Problèmes différentiels causaux fractionnaires et irrationnels :
 outils pour la simulation de systèmes linéaires ou faiblement non linéaires

Thomas Hélie, CNRS

Équipe S3AM
Laboratoire des Sciences et Technologies de la Musique et du Son IRCAM - CNRS - Sorbonne Université - Ministère de la Culture Paris, France

- CFM 2022 -

Congrés Frandcais de Mécanique
Mini-Symposium "Rencontres Mathématiques-Mécanique"
31 août 2022
Nantes, France

Outline

(1) Introduction
(2) Linear fractional/irrational systems: integral representations and simulation (coll.: D. Matignon \& R. Mignot)
(3) Weakly nonlinear irrational systems and Volterra series (coll.: M. Hasler \& V. Smet)
(4) Conclusion

Outline

(1) Introduction

- Linear Time Invariant causal operators and Laplace transform
- Causal one-half integrator $I^{1 / 2}$
- Zoology of fractional and irrational) operators(/systems)
- Integral representations: basic ideas on $I^{1 / 2}$
- Questions about generalizations
(2) Linear fractional/irrational systems: integral representations and simulation (coll.: D. Matignon \& R. Mignot)
(3) Weakly nonlinear irrational systems and Volterra series (coll.: M. Hasler \& V. Smet)
(4) Conclusion

Outline

(1) Introduction

- Linear Time Invariant causal operators and Laplace transform
- Causal one-half integrator $I^{1 / 2}$
- Zoology of fractional and irrational) operators(/systems)
- Integral representations: basic ideas on $I^{1 / 2}$
- Questions about generalizations

2 Linear fractional/irrational systems: integral representations and simulation (coll.: D. Matignon \& R. Mignot)
(C) Weakly nonlinear irrational systems and Volterra series (coll.: M. Hasler \& V. Smet)
(4) Conclusion

Linear Time Invariant (LTI) causal operators \& Laplace Transform
Set of signals: $\mathcal{E}=\{x: \mathbb{R} \rightarrow \mathbb{R}$ or \mathbb{C}, defined almost everywhere s.t. (i) \& (ii) $\}$
(i) causality: $\forall t<0, \quad x(t)=0$,
(ii) integrability: $\quad \forall T>0, \quad \int_{0}^{T}|x(t)| \mathrm{d} t$ is convergent.

Laplace transform at $s \in \mathbb{C}: L[x](s)=X(s):=\int_{0}^{\infty} \mathrm{e}^{-s t} x(t) \mathrm{d} t$,
(iii) defined if $\int_{0}^{\infty}\left|\mathrm{e}^{-s t} x(t)\right| \mathrm{d} t$ is convergent.

Linear Time Invariant (LTI) causal operators \& Laplace Transform
Set of signals: $\mathcal{E}=\{x: \mathbb{R} \rightarrow \mathbb{R}$ or \mathbb{C}, defined almost everywhere s.t. (i) \& (ii) $\}$
(i) causality: $\forall t<0, \quad x(t)=0$,
(ii) integrability: $\quad \forall T>0, \quad \int_{0}^{T}|x(t)| \mathrm{d} t$ is convergent.

Laplace transform at $s \in \mathbb{C}: L[x](s)=X(s):=\int_{0}^{\infty} \mathrm{e}^{-s t} x(t) \mathrm{d} t$,
(iii) defined if $\int_{0}^{\infty}\left|\mathrm{e}^{-s t} x(t)\right| \mathrm{d} t$ is convergent.

General theorems (complementary results for L^{1}, L^{2}, distributions, etc.)
Existence: $\exists!a \in \overline{\mathbb{R}}$ s.t. (iii) is false if $\Re e(s)<a$ and true if $\Re e(s)>a$.
Analyticity: for all $s \in \mathbb{C}_{a}^{+}:=\{s \in \mathbb{C} \mid \Re e(s)>a\} \quad$ (Rk: $\left.\mathbb{C}_{-\infty}^{+}=\mathbb{C}, \mathbb{C}_{+\infty}^{+}=\emptyset\right)$.
Fourier transform: $F[x](f):=X(2 i \pi f)$, if $a<0 \quad(x \equiv \mathbb{R}$ of a strictly stable system).

Linear Time Invariant (LTI) causal operators \& Laplace Transform
Set of signals: $\mathcal{E}=\{x: \mathbb{R} \rightarrow \mathbb{R}$ or \mathbb{C}, defined almost everywhere s.t. (i) \& (ii) $\}$
(i) causality: $\forall t<0, \quad x(t)=0$,
(ii) integrability: $\quad \forall T>0, \quad \int_{0}^{T}|x(t)| \mathrm{d} t$ is convergent.

Laplace transform at $s \in \mathbb{C}: L[x](s)=X(s):=\int_{0}^{\infty} \mathrm{e}^{-s t} x(t) \mathrm{d} t$,
(iii) defined if $\int_{0}^{\infty}\left|\mathrm{e}^{-s t} x(t)\right| \mathrm{d} t$ is convergent.

General theorems (complementary results for L^{1}, L^{2}, distributions, etc.)
Existence: $\exists!a \in \overline{\mathbb{R}}$ s.t. (iii) is false if $\Re e(s)<a$ and true if $\Re e(s)>a$.
Analyticity: for all $s \in \mathbb{C}_{a}^{+}:=\{s \in \mathbb{C} \mid \Re e(s)>a\} \quad$ (Rk: $\left.\mathbb{C}_{-\infty}^{+}=\mathbb{C}, \mathbb{C}_{+\infty}^{+}=\emptyset\right)$.
Fourier transform: $F[x](f):=X(2 i \pi f)$, if $a<0 \quad(x \equiv \mathbb{R}$ of a strictly stable system $)$.
Theorems on integral, differential and LTI operators
Integrator $\left[I^{1} x\right](t):=\int_{0}^{t} x(\tau) \mathrm{d} \tau: L\left[I^{1} x\right](s)=\frac{1}{s} X(s), \quad$ if $s \in \mathbb{C}_{\max (0, a)}^{+}$
Derivative $\left[D^{1} x\right](t):=x^{\prime}(t): L\left[D^{1} x\right](s)=s X(s)-x\left(0^{+}\right), \quad$ if $\left.x\right|_{\mathbb{R}^{+}}$is \mathcal{C}^{0} and $\exists A_{0}, t_{0}>0, \forall t>t_{0},|x(t)| \leq A_{0} \mathrm{e}^{\text {at }} \quad$ (if x is \mathcal{C}^{0} on $\mathbb{R}, \times\left(0^{+}\right)=0$ and $D^{1} \equiv s \times$).
Convolution operator $[h \star x](t)=\int_{\mathbb{R}} h(\tau) \times(t-\tau) \mathrm{d} \tau: L[h \star x](s)=H(s) X(s)$.

Outline

(1) Introduction

- Linear Time Invariant causal operators and Laplace transform
- Causal one-half integrator $I^{1 / 2}$
- Zoology of fractional and irrational) operators(/systems)
- Integral representations: basic ideas on $I^{1 / 2}$
- Questions about generalizations
(2) Linear fractional/irrational systems: integral representations and simulation (coll.: D. Matignon \& R. Mignot)
(3) Weakly nonlinear irrational systems and Volterra series (coll.: M. Hasler \& V. Smet)
(4) Conclusion

Causal one-half integrator $I^{1 / 2} \&$ specimen in classical physics
For all $s \in \mathbb{C}_{0}^{+}$and $x \in \mathcal{E}$ s.t. $s \mapsto X(s)$ is defined in \mathbb{C}_{a}^{+}with $a \leq 0$
Laplace transfer function H of $I^{1 / 2}$

$$
I^{1 / 2} I^{1 / 2} x=I^{1} x
$$

Causal one-half integrator $I^{1 / 2} \&$ specimen in classical physics
For all $s \in \mathbb{C}_{0}^{+}$and $x \in \mathcal{E}$ s.t. $s \mapsto X(s)$ is defined in \mathbb{C}_{a}^{+}with $a \leq 0$
Laplace transfer function H of $I^{1 / 2}$

$$
L\left[{l^{1 / 2}}^{1 / 2} x\right](s)=L\left[l^{1} x\right](s)
$$

Causal one-half integrator $I^{1 / 2} \&$ specimen in classical physics
For all $s \in \mathbb{C}_{0}^{+}$and $x \in \mathcal{E}$ s.t. $s \mapsto X(s)$ is defined in \mathbb{C}_{a}^{+}with $a \leq 0$
Laplace transfer function H of $I^{1 / 2}$

$$
L\left[l^{1 / 2} I^{1 / 2} x\right](s)=L\left[I^{1} x\right](s) \Longrightarrow H(s)^{2} X(s)=\frac{1}{s} X(s)
$$

Causal one-half integrator $I^{1 / 2} \&$ specimen in classical physics
For all $s \in \mathbb{C}_{0}^{+}$and $x \in \mathcal{E}$ s.t. $s \mapsto X(s)$ is defined in \mathbb{C}_{a}^{+}with $a \leq 0$
Laplace transfer function H of $I^{1 / 2}$
$L\left[I^{1 / 2} I^{1 / 2} x\right](s)=L\left[I^{1} x\right](s) \Longrightarrow H(s)^{2} X(s)=\frac{1}{s} X(s)$
Solution analytic on $\mathbb{C}_{0}^{+}: H(s)=1 / \sqrt{s}$ (or its negative version $-1 / \sqrt{s}$)

Causal one-half integrator $I^{1 / 2} \&$ specimen in classical physics
For all $s \in \mathbb{C}_{0}^{+}$and $x \in \mathcal{E}$ s.t. $s \mapsto X(s)$ is defined in \mathbb{C}_{a}^{+}with $a \leq 0$
Laplace transfer function H of $I^{1 / 2}$
$L\left[I^{1 / 2} I^{1 / 2} x\right](s)=L\left[I^{1} x\right](s) \Longrightarrow H(s)^{2} X(s)=\frac{1}{s} X(s)$
Solution analytic on $\mathbb{C}_{0}^{+}: H(s)=1 / \sqrt{s}$ (or its negative version $-1 / \sqrt{s}$)
Specimen in physics: 1D heat equation in a semi-infinite $\operatorname{rod}(z \geq 0)$
a) Heat flow: $q(z, t)=-\kappa \partial_{z} \theta(z, t), \quad(\theta$: temperature, $\kappa>0$: thermal conductivity)
b) Heat equation: $\partial_{t} \theta(z, t)=-\partial_{z} q(z, t)=\kappa \partial_{z}^{2} \theta(z, t)$, for all $(z, t) \in(0,+\infty)^{2}$,
c) Initial condition: $\theta(z, t=0)=0$, for all $z>0$,
d) Controlled boundary: $q(z=0, t)=x(t), \quad$ for all $t>0$, with $x \in \mathcal{E}$.
e) Bounded solution $(\theta(z,$.$) in \mathcal{E}$ for all $z)$

