High Order Approximation for Müntz and Müntz-Logarithmic Polynomials Using Emprical Interpolation Method

Tengteng Cui

with

Mejdi Azaiez and Chuanju Xu

Motivation	
Preliminaries	
First numerical results	
Generalized gaussian quadrature rules	
Application to some singular problems	
Concluding remarks	
. 1.	

Outline

1 Motivation

- 2 Preliminaries
- **3** First numerical results
- 4 Generalized gaussian quadrature rules
- 5 Application to some singular problems

6 Concluding remarks

- The need for a quadrature formula adapted to PDEs with Nonlocal and Singular Operators
- Hight order numerical integration when Müntz and Müntz-Logarithmic Polynomials are used
- Solve PDE in complex domains using monodomaine approaches
- ∎ etc....

Müntz legendre polynomial interpolation Empirical Integration Method (EIM)

Müntz legendre polynomial interpolation

We adopt the following definition for x^{λ} given by:

$$x^{\lambda} = e^{\lambda \log x}, \quad x \in (0, \infty), \lambda \in \mathbb{C},$$
 (1)

Given a complex sequence $\Lambda = \{\lambda_0, \lambda_1, \lambda_2, \cdots\}$, a linear combination system $\{x^{\lambda_0}, x^{\lambda_1}, \cdots, x^{\lambda_n}\}$ is called a Müntz polynomial, or a Λ -polynomials. In the sequel, we consider

$$\Lambda = \{\lambda_0, \lambda_1, \lambda_2, \cdots\}, \quad R(\lambda_k) > -\frac{1}{2}, \tag{2}$$

where $R(\lambda)$ is the real part of λ . This ensures that every Λ -polynomial is dense in $L^2[0, 1]$.

Müntz legendre polynomial interpolation Empirical Integration Method (EIM)

Then, we give the definition of Müntz Legendre polynomial (see **[Taslakyan**])

Definition

Let $\Lambda = \{\lambda_0, \lambda_1, \lambda_2, \dots\}$ be a complex sequence, $R(\lambda_k) > -\frac{1}{2}$. We define the *n*th Müntz-Legendre polynomial on (0, 1] to be

$$L_n(\lambda_0, \cdots, \lambda_n; x) = \frac{1}{2\pi i} \int_{\Gamma} \prod_{k=0}^{n-1} \frac{t + \bar{\lambda}_k + 1}{t - \lambda_k} \frac{x^t}{t - \lambda_n} dt, \quad n = 0, 1, \cdots,$$
(3)

where the simple contour Γ surrounds all the zeros of the denominator in the integrand, and $\overline{\lambda}$ denotes the conjugate of λ .

[1] AK Taslakyan. Some properties of legendre quasipolynomials with respect to a Müntz system. *Mathematics*, 2:179–189, 1984.

On PDEs with Nonlocal and Singular Operators CFM, 29 Aug-2 Sep 2022

Müntz legendre polynomial interpolation Empirical Integration Method (EIM)

Now we consider the important special case where

$$\lambda_{2k} = \lambda_{2k+1} = k, \quad (k = 0, 1, \cdots).$$
 (4)

Cauchy residue theorem applied to the integral in (3), conduct to the representation for the corresponding Müntz polynomials:

$$L_n(x) = R_n(x) + S_n(x) \log x \quad (n = 0, 1, \cdots),$$
 (5)

where $R_n(x)$ and $S_n(x)$ are algebraic polynomials of degree [n/2] and [(n-1)/2], respectively, i.e.,

$$R_n(x) = \sum_{\nu=0}^{[n/2]} a_{\nu}^{(n)} x^{\nu}, \quad S_n(x) = \sum_{\nu=0}^{[(n-1)/2]} b_{\nu}^{(n)} x^{\nu}.$$
(6)

Notice that $L_n(1) = R_n(1) = 1$.

