary system (P,Q,R: transfer fct):

vp(r)
po(r) P o\ w(1) l y(t)
L 0 '\‘Q(I),(X\)‘_‘_‘» R |—~—>
Ki(si2) = P(s,)Q(s,)R(512) ifn=2,

Kn(sim) =

0 otherwise.



Elementary 2"d order system

m Elementary system (P,Q,R: transfer fct):

yplr)
0(t) P ﬁc (1) ;
Po i o ".Q('), w R y(t)

Ka(s12) = P(s,)0(s,)R(512) ifn=2,

K,(s1.,) = 0 otherwise.
mFork=0, %) = B92(1 e
2 T
P(s)=Q(s) = 1. (identity systems)

Ij(] _e—(q,.x)
R(s) = TS



Elementary 2"d order system

m Elementary system (P,Q,R: transfer fct):

\p(!

0 P :
p_mr - 0 ‘Q(’,(:)_> R o)
Ki(s12) = (sl)Q(sz)R(SI:Z) itn=2,

K,(si.;,) = 0 otherwise.

mFork=0, 6’ = 522(1-e )

il Yult)
I (static gain)
[ i

u}
o)
I
i
I

= DA 59/68



Realistic case: k=1

m No straightforward identification:

o e ey o F o o
ﬁ"l:} e~ UxVsIt _a o x(/S1+/52)

G:J(A"I:l) = ——
= g 2w —\/S1+852+ \,/S_]—V/S_g



Realistic case: k=1

m No straightforward identification:
Gy o (ESTEPVITR e o ATV
75 \S122) =

= > 2a —VS1+s2+ y S]--\/S_g

m Perfect squares & sum of elementary syst.:

vt +y/s1ty/s2
= [AGs1) 1652) Bi5T2) + 1s1) A(s2) B5T2)
+A(s1)A(52)D(ST2)
~Bi{s1)Gi{s2) 1(5T2) = Cils1)B(s2) 1 (572)
§1:2

~C(s1)CE (72| 4’;




Realistic case: 2" order realization
i "('

Structure composed of sums, products and linear filters
w1th (m'atlonal) transfer ﬁmctlo
=1/Vs

B(s) = Psc) =e @i
m—rWOW D(s) = yFe-sax

E(s) = V&
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@ Approximation and results



Bode diagrams of A,B,C,D,E for
typical pipes

D,
B, E
3“.”:‘; w10 2410
J Gn Ho)
8 .
& 3 -- Exact transfer functions
wpie e, ne s DL | -- Approx.
£ G Hzy £ (in Hey


Thomas Helie


Digital 2" order realization

oversampling

irrational system

undersampling
& wave delay

DA 656


Thomas Helie

Thomas Helie

Thomas Helie
oversampling

Thomas Helie
undersampling
& wave delay

Thomas Helie
irrational system


Results for a typical trumpet pipe

m Ex.: 1.sinusoid with vibrato / 2.Chet Baker

S 1760

4000
2000

2000

pres me (in Pa)

—Jle

pressure (in Pa)

o8 o oa
time (in )

Zoom: (--) linear, (-) order 2

(ml/\/‘/\/\/\/\/w

timéin ms)
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Conclusion

Contributions

Representation with poles and cuts of linear fractional/irrational systems

Flexible method for the low-cost simulation based on approximation and
optimization

Suitable for real-time applications.

Application to weakly nonlinear systems with Volterra series

Perspectives
@ Open question: optimal choice of cut for approximation ?

@ Open question: optimal placement of poles, once the cut has been chosen?

— The end —

Thank you for your attention
Acknowledgements: M. Hasler, D. Matignon, R. Mignot, V. Smet.
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