High Order Approximation for Müntz and Müntz-Logarithmic Polynomials Using Emprical Interpolation Method

Tengteng Cui
with
Mejdi Azaiez and Chuanju Xu

Outline

1 Motivation

2 Preliminaries

3 First numerical results

4 Generalized gaussian quadrature rules

5 Application to some singular problems

6 Concluding remarks

Motivation

- The need for a quadrature formula adapted to PDEs with Nonlocal and Singular Operators
- Hight order numerical integration when Müntz and MüntzLogarithmic Polynomials are used
- Solve PDE in complex domains using monodomaine approaches
- etc....

Müntz legendre polynomial interpolation

We adopt the following definition for x^{λ} given by:

$$
\begin{equation*}
x^{\lambda}=e^{\lambda \log x}, \quad x \in(0, \infty), \lambda \in \mathbb{C} \tag{1}
\end{equation*}
$$

Given a complex sequence $\Lambda=\left\{\lambda_{0}, \lambda_{1}, \lambda_{2}, \cdots\right\}$, a linear combination system $\left\{x^{\lambda_{0}}, x^{\lambda_{1}}, \cdots, x^{\lambda_{n}}\right\}$ is called a Müntz polynomial, or a Λ-polynomials.
In the sequel, we consider

$$
\begin{equation*}
\Lambda=\left\{\lambda_{0}, \lambda_{1}, \lambda_{2}, \cdots\right\}, \quad R\left(\lambda_{k}\right)>-\frac{1}{2} \tag{2}
\end{equation*}
$$

where $R(\lambda)$ is the real part of λ. This ensures that every Λ-polynomial is dense in $L^{2}[0,1]$.

Then, we give the definition of Müntz Legendre polynomial (see [Taslakyan])

Definition

Let $\Lambda=\left\{\lambda_{0}, \lambda_{1}, \lambda_{2}, \cdots\right\}$ be a complex sequence, $R\left(\lambda_{k}\right)>-\frac{1}{2}$. We define the nth Müntz-Legendre polynomial on $(0,1]$ to be
$L_{n}\left(\lambda_{0}, \cdots, \lambda_{n} ; x\right)=\frac{1}{2 \pi i} \int_{\Gamma} \prod_{k=0}^{n-1} \frac{t+\bar{\lambda}_{k}+1}{t-\lambda_{k}} \frac{x^{t}}{t-\lambda_{n}} d t, \quad n=0,1, \cdots$,
where the simple contour Γ surrounds all the zeros of the denominator in the integrand, and $\bar{\lambda}$ denotes the conjugate of λ.
[1] AK Taslakyan. Some properties of legendre quasipolynomials with respect to a Müntz system. Mathematics, 2:179-189, 1984.

Now we consider the important special case where

$$
\begin{equation*}
\lambda_{2 k}=\lambda_{2 k+1}=k, \quad(k=0,1, \cdots) . \tag{4}
\end{equation*}
$$

Cauchy residue theorem applied to the integral in (3), conduct to the representation for the corresponding Müntz polynomials:

$$
\begin{equation*}
L_{n}(x)=R_{n}(x)+S_{n}(x) \log x \quad(n=0,1, \cdots) \tag{5}
\end{equation*}
$$

where $R_{n}(x)$ and $S_{n}(x)$ are algebraic polynomials of degree [$n / 2$] and $[(n-1) / 2]$, respectively, i.e.,

$$
\begin{equation*}
R_{n}(x)=\sum_{\nu=0}^{[n / 2]} a_{\nu}^{(n)} x^{\nu}, \quad S_{n}(x)=\sum_{\nu=0}^{[(n-1) / 2]} b_{\nu}^{(n)} x^{\nu} \tag{6}
\end{equation*}
$$

Notice that $L_{n}(1)=R_{n}(1)=1$.

