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Motivation

The need for a quadrature formula adapted to PDEs with
Nonlocal and Singular Operators

Hight order numerical integration when Müntz and Müntz-
Logarithmic Polynomials are used

Solve PDE in complex domains using monodomaine ap-
proaches

etc....
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Müntz legendre polynomial interpolation

We adopt the following definition for xλ given by:

xλ = eλ log x, x ∈ (0,∞), λ ∈ C, (1)

Given a complex sequence Λ = {λ0, λ1, λ2, · · · }, a linear
combination system {xλ0 , xλ1 , · · · , xλn} is called a Müntz
polynomial, or a Λ−polynomials.
In the sequel, we consider

Λ = {λ0, λ1, λ2, · · · }, R(λk) > −1

2
, (2)

where R(λ) is the real part of λ. This ensures that every
Λ-polynomial is dense in L2[0, 1].
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Then, we give the definition of Müntz Legendre polynomial (see
[Taslakyan])

Definition

Let Λ = {λ0, λ1, λ2, · · · } be a complex sequence, R(λk) > −1
2 .

We define the nth Müntz-Legendre polynomial on (0, 1] to be

Ln(λ0, · · · , λn;x) =
1

2πi

∫
Γ

n−1∏
k=0

t+ λ̄k + 1

t− λk

xt

t− λn
dt, n = 0, 1, · · · ,

(3)
where the simple contour Γ surrounds all the zeros of the denom-
inator in the integrand, and λ̄ denotes the conjugate of λ.

[1] AK Taslakyan. Some properties of legendre quasi-
polynomials with respect to a Müntz system. Mathematics,
2:179–189, 1984.
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Now we consider the important special case where

λ2k = λ2k+1 = k, (k = 0, 1, · · · ). (4)

Cauchy residue theorem applied to the integral in (3), conduct
to the representation for the corresponding Müntz polynomials:

Ln(x) = Rn(x) + Sn(x) log x (n = 0, 1, · · · ), (5)

where Rn(x) and Sn(x) are algebraic polynomials of degree
[n/2] and [(n− 1)/2], respectively, i.e.,

Rn(x) =

[n/2]∑
ν=0

a(n)ν xν , Sn(x) =

[(n−1)/2]∑
ν=0

b(n)ν xν . (6)

Notice that Ln(1) = Rn(1) = 1.
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The first few Müntz polynomials (3) are:

L0(x) = 1,
L1(x) = 1 + log x,
L2(x) = −3 + 4x− log x,
L3(x) = 9− 8x+ 2(1 + 6x) log x,
L4(x) = −11− 24x+ 36x2 − 2(1 + 18x) log x.

We plot the first four Müntz Legendre polynomials :
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Figure 1: Müntz Legendre polynomials with n = 1, 2, 3, 4
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Empirical Integration Method (EIM)

Let G(·;µ) be a parametrized function that generate(span)
the full function space by choosing parameters µ from the
parameter domain D

U = span{G(·;µ) : µ ∈ D}. It is called the training set

WN = span{G(·;µ) : µ ∈ Ξ}. Ξ ⊆ D is of dimension N . It
is called the basis set

WN ⊆ U
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Algorithm 1 Greedy EIM

µ1 = argmaxµ∈D ∥G(·;µ)∥L∞(Ω)

x1 = argmaxx∈Ω |G(x;µ1)|
q1 = G(·;µ1)/G(x1;µ1)
for m = 2 : N do
µm = argmaxµ∈D ∥G(·;µ)− Im−1[G(·;µ)]∥L∞(Ω)

xm = argmaxx∈Ω |G(x;µm)− Im−1[G(·;µm)](x)|
qm = G(·;µm)−Im−1[G(·;µm)]

G(xm;µm)−Im−1[G(xm;µm)](xm)
end for

Objective: approximate a function f over a domain Ω by a linear
combination of N pre-defined basis functions

f(x) ≈ IN [f ](x) =

N∑
i=1

βiqi(x). (7)
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Müntz Legendre polynomials interpolation

U = span{1, L1(x), · · · , LN (x)}, where λn = nλ+ q.
Distribution of the magic points {x(j)}Nj=0 with various N using
EIM based on Müntz Legendre polynomial:
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Figure 2: Interpolation nodes distribution of Müntz-legendre polyno-
mial with different N