On PDEs with Nonlocal and Singular Operators CFM, 29 Aug-2 Sep 2022

Müntz legendre polynomial interpolation Empirical Integration Method (EIM)

The first few Müntz polynomials (3) are:

$$L_0(x) = 1,$$

$$L_1(x) = 1 + \log x,$$

$$L_2(x) = -3 + 4x - \log x,$$

$$L_3(x) = 9 - 8x + 2(1 + 6x) \log x,$$

$$L_4(x) = -11 - 24x + 36x^2 - 2(1 + 18x) \log x.$$

We plot the first four Müntz Legendre polynomials :

Figure 1: Müntz Legendre polynomials with n = 1, 2, 3, 4On PDEs with Nonlocal and Singular Operators CFM, 29 Aug-2 Sep 2022

Müntz legendre polynomial interpolation Empirical Integration Method (EIM)

Empirical Integration Method (EIM)

Let $\mathcal{G}(\cdot; \mu)$ be a parametrized function that generate(span) the full function space by choosing parameters μ from the parameter domain \mathcal{D}

- $\mathcal{U} = span\{\mathcal{G}(\cdot; \mu) : \mu \in \mathcal{D}\}$. It is called the training set
- $W_N = span\{\mathcal{G}(\cdot; \mu) : \mu \in \Xi\}$. $\Xi \subseteq \mathcal{D}$ is of dimension \mathcal{N} . It is called the basis set
- $\bullet W_N \subseteq \mathcal{U}$

Müntz legendre polynomial interpolation Empirical Integration Method (EIM)

Algorithm 1 Greedy EIM

$$\begin{split} \mu_{1} &= \arg \max_{\boldsymbol{\mu} \in \mathcal{D}} \|\mathcal{G}(\cdot;\boldsymbol{\mu})\|_{L^{\infty}(\Omega)} \\ x_{1} &= \arg \max_{\boldsymbol{x} \in \Omega} |\mathcal{G}(\boldsymbol{x};\boldsymbol{\mu}_{1})| \\ q_{1} &= \mathcal{G}(\cdot;\boldsymbol{\mu}_{1})/\mathcal{G}(\boldsymbol{x}_{1};\boldsymbol{\mu}_{1}) \\ \text{for } m &= 2:N \text{ do} \\ \mu_{m} &= \arg \max_{\boldsymbol{\mu} \in \mathcal{D}} \|\mathcal{G}(\cdot;\boldsymbol{\mu}) - \mathcal{I}_{m-1}[\mathcal{G}(\cdot;\boldsymbol{\mu})]\|_{L^{\infty}(\Omega)} \\ x_{m} &= \arg \max_{\boldsymbol{x} \in \Omega} |\mathcal{G}(\boldsymbol{x};\boldsymbol{\mu}_{m}) - \mathcal{I}_{m-1}[\mathcal{G}(\cdot;\boldsymbol{\mu}_{m})](\boldsymbol{x})| \\ q_{m} &= \frac{\mathcal{G}(\cdot;\boldsymbol{\mu}_{m}) - \mathcal{I}_{m-1}[\mathcal{G}(\cdot;\boldsymbol{\mu}_{m})]}{\mathcal{G}(\boldsymbol{x}_{m};\boldsymbol{\mu}_{m}) - \mathcal{I}_{m-1}[\mathcal{G}(\boldsymbol{x}_{m};\boldsymbol{\mu}_{m})](\boldsymbol{x}_{m})} \\ \text{end for} \end{split}$$

Objective: approximate a function f over a domain Ω by a linear combination of N pre-defined basis functions

$$f(x) \approx \mathcal{I}_N[f](x) = \sum_{i=1}^N \beta_i q_i(x).$$
(7)

Müntz Legendre polynomials interpolation Müntz polynomials interpolation Müntz-logarithmic polynomials interpolation The approximate results based on EIM on 2D domain

Müntz Legendre polynomials interpolation

 $\mathcal{U} = span\{1, L_1(x), \cdots, L_N(x)\}, \text{ where } \lambda_n = n\lambda + q.$ Distribution of the magic points $\{x(j)\}_{j=0}^N$ with various N using EIM based on Müntz Legendre polynomial:

Figure 2: Interpolation nodes distribution of Müntz-legendre polynomial with different ${\cal N}$

On PDEs with Nonlocal and Singular Operators CFM, 29 Aug-2 Sep 2022

Müntz Legendre polynomials interpolation Müntz polynomials interpolation Müntz-logarithmic polynomials interpolation The approximate results based on EIM on 2D domain

We plot the error curves for the Müntz-Legendre polynomials approximation to $f(x) = x^{1/3}$ by using EIM interpolation and classical GLL interpolation.