The first few Müntz polynomials (3) are:

$$
\begin{aligned}
& L_{0}(x)=1 \\
& L_{1}(x)=1+\log x \\
& L_{2}(x)=-3+4 x-\log x \\
& L_{3}(x)=9-8 x+2(1+6 x) \log x \\
& L_{4}(x)=-11-24 x+36 x^{2}-2(1+18 x) \log x
\end{aligned}
$$

We plot the first four Müntz Legendre polynomials :

Figure 1: Müntz Legendre polvnomials with $n=1$ 2. 2. 3.4
On PDEs with Nonlocal and Singular Operators
CFM, 29 Aug-2 Sep 2022

Empirical Integration Method (EIM)

Let $\mathcal{G}(\cdot ; \mu)$ be a parametrized function that generate(span) the full function space by choosing parameters μ from the parameter domain \mathcal{D}
$\square \mathcal{U}=\operatorname{span}\{\mathcal{G}(\cdot ; \mu): \mu \in \mathcal{D}\}$. It is called the training set
■ $W_{N}=\operatorname{span}\{\mathcal{G}(\cdot ; \mu): \mu \in \Xi\} . \Xi \subseteq \mathcal{D}$ is of dimension \mathcal{N}. It is called the basis set

- $W_{N} \subseteq \mathcal{U}$

Algorithm 1 Greedy EIM

$$
\begin{aligned}
& \mu_{1}=\arg \max _{\mu \in \mathcal{D}}\|\mathcal{G}(\cdot ; \mu)\|_{L^{\infty}(\Omega)} \\
& x_{1}=\arg \max _{x \in \Omega}\left|\mathcal{G}\left(x ; \mu_{1}\right)\right| \\
& q_{1}=\mathcal{G}\left(\cdot ; \mu_{1}\right) / \mathcal{G}\left(x_{1} ; \mu_{1}\right) \\
& \text { for } m=2: N \text { do } \\
& \mu_{m}=\arg \max _{\mu \in \mathcal{D}}\left\|\mathcal{G}(\cdot ; \mu)-\mathcal{I}_{m-1}[\mathcal{G}(\cdot ; \mu)]\right\|_{L^{\infty}(\Omega)} \\
& x_{m}=\arg \max _{x \in \Omega}\left|\mathcal{G}\left(x ; \mu_{m}\right)-\mathcal{I}_{m-1}\left[\mathcal{G}\left(\cdot ; \mu_{m}\right)\right](x)\right| \\
& q_{m}=\frac{\mathcal{G}\left(\cdot ; \mu_{m}\right)-\mathcal{I}_{m-1}\left[\mathcal{G}\left(\cdot ; \mu_{m}\right)\right]}{\mathcal{G}\left(x_{m} ; \mu_{m}\right)-\mathcal{I}_{m-1}\left[\mathcal{G}\left(x_{m} ; \mu_{m}\right)\right]\left(x_{m}\right)} \\
& \text { end for }
\end{aligned}
$$

Objective: approximate a function f over a domain Ω by a linear combination of N pre-defined basis functions

$$
\begin{equation*}
f(x) \approx \mathcal{I}_{N}[f](x)=\sum_{i=1}^{N} \beta_{i} q_{i}(x) \tag{7}
\end{equation*}
$$

Müntz Legendre polynomials interpolation

$\mathcal{U}=\operatorname{span}\left\{1, L_{1}(x), \cdots, L_{N}(x)\right\}$, where $\lambda_{n}=n \lambda+q$.
Distribution of the magic points $\{x(j)\}_{j=0}^{N}$ with various N using EIM based on Müntz Legendre polynomial:

Figure 2: Interpolation nodes distribution of Müntz-legendre polynomial with different N

We plot the error curves for the Müntz-Legendre polynomials approximation to $f(x)=x^{1 / 3}$ by using EIM interpolation and classical GLL interpolation.