On PDEs with Nonlocal and Singular Operators CFM, 29 Aug–2 Sep 2022



Motivation
Preliminaries

First numerical results
Generalized gaussian quadrature rules
Application to some singular problems

Concluding remarks
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We plot the error curves for the Müntz-Legendre polynomials
approximation to f(x) = x1/3 by using EIM interpolation and
classical GLL interpolation.
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Figure 3: f(x) = x1/3
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Müntz polynomials interpolation

U = span{1, xλ1 , · · · , xλN }, where λn = nλ+ q. Fig.4 exhibits
the influence of the parameters λ, q on the nodes distribution.
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Figure 4: Interpolation nodes distribution of Müntz polynomial N = 16
with different λ, q
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We plot the error curves for the fractional polynomial
approximation to f(x) = x1/9 with various λ, q in Fig.5.
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Figure 5: λ = 0.1(left) and q = 0.1(right)
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Müntz-logarithmic polynomials interpolation
The approximate results based on EIM on 2D domain

Müntz-logarithmic polynomials interpolation

U = span{1, xλ1 log(x), · · · , xλN log(x)N}, where λn = nλ+ q.
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Figure 6: Interpolation nodes distribution of Müntz -logarithmic poly-
nomial with different N
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We plot the error curves for Müntz-logarithmic polynomial
approximation to singular function f(x) = x1/8 and
f(x) = x1/8log(x) in the left of Fig.7. Then we plot more
singular functions f(x) = x−1/6 and f(x) = x−1/10 in the right
of Fig.7.
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Figure 7: λ = 0.01, q = 0
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Influence of sample points : Left we plot the error curves to
approximate the smooth function f(x) = exp(x). Right for the
singular function f(x) = x1/10

0 10 20 30

N

-10

-8

-6

-4

-2

0

lo
g

1
0
(E

rr
o

r)

L -Error, sample ponits

equidistant ponts

GLL

0 10 20 30

N

-15

-10

-5

0

lo
g

1
0
(E

rr
o

r)

L -Error, sample ponits

equidistant ponts

GLL

Figure 8: λ = 0.01, q = 0.1
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The approximate results based on EIM on 2D domain

First, we plot the distribution of the first 25 spatial magic
points on a triangular domain in the left of Fig.9, and the 25
magic points on a square domain in the right of Fig.9 about the
Müntz polynomial.
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Figure 9: distribution of magic points about Müntz polynomial
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Similarly, we can also get the distribution of 25 magic points of
Müntz-logarithmic polynomial on the triangular domain and
square domain respectively in Fig 10.
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Figure 10: distribution of magic points about Müntz-logarithmic poly-
nomial
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Generalized gaussian quadrature rules

Now we aim to construct Lagrangian interpolation operator IM
in XN over the set of points TN = {xi, 1 ≤ i ≤ N}.
Then using it as

IN [u(x)] =

N∑
i=1

u(xi)h
N
i (x), where hNi (xj) = δij

So we can construct Gaussian quadrature rule on the form∫ 1

0
hk(x)dx =

N∑
i=1

hk(xi)wi, (8)

where xi are the magic points, and wi =
∫ 1
0 hi(x)dx .
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The starting point is
that:span{hi} = span{G(·;µi)} = span{qi}. We can therefore
build a system of linear equations where the weights wi are the
unknowns and the basis functions hi are used implicitly∫ 1

0
G(·;µi)dx =

∫ 1

0
(

N∑
j=1

G(xj ;µi)hj(x))dx i = 1, · · ·N

=

N∑
j=1

G(xj ;µi)

∫ 1

0
hj(x)dx, j = 1, · · ·N

which written out becomesG(x1;µ1) · · · G(xN ;µ1)
...

. . .
...

G(x1;µN ) · · · G(xN ;µN )



∫ 1
0 h1(x)dx

...∫ 1
0 hN (x)dx

 =


∫ 1
0 G(·;µ1)dx

...∫ 1
0 G(·;µN )dx


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Example of Gaussian quadrature points and weights with
respect to the system of functions {xλk , xλk log(x)} on (0, 1) are
given in Table 1 when λk = λk + q,λ = 0.1, q = 0, and tested on
selected functions in Figure.11.