Müntz Legendre polynomials interpolation **Müntz polynomials interpolation** Müntz-logarithmic polynomials interpolation The approximate results based on EIM on 2D domain

Müntz polynomials interpolation

 $\mathcal{U} = span\{1, x^{\lambda_1}, \cdots, x^{\lambda_N}\}$, where $\lambda_n = n\lambda + q$. Fig.4 exhibits the influence of the parameters λ, q on the nodes distribution.

Figure 4: Interpolation nodes distribution of Müntz polynomial N = 16 with different λ, q

Müntz Legendre polynomials interpolation **Müntz polynomials interpolation** Müntz-logarithmic polynomials interpolation The approximate results based on EIM on 2D domain

We plot the error curves for the fractional polynomial approximation to $f(x) = x^{1/9}$ with various λ, q in Fig.5.

Müntz Legendre polynomials interpolation Müntz polynomials interpolation Müntz-logarithmic polynomials interpolation The approximate results based on EIM on 2D domain

Müntz-logarithmic polynomials interpolation

 $\mathcal{U} = span\{1, x^{\lambda_1} \log(x), \cdots, x^{\lambda_N} \log(x)^N\}, \text{ where } \lambda_n = n\lambda + q.$

Figure 6: Interpolation nodes distribution of Müntz -logarithmic polynomial with different ${\cal N}$

Müntz Legendre polynomials interpolation Müntz polynomials interpolation Müntz-logarithmic polynomials interpolation The approximate results based on EIM on 2D domain

We plot the error curves for Müntz-logarithmic polynomial approximation to singular function $f(x) = x^{1/8}$ and $f(x) = x^{1/8} log(x)$ in the left of Fig.7. Then we plot more singular functions $f(x) = x^{-1/6}$ and $f(x) = x^{-1/10}$ in the right of Fig.7.

On PDEs with Nonlocal and Singular Operators CFM, 29 Aug-2 Sep 2022

Müntz Legendre polynomials interpolation Müntz polynomials interpolation Müntz-logarithmic polynomials interpolation The approximate results based on EIM on 2D domain

Influence of sample points : Left we plot the error curves to approximate the smooth function f(x) = exp(x). Right for the singular function $f(x) = x^{1/10}$

Figure 8: $\lambda = 0.01, q = 0.1$

Müntz Legendre polynomials interpolation Müntz polynomials interpolation Müntz-logarithmic polynomials interpolation The approximate results based on EIM on 2D domain

The approximate results based on EIM on 2D domain

First, we plot the distribution of the first 25 spatial magic points on a triangular domain in the left of Fig.9, and the 25 magic points on a square domain in the right of Fig.9 about the Müntz polynomial.

Figure 9: distribution of magic points about Müntz polynomial

 Motivation
 Preliminaries

 First numerical results
 Müntz Legendre polynomials interpolation

 Generalized gaussian quadrature rules
 Müntz-logarithmic polynomials interpolation

 Application to some singular problems
 The approximate results based on EIM on 2D domain

Similarly, we can also get the distribution of 25 magic points of Müntz-logarithmic polynomial on the triangular domain and square domain respectively in Fig 10.

Figure 10: distribution of magic points about Müntz-logarithmic polynomial

numerical results

Generalized gaussian quadrature rules

Now we aim to construct Lagrangian interpolation operator \mathcal{I}_M in X_N over the set of points $T_N = \{x_i, 1 \leq i \leq N\}$. Then using it as

$$\mathcal{I}_N[u(x)] = \sum_{i=1}^N u(x_i)h_i^N(x), \quad where \quad h_i^N(x_j) = \delta_{ij}$$

So we can construct Gaussian quadrature rule on the form

$$\int_{0}^{1} h_k(x) dx = \sum_{i=1}^{N} h_k(x_i) w_i,$$
(8)

where x_i are the magic points, and $w_i = \int_0^1 h_i(x) dx$.