Figure 3: $f(x)=x^{1 / 3}$

Müntz polynomials interpolation

$\mathcal{U}=\operatorname{span}\left\{1, x^{\lambda_{1}}, \cdots, x^{\lambda_{N}}\right\}$, where $\lambda_{n}=n \lambda+q$. Fig. 4 exhibits the influence of the parameters λ, q on the nodes distribution.

Figure 4: Interpolation nodes distribution of Müntz polynomial $N=16$ with different λ, q

We plot the error curves for the fractional polynomial approximation to $f(x)=x^{1 / 9}$ with various λ, q in Fig.5.

Figure 5: $\lambda=0.1$ (left) and $q=0.1$ (right)

Müntz-logarithmic polynomials interpolation

$$
\mathcal{U}=\operatorname{span}\left\{1, x^{\lambda_{1}} \log (x), \cdots, x^{\lambda_{N}} \log (x)^{N}\right\}, \text { where } \lambda_{n}=n \lambda+q
$$

Figure 6: Interpolation nodes distribution of Müntz -logarithmic polynomial with different N

We plot the error curves for Müntz-logarithmic polynomial approximation to singular function $f(x)=x^{1 / 8}$ and $f(x)=x^{1 / 8} \log (x)$ in the left of Fig.7. Then we plot more singular functions $f(x)=x^{-1 / 6}$ and $f(x)=x^{-1 / 10}$ in the right of Fig. 7.

Figure 7: $\lambda=0.01, q=0$

Influence of sample points : Left we plot the error curves to approximate the smooth function $f(x)=\exp (x)$. Right for the singular function $f(x)=x^{1 / 10}$

Figure 8: $\lambda=0.01, q=0.1$

The approximate results based on EIM on 2D domain

First, we plot the distribution of the first 25 spatial magic points on a triangular domain in the left of Fig.9, and the 25 magic points on a square domain in the right of Fig. 9 about the Müntz polynomial.

Figure 9: distribution of magic points about Müntz polynomial

Similarly, we can also get the distribution of 25 magic points of Müntz-logarithmic polynomial on the triangular domain and square domain respectively in Fig 10.

Figure 10: distribution of magic points about Müntz-logarithmic polynomial

Generalized gaussian quadrature rules

Now we aim to construct Lagrangian interpolation operator \mathcal{I}_{M} in X_{N} over the set of points $T_{N}=\left\{x_{i}, 1 \leq i \leq N\right\}$.
Then using it as

$$
\mathcal{I}_{N}[u(x)]=\sum_{i=1}^{N} u\left(x_{i}\right) h_{i}^{N}(x), \quad \text { where } \quad h_{i}^{N}\left(x_{j}\right)=\delta_{i j}
$$

So we can construct Gaussian quadrature rule on the form

$$
\begin{equation*}
\int_{0}^{1} h_{k}(x) d x=\sum_{i=1}^{N} h_{k}\left(x_{i}\right) w_{i} \tag{8}
\end{equation*}
$$

where x_{i} are the magic points, and $w_{i}=\int_{0}^{1} h_{i}(x) d x$.

The starting point is
that: $\operatorname{span}\left\{h_{i}\right\}=\operatorname{span}\left\{\mathcal{G}\left(\cdot ; \mu_{i}\right)\right\}=\operatorname{span}\left\{q_{i}\right\}$. We can therefore build a system of linear equations where the weights w_{i} are the unknowns and the basis functions h_{i} are used implicitly

$$
\begin{aligned}
\int_{0}^{1} \mathcal{G}\left(\cdot ; \mu_{i}\right) d x & =\int_{0}^{1}\left(\sum_{j=1}^{N} \mathcal{G}\left(x_{j} ; \mu_{i}\right) h_{j}(x)\right) d x \quad i=1, \cdots N \\
& =\sum_{j=1}^{N} \mathcal{G}\left(x_{j} ; \mu_{i}\right) \int_{0}^{1} h_{j}(x) d x, \quad j=1, \cdots N
\end{aligned}
$$