Table 1: Gaussian quadrature points and weights

N Nodes xi Weights wi

5 0.0010 0.0011746602382842875258656930694295
0.0747 0.13474398963884349770927997962002
1.0000 0.24843897467773208175249431724226
0.0070 0.02294768734186229930019931261884
0.4100 0.59269468810327783371216069744945
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Figure 11: approximate results of numerical quadrature
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Example of Gaussian quadrature points and weights with
respect to the system of functions {1, xλ1 , · · · , xλN } on (0, 1)
are given in Table 2 when λk = λk + q,λ = 0.1, q = 0.1.

Table 2: Gaussian quadrature points and weights

N Nodes xi Weights wi

6 1 0.24732489779607142863735567346317
0 0.0015809301585368928180284784028382

0.6042 0.11657754219045053408602708239755
0.0007 0.04713139171177925752564795832732
0.3994 0.61526451692235644479684401455218
0.0001 -0.027879278779194557863903207143061
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In the left of the figure we give the approximate results about
the integral of singular functions when λ = 0.1, q = 0.01. Then
we plot the error curves about the integral of smooth functions
in the right of Fig.12 when λ = 0.5, q = 0.5.
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Figure 12: approximate results of numerical quadrature
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Gaussian quadrature points and weights with respect to the
system of functions {xλk log(x)k} on (0, 1) are given in Table 3
when λk = λk + q,λ = 0.01, q = 0.1.

Table 3: Gaussian quadrature points and weights

N Nodes xi Weights wi

5 0.0010 0.0013744210088252069431219091042599
0.0080 0.02517745597339138253722281518308
0.0816 0.14519450449192957813194983190346
1.0000 0.23997786024373369479144027575075
0.4238 0.58827412192226618895774325859437
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We compare the approximate results of present Gaussian
quadrature rules with the generalized Gaussian quadrature in
Table 3 of [Rokhlin] to the singular function.

Table 4: the compared absolute error

absolute error of
∫ 1
0 x1/6dx

N 5 10 15

their method 5e-5 2e-6 4e-7

our method 8e-11 3e-17 4e-13

The result show that our method is more efficient.

[1] J Ma, V Rokhlin, and Stephen Wandzura. Generalized
gaussian quadrature rules for systems of arbitrary func-
tions. SIAM Journal on Numerical Analysis, 33(3):971–996,
1996.
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We fix λ = 0.01, q = 0.
Left of figure gives approximate results about the integral of
singular functions. Right of the figure concerns the integral of
smooth functions
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Figure 13: approximate results of numerical quadrature
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Application to fractional differential equations

Given f ∈ L2(0, 1), we consider the following Caputo fractional
differential diffusion equation of order s ∈ (0, 1) .{

C
0 D

s
tu(t) + q(t)u(t) = f(t), t ∈ (0, 1)

u(0) = u0.
(9)

Setting u = v + u0 into the above equation, we solve{
C
0 D

s
t v(t) + q(t)v(t) = f(t)− u0q(t), t ∈ (0, 1)

v(0) = 0.
(10)

Let us denote WM based on Müntz polynomial and
Müntz-logarithmic polynomial respectively.
The Müntz Galerkin method for (10) is: find uN ∈ WN such
that

(C0 D
s
t vN , wN ) + (qvN , wN ) = (f̃ , wN ), ∀wN ∈ WN . (11)

On PDEs with Nonlocal and Singular Operators CFM, 29 Aug–2 Sep 2022



Motivation
Preliminaries

First numerical results
Generalized gaussian quadrature rules
Application to some singular problems

Concluding remarks

We consider :
C
0 D

s
tu(t) = f(t), u(0) = 0. (12)

We choose the exact solution to be u(t) = t13/4.
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Figure 14: the convergence rate based on Müntz polynomial with s =
0.7, λ = 0.7, q = 0.1(left) and Müntz-logarithmic polynomial with s =
0.6, λ = 0.1, q = 0.1(right)
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Next we consider

C
0 D

s
tu(t) + (1 + sin t)u(t) = cos t, u(0) = 1, (13)

Reference solution is the one computed with M = 30.
The convergence rate based on Müntz polynomial is shown
on when s = 0.6, λ = 0.6, q = 0.
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Elliptic equation with geometric singularities