Causal one-half integrator $I^{1 / 2} \&$ specimen in classical physics
For all $s \in \mathbb{C}_{0}^{+}$and $x \in \mathcal{E}$ s.t. $s \mapsto X(s)$ is defined in \mathbb{C}_{a}^{+}with $a \leq 0$
Laplace transfer function H of $I^{1 / 2}$
$L\left[I^{1 / 2} I^{1 / 2} x\right](s)=L\left[I^{1} x\right](s) \Longrightarrow H(s)^{2} X(s)=\frac{1}{s} X(s)$
Solution analytic on $\mathbb{C}_{0}^{+}: H(s)=1 / \sqrt{s}$ (or its negative version $-1 / \sqrt{s}$)
Specimen in physics: 1D heat equation in a semi-infinite $\operatorname{rod}(z \geq 0)$
a) Heat flow: $q(z, t)=-\kappa \partial_{z} \theta(z, t), \quad(\theta$: temperature, $\kappa>0$: thermal conductivity) b) Heat equation: $\partial_{t} \theta(z, t)=-\partial_{z} q(z, t)=\kappa \partial_{z}^{2} \theta(z, t)$, for all $(z, t) \in(0,+\infty)^{2}$,
c) Initial condition: $\theta(z, t=0)=0$, for all $z>0$,
d) Controlled boundary: $q(z=0, t)=x(t), \quad$ for all $t>0$, with $X \in \mathcal{E}$.
e) Bounded solution $(\theta(z,$.$) in \mathcal{E}$ for all $z)$

$$
(\mathrm{b}-\mathrm{c}) \Rightarrow s \Theta(z, s)=\partial_{z}^{2} \Theta(z, s) \Longrightarrow \exists A, B \text { s.t. } \Theta(z, s)=A(s) \mathrm{e}^{-\sqrt{s} z}+B(s) \mathrm{e}^{+\sqrt{s} z}
$$

Causal one-half integrator $I^{1 / 2} \&$ specimen in classical physics
For all $s \in \mathbb{C}_{0}^{+}$and $x \in \mathcal{E}$ s.t. $s \mapsto X(s)$ is defined in \mathbb{C}_{a}^{+}with $a \leq 0$
Laplace transfer function H of $I^{1 / 2}$
$L\left[I^{1 / 2} I^{1 / 2} x\right](s)=L\left[I^{1} x\right](s) \Longrightarrow H(s)^{2} X(s)=\frac{1}{s} X(s)$
Solution analytic on $\mathbb{C}_{0}^{+}: H(s)=1 / \sqrt{s}$ (or its negative version $-1 / \sqrt{s}$)
Specimen in physics: 1D heat equation in a semi-infinite $\operatorname{rod}(z \geq 0)$
a) Heat flow: $q(z, t)=-\kappa \partial_{z} \theta(z, t), \quad(\theta$: temperature, $\kappa>0$: thermal conductivity) b) Heat equation: $\partial_{t} \theta(z, t)=-\partial_{z} q(z, t)=\kappa \partial_{z}^{2} \theta(z, t)$, for all $(z, t) \in(0,+\infty)^{2}$,
c) Initial condition: $\theta(z, t=0)=0$, for all $z>0$,
d) Controlled boundary: $q(z=0, t)=x(t), \quad$ for all $t>0$, with $X \in \mathcal{E}$.
e) Bounded solution $(\theta(z,$.$) in \mathcal{E}$ for all $z)$
$(\mathrm{b}-\mathrm{c}) \Rightarrow s \Theta(z, s)=\partial_{z}^{2} \Theta(z, s) \Longrightarrow \exists A, B$ s.t. $\Theta(z, s)=A(s) \mathrm{e}^{-\sqrt{s} z}+B(s) \mathrm{e}^{+\sqrt{s} z}$
(e and $s \in \mathbb{C}_{0}^{+}$, e.g. positive $\left.s\right) \Longrightarrow \Theta(z, s)=A(s) \mathrm{e}^{-\sqrt{s} z}$ (and $B \equiv 0$)

Causal one-half integrator $I^{1 / 2} \&$ specimen in classical physics
For all $s \in \mathbb{C}_{0}^{+}$and $x \in \mathcal{E}$ s.t. $s \mapsto X(s)$ is defined in \mathbb{C}_{a}^{+}with $a \leq 0$
Laplace transfer function H of $I^{1 / 2}$
$L\left[I^{1 / 2} I^{1 / 2} x\right](s)=L\left[I^{1} x\right](s) \Longrightarrow H(s)^{2} X(s)=\frac{1}{s} X(s)$
Solution analytic on $\mathbb{C}_{0}^{+}: H(s)=1 / \sqrt{s}$ (or its negative version $-1 / \sqrt{s}$)
Specimen in physics: 1D heat equation in a semi-infinite $\operatorname{rod}(z \geq 0)$
a) Heat flow: $q(z, t)=-\kappa \partial_{z} \theta(z, t), \quad(\theta$: temperature, $\kappa>0$: thermal conductivity) b) Heat equation: $\partial_{t} \theta(z, t)=-\partial_{z} q(z, t)=\kappa \partial_{z}^{2} \theta(z, t)$, for all $(z, t) \in(0,+\infty)^{2}$,
c) Initial condition: $\theta(z, t=0)=0$, for all $z>0$,
d) Controlled boundary: $q(z=0, t)=x(t), \quad$ for all $t>0$, with $x \in \mathcal{E}$.
e) Bounded solution $(\theta(z,$.$) in \mathcal{E}$ for all $z)$
$(\mathrm{b}-\mathrm{c}) \Rightarrow s \Theta(z, s)=\partial_{z}^{2} \Theta(z, s) \Longrightarrow \exists A, B$ s.t. $\Theta(z, s)=A(s) \mathrm{e}^{-\sqrt{s} z}+B(s) \mathrm{e}^{+\sqrt{s} z}$
(e and $s \in \mathbb{C}_{0}^{+}$, e.g. positive $\left.s\right) \Longrightarrow \Theta(z, s)=A(s) \mathrm{e}^{-\sqrt{s} z}$ (and $B \equiv 0$)
(a) $\Rightarrow q(z, t)=\kappa A(s) \sqrt{s} \mathrm{e}^{-\sqrt{s} z}$

Causal one-half integrator $I^{1 / 2} \&$ specimen in classical physics
For all $s \in \mathbb{C}_{0}^{+}$and $x \in \mathcal{E}$ s.t. $s \mapsto X(s)$ is defined in \mathbb{C}_{a}^{+}with $a \leq 0$
Laplace transfer function H of $I^{1 / 2}$
$L\left[I^{1 / 2} I^{1 / 2} x\right](s)=L\left[I^{1} x\right](s) \Longrightarrow H(s)^{2} X(s)=\frac{1}{s} X(s)$
Solution analytic on $\mathbb{C}_{0}^{+}: H(s)=1 / \sqrt{s}$ (or its negative version $-1 / \sqrt{s}$)
Specimen in physics: 1D heat equation in a semi-infinite $\operatorname{rod}(z \geq 0)$
a) Heat flow: $q(z, t)=-\kappa \partial_{z} \theta(z, t), \quad(\theta$: temperature, $\kappa>0$: thermal conductivity) b) Heat equation: $\partial_{t} \theta(z, t)=-\partial_{z} q(z, t)=\kappa \partial_{z}^{2} \theta(z, t)$, for all $(z, t) \in(0,+\infty)^{2}$,
c) Initial condition: $\theta(z, t=0)=0$, for all $z>0$,
d) Controlled boundary: $q(z=0, t)=x(t), \quad$ for all $t>0$, with $x \in \mathcal{E}$.
e) Bounded solution $(\theta(z,$.$) in \mathcal{E}$ for all $z)$
$(\mathrm{b}-\mathrm{c}) \Rightarrow s \Theta(z, s)=\partial_{z}^{2} \Theta(z, s) \Longrightarrow \exists A, B$ s.t. $\Theta(z, s)=A(s) \mathrm{e}^{-\sqrt{s} z}+B(s) \mathrm{e}^{+\sqrt{s} z}$
(e and $s \in \mathbb{C}_{0}^{+}$, e.g. positive $\left.s\right) \Longrightarrow \Theta(z, s)=A(s) \mathrm{e}^{-\sqrt{s} z}$ (and $B \equiv 0$)
(a) $\Rightarrow q(z, t)=\kappa A(s) \sqrt{s} \mathrm{e}^{-\sqrt{s} z}$, so that at $z=0,(\mathrm{~d}) \Rightarrow \kappa A(s) \sqrt{s}=X(s)$

Causal one-half integrator $I^{1 / 2} \&$ specimen in classical physics
For all $s \in \mathbb{C}_{0}^{+}$and $x \in \mathcal{E}$ s.t. $s \mapsto X(s)$ is defined in \mathbb{C}_{a}^{+}with $a \leq 0$
Laplace transfer function H of $I^{1 / 2}$
$L\left[I^{1 / 2} I^{1 / 2} x\right](s)=L\left[I^{1} x\right](s) \Longrightarrow H(s)^{2} X(s)=\frac{1}{s} X(s)$
Solution analytic on $\mathbb{C}_{0}^{+}: H(s)=1 / \sqrt{s}$ (or its negative version $-1 / \sqrt{s}$)
Specimen in physics: 1D heat equation in a semi-infinite $\operatorname{rod}(z \geq 0)$
a) Heat flow: $q(z, t)=-\kappa \partial_{z} \theta(z, t), \quad(\theta$: temperature, $\kappa>0$: thermal conductivity) b) Heat equation: $\partial_{t} \theta(z, t)=-\partial_{z} q(z, t)=\kappa \partial_{z}^{2} \theta(z, t)$, for all $(z, t) \in(0,+\infty)^{2}$,
c) Initial condition: $\theta(z, t=0)=0$, for all $z>0$,
d) Controlled boundary: $q(z=0, t)=x(t), \quad$ for all $t>0$, with $X \in \mathcal{E}$.
e) Bounded solution $(\theta(z,$.$) in \mathcal{E}$ for all $z)$
$(\mathrm{b}-\mathrm{c}) \Rightarrow s \Theta(z, s)=\partial_{z}^{2} \Theta(z, s) \Longrightarrow \exists A, B$ s.t. $\Theta(z, s)=A(s) \mathrm{e}^{-\sqrt{s} z}+B(s) \mathrm{e}^{+\sqrt{s} z}$
(e and $s \in \mathbb{C}_{0}^{+}$, e.g. positive $\left.s\right) \Longrightarrow \Theta(z, s)=A(s) \mathrm{e}^{-\sqrt{s} z}$ (and $B \equiv 0$)
(a) $\Rightarrow q(z, t)=\kappa A(s) \sqrt{s} \mathrm{e}^{-\sqrt{s} z}$, so that at $z=0,(\mathrm{~d}) \Rightarrow \kappa A(s) \sqrt{s}=X(s)$