which written out becomes

$$
\left[\begin{array}{ccc}
\mathcal{G}\left(x_{1} ; \mu_{1}\right) & \cdots & \mathcal{G}\left(x_{N} ; \mu_{1}\right) \\
\vdots & \ddots & \vdots \\
\mathcal{G}\left(x_{1} ; \mu_{N}\right) & \cdots & \mathcal{G}\left(x_{N} ; \mu_{N}\right)
\end{array}\right]\left[\begin{array}{c}
\int_{0}^{1} h_{1}(x) d x \\
\vdots \\
\int_{0}^{1} h_{N}(x) d x
\end{array}\right]=\left[\begin{array}{c}
\int_{0}^{1} \mathcal{G}\left(\cdot ; \mu_{1}\right) d x \\
\vdots \\
\int_{0}^{1} \mathcal{G}\left(\cdot ; \mu_{N}\right) d x
\end{array}\right]
$$

Example of Gaussian quadrature points and weights with respect to the system of functions $\left\{x^{\lambda_{k}}, x^{\lambda_{k}} \log (x)\right\}$ on $(0,1)$ are given in Table 1 when $\lambda_{k}=\lambda k+q, \lambda=0.1, q=0$, and tested on selected functions in Figure.11.

Table 1: Gaussian quadrature points and weights

N	Nodes x_{i}	Weights w_{i}
5	0.0010	0.0011746602382842875258656930694295
	0.0747	0.13474398963884349770927997962002
	1.0000	0.24843897467773208175249431724226
	0.0070	0.02294768734186229930019931261884
	0.4100	0.59269468810327783371216069744945

Figure 11: approximate results of numerical quadrature

Example of Gaussian quadrature points and weights with respect to the system of functions $\left\{1, x^{\lambda_{1}}, \cdots, x^{\lambda_{N}}\right\}$ on $(0,1)$ are given in Table 2 when $\lambda_{k}=\lambda k+q, \lambda=0.1, q=0.1$.

Table 2: Gaussian quadrature points and weights

N	Nodes x_{i}	Weights w_{i}
6	1	0.24732489779607142863735567346317
	0	0.0015809301585368928180284784028382
	0.6042	0.11657754219045053408602708239755
	0.0007	0.04713139171177925752564795832732
	0.3994	0.61526451692235644479684401455218
	0.0001	-0.027879278779194557863903207143061

In the left of the figure we give the approximate results about the integral of singular functions when $\lambda=0.1, q=0.01$. Then we plot the error curves about the integral of smooth functions in the right of Fig. 12 when $\lambda=0.5, q=0.5$.

Figure 12: approximate results of numerical quadrature

Gaussian quadrature points and weights with respect to the system of functions $\left\{x^{\lambda_{k}} \log (x)^{k}\right\}$ on $(0,1)$ are given in Table 3 when $\lambda_{k}=\lambda k+q, \lambda=0.01, q=0.1$.

Table 3: Gaussian quadrature points and weights

N	Nodes x_{i}	Weights w_{i}
5	0.0010	0.0013744210088252069431219091042599
	0.0080	0.02517745597339138253722281518308
	0.0816	0.14519450449192957813194983190346
	1.0000	0.23997786024373369479144027575075
	0.4238	0.58827412192226618895774325859437

We compare the approximate results of present Gaussian quadrature rules with the generalized Gaussian quadrature in Table 3 of [Rokhlin] to the singular function.

Table 4: the compared absolute error

absolute error of $\int_{0}^{1} x^{1 / 6} d x$			
N	5	10	15
their method	$5 \mathrm{e}-5$	$2 \mathrm{e}-6$	$4 \mathrm{e}-7$
our method	$8 \mathrm{e}-11$	$3 \mathrm{e}-17$	$4 \mathrm{e}-13$

The result show that our method is more efficient.
[1] J Ma, V Rokhlin, and Stephen Wandzura. Generalized gaussian quadrature rules for systems of arbitrary functions. SIAM Journal on Numerical Analysis, 33(3):971-996, 1996.