We consider now the problem

−∆u = f (14)

The domain Ω is the sector shown in figure with Θ = 3π
2 .
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Figure 16: Dirichlet boundary condition
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Using the lemma about the regularity of the solution in [Li].
Consider first the homogeneous boundary conditions:

u|θ=0 = 0, u|θ= 3π
2
= 0. (15)

Therefore, the solution can be obtained as:

u =

∞∑
k=0

akr
2k
3 sin(2k3 θ). (16)

[1] Z. C. Li and T. T. Lu. Singularities and Treatments of El-
liptic Boundary Value. Mathematical and Computer Mod-
eling 31 (2000) 97-145

On PDEs with Nonlocal and Singular Operators CFM, 29 Aug–2 Sep 2022



Motivation
Preliminaries

First numerical results
Generalized gaussian quadrature rules
Application to some singular problems

Concluding remarks

In polar coordinates, this problem reads

−1

r
(rur)r −

1

r2
uθθ = f, (r, θ) ∈ (0, 1)× (0,

3π

2
),

u|∂Ω = 0.
(17)

We apply the following transform, x = r, y =
2θ

3π
. Denote

ũ(x, y) = u(r, θ), f̃(x, y) = f(r, θ).
The problem (17) becomes

−(xũx)x − (
2

3π
)2
1

x
ũyy = xf̃ , (x, y) ∈ (0, 1)× (0, 1),

ũ(x = 0, 1, 0 ≤ y ≤ 1) = 0.
(18)

For EIM we consider a given finite-dimensional space

WN = {(1− x)xλk ⊗ (1− y)yλj , λk = kλ+ q, λj = jλ+ q}
k = 1, 2, · · ·m, j = 1, 2, · · · , n,N = mn.

We consider Müntz Galerkin method as follows: given
ũN ∈ WN such that

(x∂xũM , ∂xv) + (
2

3π
)2(

1

x
∂yũN , ∂yv) = (xf̃ , v), ∀v ∈ WN . (19)
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Example 1 : the exact solution is u(x, y) = (x− 1)cxcyd(y − 1)d.
Table 5 is for λ = 1.1, q = 0.1 and c = 5/4, d = 8/3.

Table 5: the Max error on 2D square domain

N 4 9 16

L∞-error 8e-10 1e-11 5e-13

Example 2 : the exact solution is u(x, y) = (1− x)cxd sin(πy).
Table 6 is for λ = 1.1, q = 0.1 and c = 8/3, d = 5/4.

Table 6: the Max error on 2D square domain

N 4 9 16

L∞-error 2e-11 1e-10 1e-12
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singular two point boundary value problem

In the last example, we use Müntz-logarithmic polynomial as
basis functions to solve the following singular two point
boundary value problem

(xαu′)′ = f, x ∈ (0, 1), 0 ≤ α < 1,

u(0) = u(1) = 0.
(20)

Let us denote

XN := span{xλk(log(x))k, k = 1, 2, · · · , N}. (21)

Our Müntz-logarithmic Galerkin method is: find uN ∈ XN such
that

((xαu′N )′, wN ) = (INf, wN ), ∀wN ∈ XN . (22)
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We now present some numerical results. We first take the exact
solution to be u(x) = x11/3(1− x) and u(x) = x7/3(1− x) The
convergence rate is shown on the Fig.17. We observe that the
error converges exponentially in both cases despite the fact that
the solutions are weakly singular near x = 0.
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Figure 17: u(x) = x11/3(1− x)(left) u(x) = x7/3(1− x)(right)

On PDEs with Nonlocal and Singular Operators CFM, 29 Aug–2 Sep 2022



Motivation
Preliminaries

First numerical results
Generalized gaussian quadrature rules
Application to some singular problems

Concluding remarks

Concluding Remarks

We first presented EIM and some of its properties

We applied EIM based on Müntz polynomial and Müntz-
logarithmic polynomial to approximate singular function.

We derived a generalized Gauss quadrature based on la-
grange interpolation polynomial using the magic points.

We gave some numerical evidences demonstrated the effi-
ciency of our approaches

Further directions:

Continue with collocation methods for the singular problem.

Interpolation error estimates about Müntz polynomial and
Müntz-logarithmic polynomial based on EIM.
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