Result: $\Theta(z, s)=\frac{e^{-\sqrt{s} z}}{\kappa \sqrt{s}} X(s)$ and $\Theta(z=0, s)=\frac{1}{\kappa \sqrt{s}} X(s)$
At $z=0$, the temperature $\theta(z=0, t)$ evolves as $\frac{1}{\kappa} I^{1 / 2}$ of the heat flow $x(t)$

Outline

(1) Introduction

- Linear Time Invariant causal operators and Laplace transform
- Causal one-half integrator $I^{1 / 2}$
- Zoology of fractional and irrational) operators(/systems)
- Integral representations: basic ideas on $I^{1 / 2}$
- Questions about generalizations
(2) Linear fractional/irrational systems: integral representations and simulation (coll.: D. Matignon \& R. Mignot)
(3) Weakly nonlinear irrational systems and Volterra series (coll.: M. Hasler \& V. Smet)

4. Conclusion

Fractional/Irrational syst.	Transfer fct. (analytic in $\Re e(s)>0)$
Integrator $I^{1 / 2}$	$H_{1}(s)=1 / \sqrt{s}\left(\rightarrow H(s)^{2}=1 / s\right)$
Derivative $\partial_{t}^{1 / 2}$	$H_{2}(s)=\sqrt{s}\left(\rightarrow H(s)^{2}=s\right)$
Frac. Diff. Eq. $(0<\alpha<1)$ $\sum_{p=0}^{P} \partial_{t}^{p \alpha} y=\sum_{q=0}^{Q} \partial_{t}^{q \alpha} x$	$H_{3}(s)=\sum_{q=0}^{Q} s^{q \alpha} / \sum_{p=0}^{P} s^{p \alpha}$

Zoology of $\xrightarrow{x(t)}$ Fractional(/Irrational) Syst. $\xrightarrow{y(t)}$

Fractional/Irrational syst.	Transfer fct. (analytic in $\Re e(s)>0)$
Integrator $I^{1 / 2}$	$H_{1}(s)=1 / \sqrt{s}\left(\rightarrow H(s)^{2}=1 / s\right)$
Derivative $\partial_{t}^{1 / 2}$	$H_{2}(s)=\sqrt{s}\left(\rightarrow H(s)^{2}=s\right)$
Frac. Diff. Eq. $(0<\alpha<1)$ $\sum_{p=0}^{P} \partial_{t}^{p \alpha} y=\sum_{q=0}^{Q} \partial_{t}^{q \alpha} x$	$H_{3}(s)=\sum_{q=0}^{Q} s^{q \alpha} / \sum_{p=0}^{P} s^{p \alpha}$
	Bessel: $y(t)=\left[J_{0} \star x\right](t)$
Fract. PDE $:\left(\partial_{z}+\partial_{t}^{1 / 2}\right) w=0$ $y(t)=w(z, t), \partial_{z} w(0, t)=-x(t)$	$H_{4}(s)=1 / \sqrt{s^{2}+1}$
$H_{5}(s)=\mathrm{e}^{-\sqrt{s z}} / \sqrt{s}$$\quad$$H_{6}(s)=2 \Gamma(s) \mathrm{e}^{s-\Gamma(s)} /[s+\Gamma(s)]$ with $\Gamma(s)=\sqrt{s^{2}+\varepsilon s^{3 / 2}+1}$	

Zoology of $\xrightarrow{x(t)}$ Fractional(/Irrational) Syst. $\xrightarrow{y(t)}$

Fractional/Irrational syst.	Transfer fct. (analytic in $\Re e(s)>0$)
Integrator ${ }^{1 / 2}$	$H_{1}(s)=1 / \sqrt{s}\left(\rightarrow H(s)^{2}=1 / s\right)$
Derivative $\partial_{t}^{1 / 2}$	$H_{2}(s)=\sqrt{s}\left(\rightarrow H(s)^{2}=s\right)$
Frac. Diff. Eq. $(0<\alpha<1)$ $\sum_{p=0}^{P} \partial_{t}^{p \alpha} y=\sum_{q=0}^{Q} \partial_{t}^{q \alpha} x$	$H_{3}(s)=\sum_{q=0}^{Q} s^{q \alpha} / \sum_{p=0}^{P} s^{p \alpha}$
Bessel: $y(t)=\left[J_{0} \star x\right](t) \quad H_{4}(s)=1 / \sqrt{s^{2}+1}$	
Fract. PDE : $\left(\partial_{z}+\partial_{t}^{1 / 2}\right) w=0$ $y(t)=w(z, t), \quad \partial_{z} w(0, t)=-x(t)$	0 $(t)$$H_{5}(s)=\mathrm{e}^{-\sqrt{s} z} / \sqrt{s}$
Flared lossy acoustic pipe	$\begin{aligned} & H_{6}(s)=2 \Gamma(s) \mathrm{e}^{s-\Gamma(s)} /[s+\Gamma(s)] \\ & \text { with } \Gamma(s)=\sqrt{s^{2}+\varepsilon s^{3 / 2}+1} \end{aligned}$

\rightarrow long memory: $\forall t>0, h_{1}(t)=1 / \sqrt{\pi t}, h_{5}(t) \underset{\infty}{\sim} \sqrt{2 /(\pi t)} \cos (t-\pi / 4)$

Zoology of $\xrightarrow{x(t)}$ Fractional(/Irrational) Syst. $\xrightarrow{y(t)}$

Fractional/Irrational syst.	Transfer fct. (analytic in $\Re e(s)>0)$
Integrator $I^{1 / 2}$	$H_{1}(s)=1 / \sqrt{s}\left(\rightarrow H(s)^{2}=1 / s\right)$
Derivative $\partial_{t}^{1 / 2}$	$H_{2}(s)=\sqrt{s}\left(\rightarrow H(s)^{2}=s\right)$
Frac. Diff. Eq. $(0<\alpha<1)$ $\sum_{p=0}^{P} \partial_{t}^{p \alpha} y=\sum_{q=0}^{Q} \partial_{t}^{q \alpha} x$	$H_{3}(s)=\sum_{q=0}^{Q} s^{q \alpha} / \sum_{p=0}^{P} s^{p \alpha}$
	Bessel: $y(t)=\left[J_{0} \star x\right](t)$ $H_{4}(s)=1 / \sqrt{s^{2}+1}$ Fract. PDE $:\left(\partial_{z}+\partial_{t}^{1 / 2}\right) w=0$ $y(t)=w(z, t), \partial_{z} w(0, t)=-x(t)$ $H_{5}(s)=\mathrm{e}^{-\sqrt{s z}} / \sqrt{s}$ $H_{6}(s)=2 \Gamma(s) \mathrm{e}^{s-\Gamma(s)} /[s+\Gamma(s)]$ Flared lossy acoustic pipe $\Gamma(s)=\sqrt{s^{2}+\varepsilon s^{3 / 2}+1}$

\rightarrow long memory: $\forall t>0, h_{1}(t)=1 / \sqrt{\pi t}, h_{5}(t) \underset{\infty}{\sim} \sqrt{2 /(\pi t)} \cos (t-\pi / 4)$
\rightarrow singularities of $\boldsymbol{H}_{k}(s)$: poles and cuts in $\Re e(s)<0$

Outline

(1) Introduction

- Linear Time Invariant causal operators and Laplace transform
- Causal one-half integrator $I^{1 / 2}$
- Zoology of fractional and irrational) operators(/systems)
- Integral representations: basic ideas on $\boldsymbol{I}^{1 / 2}$
- Questions about generalizations
(2) Linear fractional/irrational systems: integral representations and simulation (coll.: D. Matignon \& R. Mignot)
(3) Weakly nonlinear irrational systems and Volterra series (coll.: M. Hasler \& V. Smet)
(4) Conclusion
\square

Case of the fractional integrator $I^{1 / 2} \quad\left(\mathbf{H}_{1}(\mathbf{s})=\mathbf{1} / \sqrt{\mathbf{s}}\right)$

- Consider $s=\rho \mathrm{e}^{i \theta} \in \mathbb{C}$ with $\rho>0$ and $\left.\left.\theta \in\right]-\pi, \pi\right]$

Case of the fractional integrator $I^{1 / 2} \quad\left(\mathbf{H}_{1}(\mathbf{s})=\mathbf{1} / \sqrt{\mathbf{s}}\right)$

- Consider $s=\rho \mathrm{e}^{i \theta} \in \mathbb{C}$ with $\rho>0$ and $\left.\left.\theta \in\right]-\pi, \pi\right]$
- $\sqrt{s}=\sqrt{\rho} \mathrm{e}^{i \theta / 2}$ generalizes the square-root which is positive on $s \in \mathbb{R}^{+}$

Case of the fractional integrator $I^{1 / 2} \quad\left(\mathbf{H}_{1}(\mathbf{s})=\mathbf{1} / \sqrt{\mathbf{s}}\right)$

- Consider $s=\rho \mathrm{e}^{i \theta} \in \mathbb{C}$ with $\rho>0$ and $\left.\left.\theta \in\right]-\pi, \pi\right]$
- $\sqrt{s}=\sqrt{\rho} \mathrm{e}^{i \theta / 2}$ generalizes the square-root which is positive on $s \in \mathbb{R}^{+}$
- For these choices, $\left.\left.\arg \sqrt{s}=\frac{\theta}{2} \in\right]-\frac{\pi}{2}, \frac{\pi}{2}\right]$ and there is a jump of $H_{1}(s)=1 / \sqrt{s}$ when s crosses \mathbb{R}^{-}