We fix $\lambda=0.01, q=0$.
Left of figure gives approximate results about the integral of singular functions. Right of the figure concerns the integral of smooth functions

Figure 13: approximate results of numerical quadrature

Application to fractional differential equations

Given $f \in L^{2}(0,1)$, we consider the following Caputo fractional differential diffusion equation of order $s \in(0,1)$.

$$
\left\{\begin{array}{l}
{ }_{0}^{C} D_{t}^{s} u(t)+q(t) u(t)=f(t), \quad t \in(0,1) \tag{9}\\
u(0)=u_{0} .
\end{array}\right.
$$

Setting $u=v+u_{0}$ into the above equation, we solve

$$
\left\{\begin{array}{l}
C_{0}^{C} D_{t}^{s} v(t)+q(t) v(t)=f(t)-u_{0} q(t), \quad t \in(0,1) \tag{10}\\
v(0)=0
\end{array}\right.
$$

Let us denote W_{M} based on Müntz polynomial and Müntz-logarithmic polynomial respectively.
The Müntz Galerkin method for (10) is: find $u_{N} \in W_{N}$ such that

$$
\begin{equation*}
\left({ }_{0}^{C} D_{t}^{s} v_{N}, w_{N}\right)+\left(q v_{N}, w_{N}\right)=\left(\tilde{f}, w_{N}\right), \quad \forall w_{N} \in W_{N} \tag{11}
\end{equation*}
$$

We consider :

$$
\begin{equation*}
{ }_{0}^{C} D_{t}^{s} u(t)=f(t), \quad u(0)=0 . \tag{12}
\end{equation*}
$$

We choose the exact solution to be $u(t)=t^{13 / 4}$.

Figure 14: the convergence rate based on Müntz polynomial with $s=$ $0.7, \lambda=0.7, q=0.1$ (left) and Müntz-logarithmic polynomial with $s=$ $0.6, \lambda=0.1, q=0.1$ (right)

Next we consider

$$
\begin{equation*}
{ }_{0}^{C} D_{t}^{s} u(t)+(1+\sin t) u(t)=\cos t, \quad u(0)=1 \tag{13}
\end{equation*}
$$

- Reference solution is the one computed with $M=30$.
- The convergence rate based on Müntz polynomial is shown on when $s=0.6, \lambda=0.6, q=0$.

Elliptic equation with geometric singularities

We consider now the problem

$$
\begin{equation*}
-\Delta u=f \tag{14}
\end{equation*}
$$

The domain Ω is the sector shown in figure with $\Theta=\frac{3 \pi}{2}$.

Figure 16: Dirichlet boundary condition

Using the lemma about the regularity of the solution in $[\mathbf{L i}]$. Consider first the homogeneous boundary conditions:

$$
\begin{equation*}
\left.u\right|_{\theta=0}=0,\left.\quad u\right|_{\theta=\frac{3 \pi}{2}}=0 \tag{15}
\end{equation*}
$$

Therefore, the solution can be obtained as:

$$
\begin{equation*}
u=\sum_{k=0}^{\infty} a_{k} r^{\frac{2 k}{3}} \sin \left(\frac{2 k}{3} \theta\right) \tag{16}
\end{equation*}
$$

[1] Z. C. Li and T. T. Lu. Singularities and Treatments of Elliptic Boundary Value. Mathematical and Computer Modeling 31 (2000) 97-145

- In polar coordinates, this problem reads

$$
\begin{align*}
& -\frac{1}{r}\left(r u_{r}\right)_{r}-\frac{1}{r^{2}} u_{\theta \theta}=f, \quad(r, \theta) \in(0,1) \times\left(0, \frac{3 \pi}{2}\right) \tag{17}\\
& \left.u\right|_{\partial \Omega}=0
\end{align*}
$$

We apply the following transform, $x=r, y=\frac{2 \theta}{3 \pi}$. Denote $\tilde{u}(x, y)=u(r, \theta), \tilde{f}(x, y)=f(r, \theta)$.