- Consider $s=\rho \mathrm{e}^{i \theta} \in \mathbb{C}$ with $\rho>0$ and $\left.\left.\theta \in\right]-\pi, \pi\right]$
- $\sqrt{s}=\sqrt{\rho} \mathrm{e}^{i \theta / 2}$ generalizes the square-root which is positive on $s \in \mathbb{R}^{+}$
- For these choices, $\left.\left.\arg \sqrt{s}=\frac{\theta}{2} \in\right]-\frac{\pi}{2}, \frac{\pi}{2}\right]$ and there is a jump of $H_{1}(s)=1 / \sqrt{s}$ when s crosses \mathbb{R}^{-}

$$
\begin{aligned}
& \mathbb{R}^{-} \text {is called a cut of } H_{1}(s) \text { and the jump at }-\xi \in \mathbb{R}^{-} \text {is } \\
& \qquad H_{1}\left(-\xi+i 0^{-}\right)-H_{1}\left(-\xi+i 0^{+}\right)=\frac{i}{\sqrt{\xi}}-\frac{-i}{\sqrt{\xi}}=\frac{2 i}{\sqrt{\xi}}
\end{aligned}
$$

- Consider $s=\rho \mathrm{e}^{i \theta} \in \mathbb{C}$ with $\rho>0$ and $\left.\left.\theta \in\right]-\pi, \pi\right]$
- $\sqrt{s}=\sqrt{\rho \mathrm{e}}{ }^{\mathrm{i} \theta / 2}$ generalizes the square-root which is positive on $s \in \mathbb{R}^{+}$
- For these choices, $\left.\left.\arg \sqrt{s}=\frac{\theta}{2} \in\right]-\frac{\pi}{2}, \frac{\pi}{2}\right]$ and there is a jump of $H_{1}(s)=1 / \sqrt{s}$ when s crosses \mathbb{R}^{-}
\mathbb{R}^{-}is called a cut of $H_{1}(s)$ and the jump at $-\xi \in \mathbb{R}^{-}$is

$$
H_{1}\left(-\xi+i 0^{-}\right)-H_{1}\left(-\xi+i 0^{+}\right)=\frac{i}{\sqrt{\xi}}-\frac{-i}{\sqrt{\xi}}=\frac{2 i}{\sqrt{\xi}}
$$

- Why choosing the cut \mathbb{R}^{-}(that is $\left.\left.\theta \in\right]-\pi, \pi\right]$) ?
- Consider $s=\rho \mathrm{e}^{i \theta} \in \mathbb{C}$ with $\rho>0$ and $\left.\left.\theta \in\right]-\pi, \pi\right]$
- $\sqrt{s}=\sqrt{\rho} \mathrm{e}^{i \theta / 2}$ generalizes the square-root which is positive on $s \in \mathbb{R}^{+}$
- For these choices, $\left.\left.\arg \sqrt{s}=\frac{\theta}{2} \in\right]-\frac{\pi}{2}, \frac{\pi}{2}\right]$ and there is a jump of $H_{1}(s)=1 / \sqrt{s}$ when s crosses \mathbb{R}^{-}
\mathbb{R}^{-}is called a cut of $H_{1}(s)$ and the jump at $-\xi \in \mathbb{R}^{-}$is

$$
H_{1}\left(-\xi+i 0^{-}\right)-H_{1}\left(-\xi+i 0^{+}\right)=\frac{i}{\sqrt{\xi}}-\frac{-i}{\sqrt{\xi}}=\frac{2 i}{\sqrt{\xi}}
$$

- Why choosing the cut \mathbb{R}^{-}(that is $\left.\left.\theta \in\right]-\pi, \pi\right]$) ?
(i) Causal stable system $\Rightarrow H$ analytic in $\Re e(s)>0$
- Consider $s=\rho \mathrm{e}^{i \theta} \in \mathbb{C}$ with $\rho>0$ and $\left.\left.\theta \in\right]-\pi, \pi\right]$
- $\sqrt{s}=\sqrt{\rho} \mathrm{e}^{i \theta / 2}$ generalizes the square-root which is positive on $s \in \mathbb{R}^{+}$
- For these choices, $\left.\left.\arg \sqrt{s}=\frac{\theta}{2} \in\right]-\frac{\pi}{2}, \frac{\pi}{2}\right]$ and there is a jump of $H_{1}(s)=1 / \sqrt{s}$ when s crosses \mathbb{R}^{-}
\mathbb{R}^{-}is called a cut of $H_{1}(s)$ and the jump at $-\xi \in \mathbb{R}^{-}$is

$$
H_{1}\left(-\xi+i 0^{-}\right)-H_{1}\left(-\xi+i 0^{+}\right)=\frac{i}{\sqrt{\xi}}-\frac{-i}{\sqrt{\xi}}=\frac{2 i}{\sqrt{\xi}}
$$

- Why choosing the cut \mathbb{R}^{-}(that is $\left.\left.\theta \in\right]-\pi, \pi\right]$) ?
(i) Causal stable system $\Rightarrow H$ analytic in $\Re e(s)>0$
(ii) It is "natural" to preserve the Hermitian symmetry since a real system $\Rightarrow H_{1}(\bar{s})=\overline{H_{1}(s)}$ in $\Re e(s)>0$

Basic idea: Laplace inverse transform and adapted Bromwich contour

Let $\mathrm{e}_{+}^{t}=\mathrm{e}^{t} \mathbf{1}_{\mathbb{R}^{+}}(t)$ be the causal exponential.

- Causal convolution kernel: $h_{1}(t)=\lim _{\epsilon \rightarrow 0^{+}} \int_{\epsilon-i \infty}^{\epsilon+i \infty} H_{1}(s) \mathrm{e}_{+}^{s t} \mathrm{~d} s$

Basic idea: Laplace inverse transform and adapted Bromwich contour

Let $\mathrm{e}_{+}^{t}=\mathrm{e}^{t} \mathbf{1}_{\mathbb{R}^{+}}(t)$ be the causal exponential.

- Causal convolution kernel: $h_{1}(t)=\lim _{\epsilon \rightarrow 0^{+}} \int_{\epsilon-i \infty}^{\epsilon+i \infty} H_{1}(s) \mathrm{e}_{+}^{s t} \mathrm{~d} s$
- Residue theorem: $\frac{1}{2 i \pi} \oint_{\mathcal{C}} H_{1}(s) \mathrm{e}_{+}^{s t} \mathrm{~d} s=\sum_{\gamma \in \mathcal{P}} \operatorname{Res}_{H_{1}, \gamma} \mathrm{e}_{+}^{\gamma t}$

Basic idea: Laplace inverse transform and adapted Bromwich contour

Let $\mathrm{e}_{+}^{t}=\mathrm{e}^{t} \mathbf{1}_{\mathbb{R}^{+}+(t)}$ be the causal exponential.

- Causal convolution kernel: $h_{1}(t)=\lim _{\epsilon \rightarrow 0^{+}} \int_{\epsilon-i \infty}^{\epsilon+i \infty} H_{1}(s) \mathrm{e}_{+}^{s t} \mathrm{~d} s$
- Residue theorem: $\frac{1}{2 i \pi} \oint_{\mathcal{C}} H_{1}(s) \mathrm{e}_{+}^{s t} \mathrm{~d} s=\sum_{\gamma \in \mathcal{P}} \operatorname{Res}_{H_{1}, \gamma} \mathrm{e}_{+}^{\gamma t}$
- Bromwich contour $\mathcal{C}_{R, a, b}$ with $(R, a, b) \rightarrow\left(+\infty, 0^{+}, 0^{+}\right)$

Basic idea: Laplace inverse transform and adapted Bromwich contour

Let $\mathrm{e}_{+}^{t}=\mathrm{e}^{t} \mathbf{1}_{\mathbb{R}^{+}}+(t)$ be the causal exponential.

- Causal convolution kernel: $h_{1}(t)=\lim _{\epsilon \rightarrow 0^{+}} \int_{\epsilon-i \infty}^{\epsilon+i \infty} H_{1}(s) \mathrm{e}_{+}^{s t} \mathrm{~d} s$
- Residue theorem: $\frac{1}{2 i \pi} \oint_{\mathcal{C}} H_{1}(s) \mathrm{e}_{+}^{s t} \mathrm{~d} s=\sum_{\gamma \in \mathcal{P}} \operatorname{Res}_{H_{1}, \gamma} \mathrm{e}_{+}^{\gamma t}$
- Bromwich contour $\mathcal{C}_{R, a, b}$ with $(R, a, b) \rightarrow\left(+\infty, 0^{+}, 0^{+}\right)$

- $h(t)+0-\int_{0}^{+\infty} \mu(-\xi) \mathrm{e}_{+}^{-\xi t} \mathrm{~d} \xi+0=0$ with
$\mu(-\xi)=\frac{H_{1}\left(-\xi+i 0^{-}\right)-H_{1}\left(-\xi+i 0^{+}\right)}{2 i \pi}=\frac{1}{\pi \sqrt{\xi}}$

Basic idea: Integral representations

- Kernel: $h_{1}(t)=\int_{0}^{+\infty} \mu(-\xi) \mathrm{e}_{+}^{-\xi t} \mathrm{~d} \xi$ with $\mu(-\xi)=\frac{1}{\pi \sqrt{\xi}}$

Basic idea: Integral representations

- Kernel: $h_{1}(t)=\int_{0}^{+\infty} \mu(-\xi) \mathrm{e}_{+}^{-\xi t} \mathrm{~d} \xi$ with $\mu(-\xi)=\frac{1}{\pi \sqrt{\xi}}$
- Input/Output system: a continuous aggregation of convolutions with damped exponential

$$
y(t)=\left[h_{1} \star x\right](t)=\int_{0}^{\infty} \mu(-\xi) \underbrace{\left[e_{+}^{-\xi t} \star_{t} x(t)\right]}_{=\phi(-\xi, t)}] \xi
$$

Basic idea: Integral representations

- Kernel: $h_{1}(t)=\int_{0}^{+\infty} \mu(-\xi) \mathrm{e}_{+}^{-\xi t} \mathrm{~d} \xi$ with $\mu(-\xi)=\frac{1}{\pi \sqrt{\xi}}$
- Input/Output system: a continuous aggregation of convolutions with damped exponential

$$
y(t)=\left[h_{1} \star x\right](t)=\int_{0}^{\infty} \mu(-\xi) \underbrace{\left[e_{+}^{-\xi t} \star_{t} x(t)\right]}_{=\phi(-\xi, t)}]
$$

- Time-realization:

$$
\left\{\begin{array}{l}
\partial_{t} \phi(-\xi, t)=-\xi \phi(-\xi, t)+x(t), \quad \phi(-\xi, 0)=0, \quad \forall \xi>0 \\
y(t)=\int_{0}^{+\infty} \mu(-\xi) \phi(-\xi, t) \mathrm{d} \xi
\end{array}\right.
$$

Basic idea: Integral representations

- Kernel: $h_{1}(t)=\int_{0}^{+\infty} \mu(-\xi) \mathrm{e}_{+}^{-\xi t} \mathrm{~d} \xi$ with $\mu(-\xi)=\frac{1}{\pi \sqrt{\xi}}$
- Input/Output system: a continuous aggregation of convolutions with damped exponential

$$
y(t)=\left[h_{1} \star x\right](t)=\int_{0}^{\infty} \mu(-\xi) \underbrace{\left[e_{+}^{-\xi t} \star_{t} x(t)\right.}_{=\phi(-\xi, t)}] \mathrm{d} \xi
$$

- Time-realization:

$$
\left\{\begin{array}{l}
\partial_{t} \phi(-\xi, t)=-\xi \phi(-\xi, t)+x(t), \quad \phi(-\xi, 0)=0, \quad \forall \xi>0 \\
y(t)=\int_{0}^{+\infty} \mu(-\xi) \phi(-\xi, t) \mathrm{d} \xi
\end{array}\right.
$$

- Transfer function: aggregation of first order systems

$$
\begin{aligned}
& F(-\xi, s)=\frac{\Phi(-\xi, s)}{X(s)}=\frac{1}{s+\xi}, \quad \forall \xi>0 \\
& H_{1}(s)=\frac{Y(s)}{X(s)}=\frac{\int_{0}^{+\infty} \mu(-\xi) \Phi(-\xi, s) \mathrm{d} \xi}{E(s)}=\int_{0}^{+\infty} \mu(-\xi) F(-\xi, s) \mathrm{d} \xi \\
& \quad=\int_{0}^{+\infty} \frac{\mu(-\xi)}{s+\xi} \mathrm{d} \xi\left(=\frac{1}{\sqrt{s}}\right), \quad \text { for } \Re e(s)>0
\end{aligned}
$$

Outline

(1) Introduction

- Linear Time Invariant causal operators and Laplace transform
- Causal one-half integrator $I^{1 / 2}$
- Zoology of fractional and irrational) operators(/systems)
- Integral representations: basic ideas on $I^{1 / 2}$
- Questions about generalizations
(2) Linear fractional/irrational systems: integral representations and simulation (coll.: D. Matignon \& R. Mignot)
(3) Weakly nonlinear irrational systems and Volterra series (coll.: M. Hasler \& V. Smet)

4. Conclusion
\square

Questions about generalizations

Summary:

- Determine the singularities (poles and cuts) of $\mathrm{H}(\mathrm{s})$.
- Compute their associated residues and jumps
- Derive an integral representation from an adapted Bromwich contour and the residue theorem
- long memory (damping slower than any exponential) \leftrightarrow infinite continuous aggregation of exponentials

Questions:

- Are such integral representations always well-posed ?
- How to perform accurate approximations and simulations in the time domain ?

Outline

(1) Introduction

(2) Linear fractional/irrational systems: integral representations and simulation (coll.: D. Matignon \& R. Mignot)

- Systems under consideration
- Approximation for simulation
- Examples of applications
(3) Weakly nonlinear irrational systems and Volterra series (coll.: M. Hasler \& V. Smet)
(4) Conclusion

Outline

(1) Introduction

(2) Linear fractional/irrational systems: integral representations and simulation (coll.: D. Matignon \& R. Mignot)

- Systems under consideration
- Approximation for simulation
- Examples of applications
(3) Weakly nonlinear irrational systems and Volterra series (coll.: M. Hasler \& V. Smet)
(4) Conclusion
\qquad

Definitions

- Many transfer functions can be decomposed as follows, in some right-half complex plane $\mathbb{C}_{a}^{+}:=\{\Re e(s)>a\}$,

$$
H(s)=\sum_{k=1}^{K} \sum_{l=1}^{L_{k}} \frac{r_{k, l}}{\left(s-s_{k}\right)^{\prime}}+\int_{\mathcal{C}} \frac{M(\mathrm{~d} \gamma)}{s-\gamma},
$$

Definitions

- Many transfer functions can be decomposed as follows, in some right-half complex plane $\mathbb{C}_{a}^{+}:=\{\Re e(s)>a\}$,

$$
H(s)=\sum_{k=1}^{K} \sum_{l=1}^{L_{k}} \frac{r_{k, l}}{\left(s-s_{k}\right)^{\prime}}+\int_{\mathcal{C}} \frac{M(\mathrm{~d} \gamma)}{s-\gamma}
$$

- which translates in the time domain into the following decomposition of the impulse response:

$$
h(t)=\sum_{k=1}^{K} \sum_{l=1}^{L_{k}} r_{k, l} \frac{1}{l!} t^{I-1} e^{s_{k} t}+\int_{\mathcal{C}} e^{\gamma t} M(\mathrm{~d} \gamma), \quad \text { for } t>0
$$

Definitions

- Many transfer functions can be decomposed as follows, in some right-half complex plane $\mathbb{C}_{a}^{+}:=\{\Re e(s)>a\}$,

$$
H(s)=\sum_{k=1}^{K} \sum_{l=1}^{L_{k}} \frac{r_{k, l}}{\left(s-s_{k}\right)^{\prime}}+\int_{\mathcal{C}} \frac{M(\mathrm{~d} \gamma)}{s-\gamma}
$$

- which translates in the time domain into the following decomposition of the impulse response:

$$
h(t)=\sum_{k=1}^{K} \sum_{l=1}^{L_{k}} r_{k, l} \frac{1}{l!} t^{l-1} e^{s_{k} t}+\int_{\mathcal{C}} e^{\gamma t} M(\mathrm{~d} \gamma), \quad \text { for } t>0
$$

- The integral part can be realized by a dynamical system:

$$
\begin{aligned}
\partial_{t} \phi(\gamma, t) & =\gamma \phi(\gamma, t)+u(t), \quad \phi(\gamma, 0)=0, \quad \forall \gamma \in \mathcal{C} \\
y(t) & =\int_{\mathcal{C}} \phi(\gamma, t) M(\mathrm{~d} \gamma)
\end{aligned}
$$

Technical conditions

- A well-posedness condition must be fulfilled:

$$
\int_{\mathcal{C}}\left|\frac{M(\mathrm{~d} \gamma)}{a+1-\gamma}\right|<\infty
$$

- When measure M has a density μ, and the curve \mathcal{C} admits a \mathcal{C}^{1}-regular parametrization $\xi \mapsto \gamma(\xi)$ which is non-degenerate $\left(\gamma^{\prime}(\xi) \neq 0\right)$, we have:

$$
\mu(\gamma)=\lim _{\epsilon \rightarrow 0^{+}} \frac{H\left(\gamma+i \gamma^{\prime} \epsilon\right)-H\left(\gamma-i \gamma^{\prime} \epsilon\right)}{2 i \pi}
$$

Outline

(1) Introduction

(2) Linear fractional/irrational systems: integral representations and simulation (coll.: D. Matignon \& R. Mignot)

- Systems under consideration
- Approximation for simulation
- Examples of applications
(3) Weakly nonlinear irrational systems and Volterra series (coll.: M. Hasler \& V. Smet)
(4) Conclusion

Method M1: approximation by interpolation of the state

- Approximation of the state $\phi(\gamma, t)$, for $\left\{\gamma_{p}\right\}_{0 \leq p \leq P+1} \subset \mathcal{C}$ $\widetilde{\phi}(\gamma, t)=\sum_{p=1}^{P} \phi_{p}(t) \Lambda_{p}(\gamma)$, where $\phi_{p}(t)=\phi\left(\gamma_{p}, t\right)$.
- $\left\{\Lambda_{\rho}\right\}_{1 \leq p \leq P}$ are cont. piecewise lin. interpolating functions.

Method M1: approximation by interpolation of the state

- Approximation of the state $\phi(\gamma, t)$, for $\left\{\gamma_{p}\right\}_{0 \leq p \leq P+1} \subset \mathcal{C}$

$$
\widetilde{\phi}(\gamma, t)=\sum_{p=1}^{P} \phi_{p}(t) \Lambda_{p}(\gamma), \text { where } \phi_{p}(t)=\phi\left(\gamma_{p}, t\right) .
$$

- $\left\{\Lambda_{p}\right\}_{1 \leq p \leq p}$ are cont. piecewise lin. interpolating functions.
- The corresponding realization reads:

$$
\begin{aligned}
\partial_{t} \phi_{p}(t) & =\gamma_{p} \phi_{p}(t)+u(t), 1 \leq p \leq P, \\
\widetilde{y}(t) & =\Re \mathrm{e} \sum_{\rho=1}^{P} \mu_{\rho} \phi_{p}(t) \quad \text { with } \mu_{\rho}=\int_{\left[\gamma_{p-1}, \gamma_{p+1}\right]_{C}} \mu(\gamma) \Lambda_{p}(\gamma) \mathrm{d} \gamma .
\end{aligned}
$$

- The corresponding transfer function has the structure:

$$
\widetilde{H}_{\mu}(s)=\frac{1}{2} \sum_{p=1}^{P}\left[\frac{\mu_{p}}{s-\gamma_{p}}+\frac{\overline{\mu_{p}}}{s-\overline{\gamma_{p}}}\right]
$$

- Convergence results can be proved, as $\operatorname{dim} . P \longrightarrow \infty$.

Method M2: optimization Step 1: re-interpreting Sobolev spaces

- Optimization in the frequency domain, stemming from

$$
\widehat{h}(f)=\lim _{\epsilon \rightarrow 0^{+}} H(\epsilon+2 i \pi f)
$$

Method M2: optimization

Step 1: re-interpreting Sobolev spaces

- Optimization in the frequency domain, stemming from

$$
\widehat{h}(f)=\lim _{\epsilon \rightarrow 0^{+}} H(\epsilon+2 i \pi f)
$$

- Norms in L^{2}, or Sobolev spaces H^{5}, are defined as:

$$
\|h\|_{H^{s}\left(\mathbb{R}_{t}\right)}^{2}=\int_{\mathbb{R}_{f}} w_{s}(f)|H(2 i \pi f)|^{2} \mathrm{~d} f, \text { with } w_{s}(f)=\left(1+4 \pi^{2} f^{2}\right)^{s}
$$

where $s \in \mathbb{R}$ tunes the balance between low and high frequencies.