- The problem (17) becomes

$$
\begin{align*}
& -\left(x \tilde{u}_{x}\right)_{x}-\left(\frac{2}{3 \pi}\right)^{2} \frac{1}{x} \tilde{u}_{y y}=x \tilde{f}, \quad(x, y) \in(0,1) \times(0,1), \\
& \tilde{u}(x=0,1,0 \leq y \leq 1)=0 \tag{18}
\end{align*}
$$

For EIM we consider a given finite-dimensional space

$$
\begin{aligned}
& W_{N}=\left\{(1-x) x^{\lambda_{k}} \otimes(1-y) y^{\lambda_{j}}, \lambda_{k}=k \lambda+q, \lambda_{j}=j \lambda+q\right\} \\
& k=1,2, \cdots m, j=1,2, \cdots, n, N=m n .
\end{aligned}
$$

Example 1 : the exact solution is $u(x, y)=(x-1)^{c} x^{c} y^{d}(y-1)^{d}$.
Table 5 is for $\lambda=1.1, q=0.1$ and $c=5 / 4, d=8 / 3$.
Table 5: the Max error on 2D square domain

N	4	9	16
L^{∞}-error	$8 \mathrm{e}-10$	$1 \mathrm{e}-11$	$5 \mathrm{e}-13$

Example 2 : the exact solution is $u(x, y)=(1-x)^{c} x^{d} \sin (\pi y)$. Table 6 is for $\lambda=1.1, q=0.1$ and $c=8 / 3, d=5 / 4$.

Table 6: the Max error on 2D square domain

N	4	9	16
L^{∞}-error	$2 \mathrm{e}-11$	$1 \mathrm{e}-10$	$1 \mathrm{e}-12$

singular two point boundary value problem

In the last example, we use Müntz-logarithmic polynomial as basis functions to solve the following singular two point boundary value problem

$$
\begin{align*}
& \left(x^{\alpha} u^{\prime}\right)^{\prime}=f, x \in(0,1), 0 \leq \alpha<1 \tag{20}\\
& u(0)=u(1)=0
\end{align*}
$$

Let us denote

$$
\begin{equation*}
X_{N}:=\operatorname{span}\left\{x^{\lambda_{k}}(\log (x))^{k}, k=1,2, \cdots, N\right\} . \tag{21}
\end{equation*}
$$

Our Müntz-logarithmic Galerkin method is: find $u_{N} \in X_{N}$ such that

$$
\begin{equation*}
\left(\left(x^{\alpha} u_{N}^{\prime}\right)^{\prime}, w_{N}\right)=\left(I_{N} f, w_{N}\right), \quad \forall w_{N} \in X_{N} \tag{22}
\end{equation*}
$$

We now present some numerical results. We first take the exact solution to be $u(x)=x^{11 / 3}(1-x)$ and $u(x)=x^{7 / 3}(1-x)$ The convergence rate is shown on the Fig.17. We observe that the error converges exponentially in both cases despite the fact that the solutions are weakly singular near $x=0$.

Figure 17: $u(x)=x^{11 / 3}(1-x)$ (left) $u(x)=x^{7 / 3}(1-x)$ (right)

Concluding Remarks

- We first presented EIM and some of its properties
- We applied EIM based on Müntz polynomial and Müntzlogarithmic polynomial to approximate singular function.
- We derived a generalized Gauss quadrature based on lagrange interpolation polynomial using the magic points.
- We gave some numerical evidences demonstrated the efficiency of our approaches

Further directions:

- Continue with collocation methods for the singular problem.
- Interpolation error estimates about Müntz polynomial and Müntz-logarithmic polynomial based on EIM.