Method M2: optimization

Step 1: re-interpreting Sobolev spaces

- Optimization in the frequency domain, stemming from

$$
\widehat{h}(f)=\lim _{\epsilon \rightarrow 0^{+}} H(\epsilon+2 i \pi f)
$$

- Norms in L^{2}, or Sobolev spaces H^{s}, are defined as:

$$
\|h\|_{H^{s}\left(\mathbb{R}_{t}\right)}^{2}=\int_{\mathbb{R}_{f}} w_{s}(f)|H(2 i \pi f)|^{2} \mathrm{~d} f, \text { with } w_{s}(f)=\left(1+4 \pi^{2} f^{2}\right)^{s}
$$

where $s \in \mathbb{R}$ tunes the balance between low and high frequencies.

- For specific applications, more general frequency dependent weights can be used: bounded frequency range, logarithmic scale, relative error measurement, bounded dynamics ...

Method M2: optimization
Step 2: building up specific weights for audio applications

For audio applications, $w(f)$ can be adapted and modified according to the following requirements:
(1) a bounded frequency range $f \in\left[f^{-}, f^{+}\right]: w(f) 1_{\left[f^{-}, f^{+}\right]}(f)$;
(2) a frequency log-scale: $w(f) / f$;
(3) a relative error measurement: $w(f) /|H(2 i \pi f)|^{2}$
(9) a relative error on a bounded dynamics: $w(f) /\left(\operatorname{Sat}_{H, \Theta}(f)\right)^{2}$ where the saturation function $\operatorname{Sat}_{H, \Theta}$ with threshold Θ is defined by

$$
\operatorname{Sat}_{H, \Theta}(f)= \begin{cases}|H(2 i \pi f)| & \text { if }|H(2 i \pi f)| \geq \Theta_{H} \\ \Theta_{H} & \text { otherwise }\end{cases}
$$

Note: normalization of the samples is desirable in most audio applications, before the sequence is sent to DAC audio converters.

Method M2: optimization

Step 3: Regularized criterion with equality constraints

- The regularized criterion reads:

$$
\mathcal{C}_{R}(\mu)=\int_{\mathbb{R}^{+}}\left|\widetilde{H_{\mu}}(2 i \pi f)-H(2 i \pi f)\right|^{2} w(f) \mathrm{d} f+\sum_{p=1}^{P} \epsilon_{\rho}\left|\mu_{\rho}\right|^{2},
$$

- Equality constraints for $\widetilde{H}_{\mu}^{\left(d_{j}\right)}$ at prescribed frequency points $\eta_{j}, 1 \leq j \leq J$ are taken into account thanks to a Lagrangian $\mathcal{C}_{R, L}$ by adding to \mathcal{C}_{R} :

$$
\Re \mathrm{e}\left(\ell^{*}\left[\begin{array}{c}
H^{\left(d_{1}\right)}\left(2 i \pi \eta_{1}\right)-\widetilde{H}_{\mu}^{\left(d_{1}\right)}\left(2 i \pi \eta_{1}\right) \\
\vdots \\
H^{\left(d_{j}\right)}\left(2 i \pi \eta_{J}\right)-\widetilde{H}_{\mu}^{\left(d_{j}\right)}(2 i \pi \eta \jmath)
\end{array}\right]\right),
$$

Method M2: optimization

Step 4: Discrete criterion

- Discrete version of the criterion for frequencies increasing from $f_{1}=f_{-}$to $f_{N+1}=f_{+}$is, with $s_{n}=2 i \pi f_{n}$:

$$
\mathcal{C}(\mu) \approx \sum_{n=1}^{N} w_{n}\left|\widetilde{H_{\mu}}\left(s_{n}\right)-H\left(s_{n}\right)\right|^{2} \text { with } w_{n}=\int_{f_{n}}^{f_{n+1}} w(f) \mathrm{d} f
$$

- In matrix notations, this rewrites

$$
\mathcal{C}_{R, L}(\boldsymbol{\mu})=(\boldsymbol{M} \boldsymbol{\mu}-\boldsymbol{h})^{*} \boldsymbol{W}(\boldsymbol{M} \boldsymbol{\mu}-\boldsymbol{h})+\boldsymbol{\mu}^{t} \boldsymbol{E} \boldsymbol{\mu}+\Re \mathrm{e}\left(\ell^{*}[\boldsymbol{k}-\boldsymbol{N} \boldsymbol{\mu}]\right)
$$

with $\left\{\begin{array}{lll}\boldsymbol{M}: & \text { model } & N \times\left(P+P_{2}\right) \\ \boldsymbol{N}: & \text { constraint model } & J \times\left(P+P_{2}\right) \\ \boldsymbol{E}: & \text { regularization } & \left(P+P_{2}\right) \times\left(P+P_{2}\right) \\ \boldsymbol{W}: & \text { weights } & N \times N \\ \boldsymbol{h}: & \text { data } & N \times 1 \\ \boldsymbol{k}: & \text { constaints } & J \times 1\end{array}\right.$

Method M2: optimization

Step 5: Closed-form solution

- If $J=0$ (no constraint), the solution reduces to

$$
\boldsymbol{\mu}=\mathcal{M}^{-1} \mathcal{H}
$$

where $\mathcal{M}=\Re \mathrm{e}\left(\boldsymbol{M}^{*} \boldsymbol{W} \boldsymbol{M}+\boldsymbol{E}\right)$ and $\mathcal{H}=\Re \mathrm{e}\left(\boldsymbol{M}^{*} \boldsymbol{W} \boldsymbol{h}\right)$.

- For $J \geq 1$, the solution reads:

$$
\boldsymbol{\mu}=\mathcal{M}^{-1}\left[\mathcal{H}+\underline{\boldsymbol{N}}^{t} \mathcal{N}^{-1}\left(\underline{\boldsymbol{k}}-\underline{\boldsymbol{N}} \mathcal{M}^{-1} \mathcal{H}\right)\right]
$$

where $\mathcal{N}=\underline{\boldsymbol{N}} \mathcal{M}^{-1} \underline{\boldsymbol{N}}^{t}$ is invertible for non-redundant constraints, and
$\left\{\begin{array}{lll}\boldsymbol{N}^{t} & \text { denotes } & {\left[\Re \mathrm{e}\left(\boldsymbol{N}^{t}\right), \Im \mathrm{m}\left(\boldsymbol{N}^{t}\right)\right]} \\ \underline{\boldsymbol{k}}^{t} & \text { denotes } & {\left[\Re \mathrm{e}\left(\boldsymbol{k}^{t}\right), \Im \mathrm{m}\left(\boldsymbol{k}^{t}\right)\right]}\end{array}\right.$.

Outline

（1）Introduction

（2）Linear fractional／irrational systems：integral representations and simulation（coll．：D．Matignon \＆R．Mignot）
－Systems under consideration
－Approximation for simulation
－Examples of applications
（3）Weakly nonlinear irrational systems and Volterra series（coll．：M．Hasler \＆ V．Smet）
（4）Conclusion

Academic example: $H_{1}(s)=1 / \sqrt{s}, \mu_{1}(-\xi)=1 /(\pi \sqrt{\xi})$

Top: Interpolation, $P=16$. Bottom: Optimization, $P=10$.

Fractional auto-regressive system: $H_{3}(s)=1 /\left(s^{2}+0.1 s^{3 / 2}+s^{1 / 2}+0.1\right)$ (poles and \mathbb{R}^{-})

Left: Interpolation, $P=18$. Right: Optimization, $P=18$.
(\ldots) : poles only. (--): cut only. (-): poles and cut.

Bessel kernel: 2 cuts $\pm i+\mathbb{R}^{-}$

$$
H_{4}(s)=1 / \sqrt{s^{2}+1}, \quad \mu_{4}^{ \pm}(-\xi)=1 /(\pi \sqrt{\xi(\pm 2 i-\xi)})
$$

Left: Interpolation, $P=10$. Right: Optimization, $P=10$.

Trumpet-like instrument (I)

Decomposition into elementary subsystems.

Transfer functions of interest:

- Reflection between p_{0}^{+}and p_{0}^{-}.
- Transmission between p_{0}^{+}and p_{4}.

Trumpet-like instrument (II): various choices of the cuts

- with 3 Horizontal cuts,
with a Cross cut

- Remark: the values of $H(s)$ in \mathbb{C}_{0}^{+}do not depend on the choice of the cut!

Trumpet-like instrument (III)

Time-domain representation

Frequency-domain rep.

Real-time simulations in Pure-Data environment on optimized models with $P \leq 10$ for each quadripole \mathcal{Q}_{k} : bounded freq. range, log-scale \& relat. error.

Outline

Introduction

(2) Linear fractional/irrational systems: integral representations and simulation (coll.: D. Matignon \& R. Mignot)
(3) Weakly nonlinear irrational systems and Volterra series (coll.: M. Hasler \& V. Smet)

- Model: damped nonlinear traveling wave
- Volterra series
- Solution
- Realization
- Approximation and results
(4) Conclusion

Outline

Introduction

(2) Linear fractional/irrational systems: integral representations and simulation (coll.: D. Matignon \& R. Mignot)
(3) Weakly nonlinear irrational systems and Volterra series (coll.: M. Hasler \& V. Smet)

- Model: damped nonlinear traveling wave
- Volterra series
- Solution
- Realization
- Approximation and results

4 Conclusion

Purpose (audio effects and sound synthesis)

- Simulate the realistic propagation of a progressive plane wave in a pipe

- Include the nonlinearity responsible for the brightness of « brass sounds" at fortissimo nuances ($\mid \mathrm{pl}<160 \mathrm{~dB} \mathrm{spl}$)
- Low-cost input/output relation

Choice: Volterra series

1. Nonlinear acoustic model (planar progressive wave)

- [Mak97] adimensional version:

For $\mathrm{x}>0, \downarrow 0, \quad \partial_{x} p+\partial_{t} p+A(p)=\frac{\beta}{2} \partial_{t} p^{2}$ Boundary Cnd.: $\quad p(x=0, t)=p_{0}(t){ }_{\text {(input) }}$

- Damping models $\mathrm{A}(\mathrm{p})$:

Simplest: $A_{0}(p)=\alpha_{0} p$
Realistic (brass instr., [MJ00]): $A_{1}(p)=\alpha_{1} \partial^{1 / 2} p$

Tribute to Joël Gilbert

Murray Campbell
Joêl Gibert
Arnold Myers

Joël Gilbert (1963-2022)
Research director, CNRS
Laboratory of Acoustics, Le Mans University
Medal of the French Acoustical Society, 2022

The Science of Brass Instruments

$\underset{\text { PRESS }}{\text { OASA }}$
EA
Springer

Outline

(1)

Introduction

(5) Linear fractional/irrational systems: integral representations and simulation (coll.: D. Matignon \& R. Mignot)
(3) Weakly nonlinear irrational systems and Volterra series (coll.: M. Hasler \& V. Smet)

- Model: damped nonlinear traveling wave
- Volterra series
- Solution
- Realization
- Approximation and results

4 Conclusion

Definition and properties

- Volterra series with kernels $\quad\left\{h_{n}\right\}_{n \in \mathbb{N}^{*}}$
$\left.u(t) \longrightarrow y h_{n}\right\} y(t)=\underbrace{\sum_{n=1}^{+\infty}}_{\text {sum }} \underbrace{\iint_{-\infty}^{+\infty} h_{n}\left(t_{1}, \ldots, t_{n}\right) u\left(t-t_{1}\right) \ldots u\left(t-t_{n}\right) \mathrm{d} t_{1} \mathrm{~d} t_{n}}_{\text {of }}$
- Convergence: $\quad|u(t)|<\rho$ radius of the series $\sum_{n=1}^{+\infty}\left\|h_{n}\right\|_{1} x^{n}$
- Laplace transform: transfer kernels $H_{n}\left(s_{1}, \ldots, s_{n}\right)$ (analytic for stable causal system on $\Re \mathrm{e}\left(s_{k}\right)>0$)

Interconnexion laws

Denoting $\mathrm{s}_{1: \mathrm{n}}=\mathrm{s}_{1}, \mathrm{~s}_{2}, \ldots \mathrm{~s}_{\mathrm{n}}$:
■ Sum: $\rho_{h} \geq \min \left(\rho_{f}, \rho_{g}\right)$

$$
H_{n}\left(s_{1: n}\right)=F_{n}\left(s_{1: n}\right)+G_{n}\left(s_{1: n}\right)
$$

■ Product : $\rho_{h} \geq \min \left(\rho_{f}, \rho_{g}\right)$

$$
H_{n}\left(s_{1: n}\right)=\sum_{p=1}^{n-1} F_{p}\left(s_{1: p}\right) G_{n-p}\left(s_{p+1: n}\right)
$$

■ Cascade : $\rho_{h} \geq \rho_{f}$

$$
H_{n}\left(s_{1: n}\right)=F_{n}\left(s_{1: n}\right) G_{1}\left(\widehat{s_{1: n}}\right)
$$

where $\widehat{s_{1: n}}=s_{1}+s_{2}+\ldots+s_{n}$

Outline

(1)

Introduction

(5) Linear fractional/irrational systems: integral representations and simulation (coll.: D. Matignon \& R. Mignot)
(3) Weakly nonlinear irrational systems and Volterra series (coll.: M. Hasler \& V. Smet)

- Model: damped nonlinear traveling wave
- Volterra series
- Solution
- Realization
- Approximation and results
(4) Conclusion

Kernels $\left\{h_{n}^{x, k}\right\}_{n \in \mathbb{N}^{*}}$ and cancelling system

- For $\mathrm{x}>0, \downarrow 0, \partial_{x} p+\partial_{t} p+\alpha_{k} \partial_{t}^{k / 2} p=\frac{\beta}{2} \partial_{t} p^{2}$
- x-parameterized kernels $\left\{h_{n}^{x, k}\right\}_{n \in \mathbb{N}^{*}}$

Kernels $\left\{h_{n}^{x, k}\right\}_{n \in \mathbb{N}^{*}}$ and cancelling system

- For $\mathrm{x}>0, \downarrow 0, \partial_{x} p+\partial_{t} p+\alpha_{k} \partial_{t}^{k / 2} p=\frac{\beta}{2} \partial_{t} p^{2}$
- x-parameterized kernels $\left\{h_{n}^{x, k}\right\}_{n \in \mathbb{N}^{*}}$
- Zero system:

Kernels $\left\{h_{n}^{x, k}\right\}_{n \in \mathbb{N}^{*}}$ and cancelling system

- For $\mathrm{x}>0, ~>0, \partial_{x} p+\partial_{t} p+\alpha_{k} \partial_{t}^{k / 2} p=\frac{\beta}{2} \partial_{t} p^{2}$
- x-parameterized kernels $\left\{\left\{_{n}^{x, k}\right\}_{n \in \mathbb{N}^{*}}\right.$
- Zero system:
- From laws:

$\left(\partial_{x} H_{n}^{x, k}\left(s_{1: n}\right)+\left[\widehat{s_{1: n}}+\alpha_{k}\left(\widehat{s_{1: n}}\right)^{\frac{A}{2}}\right] H_{n}^{x, k}\left(s_{1: n}\right)\right.$

Kernels $\left\{h_{n}^{x, k}\right\}_{n \in \mathbb{N}^{*}}$ and cancelling system

- For $\mathrm{x}>0, \downarrow 0, \partial_{x} p+\partial_{t} p+\alpha_{k} \partial_{t}^{k / 2} p=\frac{\beta}{2} \partial_{t} p^{2}$
- x-parameterized kernels $\left\{\left\{_{n}^{x, k}\right\}_{n \in \mathbb{N}^{*}}\right.$
- Zero system:
- From laws:

Kernels $\left\{h_{n}^{x, k}\right\}_{n \in \mathbb{N}^{*}}$ and cancelling system

- For $\mathrm{x}>0, \downarrow 0, \partial_{x} p+\partial_{t} p+\alpha_{k} \partial_{t}^{k / 2} p=\frac{\beta}{2} \partial_{t} p^{2}$
- x-parameterized kernels $\left\{h_{n}^{x, k}\right\}_{n \in \mathbb{N}^{*}}$
- Zero system:

$$
\begin{gathered}
\partial_{x} H_{n}^{x, k}\left(s_{1: n}\right)+\left[\widehat{s_{1: n}}+\alpha_{k}\left(\widehat{s_{1: n}}\right)^{\frac{k}{2}}\right] H_{n}^{x, k}\left(s_{1: n}\right) \\
-\frac{\beta}{2} \widehat{s_{1: n}} \sum_{p=1}^{n-1} H_{p}^{x, k}\left(s_{1: p}\right) H_{n-p}^{x, k}\left(s_{p+1: n}\right)
\end{gathered}
$$

Kernels $\left\{h_{n}^{x, k}\right\}_{n \in \mathbb{N}^{*}}$ and cancelling system

- For $\mathrm{x}>0, ~>0, \partial_{x} p+\partial_{t} p+\alpha_{k} \partial_{t}^{k / 2} p=\frac{\beta}{2} \partial_{t} p^{2}$
- x-parameterized kernels $\left\{h_{n}^{x, k}\right\}_{n \in \mathbb{N}^{*}}$
- Zero system:
- From laws:

$$
\begin{aligned}
& \partial_{x} H_{n}^{x, k}\left(s_{1: n}\right)+\left[\widehat{s_{1: n}}+\alpha_{k}\left(\widehat{s_{1: n}}\right)^{\frac{k}{2}}\right] H_{n}^{x, k}\left(s_{1: n}\right) \\
& -\frac{\beta}{2} \widehat{s_{1: n}} \sum_{p=1}^{n-1} H_{p}^{x, k}\left(s_{1: p}\right) H_{n-p}^{x, k}\left(s_{p+1: n}\right)=0
\end{aligned}
$$

Kernels $\left\{h_{n}^{x, k}\right\}_{n \in \mathbb{N}^{*}}$ and cancelling system

- For $\mathrm{x}>0, \downarrow 0, \partial_{x} p+\partial_{t} p+\alpha_{k} \partial_{t}^{k / 2} p=\frac{\beta}{2} \partial_{t} p^{2}$
- x-parameterized kernels $\left\{\left\{_{n}^{x, k}\right\}_{n \in \mathbb{N}^{*}}\right.$
- Zero system:
- From laws:

$$
\begin{aligned}
& \partial_{x} H_{n}^{x, k}\left(s_{1: n}\right)+\left[\widehat{s_{1: n}}+\alpha_{k}\left(\widehat{s_{1: n}}\right)^{\frac{k}{2}}\right] H_{n}^{x, k}\left(s_{1: n}\right) \\
& -\frac{\beta}{2} \widehat{s_{1: n}} \sum_{p=1}^{n-1} H_{p}^{x, k}\left(s_{1: p}\right) H_{n-p}^{x, k}\left(s_{p+1: n}\right)=0
\end{aligned} \text { Linear ODES }
$$

Boundary cnd. and solution

- If $x=0$, then $p(x=0, t)=p_{0}(t) \quad$ (Identity system)

$$
H_{1}^{x=0, k}\left(s_{1}\right)=1 \text { and } H_{n}^{x=0, k}\left(s_{1: n}\right)=0 \text { if } n \geq 2
$$

Boundary cnd. and solution

■ If $x=0$, then $p(x=0, t)=p_{0}(t) \quad$ (Identity system)

$$
H_{1}^{x=0, k}\left(s_{1}\right)=1 \text { and } H_{n}^{x=0, k}\left(s_{1: n}\right)=0 \text { if } n \geq 2
$$

■ Solution: $H_{n}^{x, k}\left(s_{1: n}\right)=G_{n}^{x, k}\left(s_{1: n}\right) \mathrm{e}^{-\overline{x s_{1: n}}} \mid \quad$ with

$$
\begin{aligned}
& G_{1}^{x, k}\left(s_{1: n}\right)=\mathrm{e}^{-\alpha_{k} k_{1}^{\frac{k}{2}}} \quad \text { wave delay } \\
& G_{n}^{r, k}\left(s_{1: n}\right)=\frac{\beta}{2} \widehat{s_{1: n}} \sum_{p=1}^{n-1} \int_{0}^{x} \mathrm{e}^{-\alpha_{k}(\widehat{s}: n)^{\frac{k}{2}}(x-\xi)} G_{\stackrel{y}{\xi, k}\left(s_{1: p}\right) G_{n-p}^{\xi, k}\left(s_{p+1: n}\right) \mathrm{d} \xi}
\end{aligned}
$$

Boundary cnd. and solution

■ If $x=0$, then $p(x=0, t)=p_{0}(t) \quad$ (Identity system)

$$
H_{1}^{x=0, k}\left(s_{1}\right)=1 \text { and } H_{n}^{x=0, k}\left(s_{1: n}\right)=0 \text { if } n \geq 2
$$

■ Solution: $H_{n}^{x, k}\left(s_{1: n}\right)=G_{n}^{x, k}\left(s_{1: n}\right) \mathrm{e}^{-x \widehat{s} \mid n n} \quad$ with

$$
\begin{aligned}
& G_{1}^{x, k}\left(s_{1: n}\right)=\mathrm{e}^{-\alpha_{k} k_{1}^{\frac{k}{2}}} \\
& G_{n}^{x, k}\left(s_{1: n}\right)=\frac{\beta}{2} \widehat{s_{1: n}} \sum_{p=1}^{n-1} \int_{0}^{x} \mathrm{e}^{-\alpha_{k}\left(s_{1: n}\right)^{\frac{k}{2}}(x-\xi)} G_{p}^{\xi, k}\left(s_{1: p}\right) G_{n-p}^{\xi, k}\left(s_{p+1: n}\right) \mathrm{d} \xi
\end{aligned}
$$

- First kernels (k=0)

$$
\begin{aligned}
G_{1}^{x, 0}\left(s_{1}\right) & =\mathrm{e}^{-\alpha_{0} x} \\
G_{2}^{x, 0}\left(s_{1: 2}\right) & =\frac{\beta \widehat{s_{1: 2}}}{2 \alpha_{0}}\left(1-\mathrm{e}^{-\alpha_{0} x}\right)
\end{aligned}
$$

Boundary cnd. and solution

■ If $x=0$, then $p(x=0, t)=p_{0}(t) \quad$ (Identity system)

$$
H_{1}^{x=0, k}\left(s_{1}\right)=1 \text { and } H_{n}^{x=0, k}\left(s_{1: n}\right)=0 \text { if } n \geq 2
$$

■ Solution: $H_{n}^{x, k}\left(s_{1: n}\right)=G_{n}^{r, k}\left(s_{1: n}\right) \mathrm{e}^{-x \widehat{s}: n} \quad$ with

$$
\begin{aligned}
& G_{1}^{x, k}\left(s_{1: n}\right)=\mathrm{e}^{-\alpha_{k} k_{1}^{\frac{k}{2}}} \\
& G_{n}^{x, k}\left(s_{1: n}\right)=\frac{\beta}{2} \widehat{s_{1: n}} \sum_{p=1}^{n-1} \int_{0}^{x} \mathrm{e}^{-\alpha_{k}\left(s_{1: n}\right)^{\frac{k}{2}}(x-\xi)} G_{p}^{\xi, k}\left(s_{1: p}\right) G_{n-p}^{\xi, k}\left(s_{p+1: n}\right) \mathrm{d} \xi
\end{aligned}
$$

- First kernels ($\mathrm{k}=1$)

$$
\begin{aligned}
G_{1}^{x, 1}\left(s_{1}\right) & =\mathrm{e}^{-\alpha_{1} x \sqrt{s_{1}}} \\
G_{2}^{x, 1}\left(s_{1: 2}\right) & =\frac{\beta \widehat{s_{1: 2}}}{2 \alpha_{1}} \frac{\mathrm{e}^{-\alpha_{1} x \sqrt{s_{1}+s_{2}}}-\mathrm{e}^{-\alpha_{1} x\left(\sqrt{s_{1}}+\sqrt{s_{2}}\right)}}{-\sqrt{s_{1}+s_{2}}+\sqrt{s_{1}}+\sqrt{s_{2}}}
\end{aligned}
$$

Outline

(1)

Introduction
(5) Linear fractional/irrational systems: integral representations and simulation (coll.: D. Matignon \& R. Mignot)
(3) Weakly nonlinear irrational systems and Volterra series (coll.: M. Hasler \& V. Smet)

- Model: damped nonlinear traveling wave
- Volterra series
- Solution
- Realization
- Approximation and results

4 Conclusion

Deriving simple realizable structures

How to realize first kernels without multi-convolutions ?
$n=1$: linear filter (mono-conv.)

What about $n=2$?

Elementary $2^{\text {nd }}$ order system

- Elementary system (P,Q,R: transfer fct):

Elementary $2^{\text {nd }}$ order system

- Elementary system (P,Q,R: transfer fct):

$$
K_{2}\left(s_{1: 2}\right)=P\left(s_{1}\right) Q\left(s_{2}\right) R\left(\widehat{s_{1: 2}}\right) \quad \text { if } n=2,
$$

$$
K_{n}\left(s_{1: n}\right)=0 \quad \text { otherwise. }
$$

■ For k=0, $\quad G_{2}^{x, 0}\left(s_{1: 2}\right)=\frac{\beta \widehat{s: 2}}{2 \alpha_{0}}\left(1-\mathrm{e}^{-\alpha_{0} x}\right)$

$$
\begin{aligned}
P(s)=Q(s) & =1, \text { (identity systems) } \\
R(s) & =\frac{\beta\left(1-\mathrm{e}^{-\alpha_{0} x}\right)}{2 \alpha_{0}} s,
\end{aligned}
$$

Elementary $2^{\text {nd }}$ order system

- Elementary system (P,Q,R: transfer fct):

$K_{2}\left(s_{1: 2}\right)=P\left(s_{1}\right) Q\left(s_{2}\right) R\left(\widehat{s_{1: 2}}\right) \quad$ if $n=2$,
$K_{n}\left(s_{1: n}\right)=0$ otherwise.
■ For $\mathrm{k}=0, \quad G_{2}^{\mathrm{x}, 0}\left(s_{1: 2}\right)=\frac{\beta \widehat{s_{1: 2}}}{2 \alpha_{0}}\left(1-\mathrm{e}^{-\alpha_{0} x}\right)$

Realistic case: k=1

■ No straightforward identification:

$$
G_{2}^{x, 1}\left(s_{1: 2}\right)=\frac{\beta \widehat{s_{1: 2}}}{2 \alpha_{1}} \frac{\mathrm{e}^{-\alpha_{1} x \sqrt{s_{1}+s_{2}}}-\mathrm{e}^{-\alpha_{1} x\left(\sqrt{s_{1}}+\sqrt{s_{2}}\right)}}{-\sqrt{s_{1}+s_{2}}+\sqrt{s_{1}}+\sqrt{s_{2}}}
$$

Realistic case: k=1

■ No straightforward identification:

$$
G_{2}^{x, 1}\left(s_{1: 2}\right)=\frac{\beta \widehat{s_{1: 2}}}{2 \alpha_{1}} \frac{\mathrm{e}^{-\alpha_{1} x \sqrt{s_{1}+s_{2}}}-\mathrm{e}^{-\alpha_{1} x\left(\sqrt{s_{1}}+\sqrt{s_{2}}\right)}}{-\sqrt{s_{1}+s_{2}}+\sqrt{s_{1}}+\sqrt{s_{2}}}
$$

- Perfect squares \& sum of elementary syst.:

$$
\begin{aligned}
{\left[\frac{\sqrt{s_{1}+s_{2}}}{\sqrt{s_{1}+s_{2}}+\sqrt{s_{1}}+\sqrt{s_{1}}}+\sqrt{s_{2}}\right.} & \left.G_{2}^{x, k=1}\left(s_{1: 2}\right)\right] \\
= & {\left[A\left(s_{1}\right) \mathbf{1}\left(s_{2}\right) B_{x}\left(\widehat{s_{1: 2}}\right)+\mathbf{1}\left(s_{1}\right) A\left(s_{2}\right) B_{x}\left(\widehat{s_{1: 2}}\right)\right.} \\
& +A\left(s_{1}\right) A\left(s_{2}\right) D_{x}\left(\widehat{s_{1: 2}}\right) \\
& -B_{x}\left(s_{1}\right) C_{x}\left(s_{2}\right) \mathbf{1}\left(\widehat{s_{1: 2}}\right)-C_{x}\left(s_{1}\right) B_{x}\left(s_{2}\right) \mathbf{1}\left(\widehat{s_{1: 2}}\right) \\
& \left.-C_{x}\left(s_{1}\right) C_{x}\left(s_{2}\right) E\left(\widehat{s_{1: 2}}\right)\right] \frac{\beta}{4 \alpha_{1}} \widehat{s_{1: 2}},
\end{aligned}
$$

Realistic case: $2^{\text {nd }}$ order realization

Structure composed of sums, products and linear filters with (irrational) transfer functions:

$$
\begin{array}{ll}
A(s)=1 / \sqrt{s} & B_{x}(s)=G_{1}^{, 1,}(s)=\mathrm{e}^{-\alpha_{1} x \sqrt{s}} \\
C_{x}(s)=\mathrm{e}^{-\alpha_{1} x \sqrt{s}} / \sqrt{s} & D(s)=\sqrt{s} \mathrm{e}^{-\alpha_{1} x \sqrt{s}} .
\end{array} E(s)=\sqrt{s} .
$$

Outline

Introduction
(2) Linear fractional/irrational systems: integral representations and simulation (coll.: D. Matignon \& R. Mignot)
(3) Weakly nonlinear irrational systems and Volterra series (coll.: M. Hasler \& V. Smet)

- Model: damped nonlinear traveling wave
- Volterra series
- Solution
- Realization
- Approximation and results

4 Conclusion

Bode diagrams of A, B, C, D, E for typical pipes

A		D_{x}	
B_{r}		E	
C_{x}			xact transfer functions pprox.

Digital $2^{\text {nd }}$ order realization

Results for a typical trumpet pipe

■ Ex.: 1.sinusoid with vibrato / 2.Chet Baker

Outline

(1) Introduction
(2) Linear fractional/irrational systems: integral representations and simulation (coll.: D. Matignon \& R. Mignot)
(3) Weakly nonlinear irrational systems and Volterra series (coll.: M. Hasler \& V. Smet)
(4) Conclusion

Conclusion

Contributions

- Representation with poles and cuts of linear fractional/irrational systems
- Flexible method for the low-cost simulation based on approximation and optimization
- Suitable for real-time applications.
- Application to weakly nonlinear systems with Volterra series

Perspectives

- Open question: optimal choice of cut for approximation ?
- Open question: optimal placement of poles, once the cut has been chosen?

> - The end -
> Thank you for your attention

Acknowledgements: M. Hasler, D. Matignon, R. Mignot, V. Smet.