Motivation Preliminaries First numerical results Generalized gaussian quadrature rules Application to some singular problems Concluding remarks	numerical results
---	-------------------

The starting point is that: $span\{h_i\} = span\{\mathcal{G}(\cdot; \mu_i)\} = span\{q_i\}$. We can therefore build a system of linear equations where the weights w_i are the unknowns and the basis functions h_i are used implicitly

$$\int_0^1 \mathcal{G}(\cdot;\mu_i) dx = \int_0^1 (\sum_{j=1}^N \mathcal{G}(x_j;\mu_i)h_j(x)) dx \quad i = 1, \cdots N$$
$$= \sum_{j=1}^N \mathcal{G}(x_j;\mu_i) \int_0^1 h_j(x) dx, \quad j = 1, \cdots N$$

which written out becomes

$$\begin{bmatrix} \mathcal{G}(x_1;\mu_1) & \cdots & \mathcal{G}(x_N;\mu_1) \\ \vdots & \ddots & \vdots \\ \mathcal{G}(x_1;\mu_N) & \cdots & \mathcal{G}(x_N;\mu_N) \end{bmatrix} \begin{bmatrix} \int_0^1 h_1(x)dx \\ \vdots \\ \int_0^1 h_N(x)dx \end{bmatrix} = \begin{bmatrix} \int_0^1 \mathcal{G}(\cdot;\mu_1)dx \\ \vdots \\ \int_0^1 \mathcal{G}(\cdot;\mu_N)dx \end{bmatrix}$$

Motivation Preliminaries First numerical results Generalized gaussian quadrature rules Application to some singular problems Concluding remarks	numerical results	
---	-------------------	--

Example of Gaussian quadrature points and weights with respect to the system of functions $\{x^{\lambda_k}, x^{\lambda_k} \log(x)\}$ on (0, 1) are given in Table 1 when $\lambda_k = \lambda k + q, \lambda = 0.1, q = 0$, and tested on selected functions in Figure.11.

Table 1: Gaussian quadrature points and weights

N	Nodes x_i	Weights w_i
5	0.0010	0.0011746602382842875258656930694295
	0.0747	0.13474398963884349770927997962002
	1.0000	0.24843897467773208175249431724226
	0.0070	0.02294768734186229930019931261884
	0.4100	0.59269468810327783371216069744945

Figure 11: approximate results of numerical quadrature

Motivation	
Preliminaries	
First numerical results	
Generalized gaussian quadrature rules	mum
Application to some singular problems	
Concluding remarks	

numerical results

Example of Gaussian quadrature points and weights with respect to the system of functions $\{1, x^{\lambda_1}, \dots, x^{\lambda_N}\}$ on (0, 1) are given in Table 2 when $\lambda_k = \lambda k + q, \lambda = 0.1, q = 0.1$.

Table 2: Gaussian quadrature points and weights

N	Nodes x_i	Weights w_i
6	1	0.24732489779607142863735567346317
	0	0.0015809301585368928180284784028382
	0.6042	0.11657754219045053408602708239755
	0.0007	0.04713139171177925752564795832732
	0.3994	0.61526451692235644479684401455218
	0.0001	-0.027879278779194557863903207143061

In the left of the figure we give the approximate results about the integral of singular functions when $\lambda = 0.1, q = 0.01$. Then we plot the error curves about the integral of smooth functions in the right of Fig.12 when $\lambda = 0.5, q = 0.5$.

Figure 12: approximate results of numerical quadrature

Motivation Preliminaries First numerical results Generalized gaussian quadrature rules Application to some singular problems Concluding remarks	numerical results
---	-------------------

Gaussian quadrature points and weights with respect to the system of functions $\{x^{\lambda_k}\log(x)^k\}$ on (0,1) are given in Table 3 when $\lambda_k = \lambda k + q, \lambda = 0.01, q = 0.1$.

Table 3: Gaussian quadrature points and weights

N	Nodes x_i	Weights w_i
5	0.0010	0.0013744210088252069431219091042599
	0.0080	0.02517745597339138253722281518308
	0.0816	0.14519450449192957813194983190346
	1.0000	0.23997786024373369479144027575075
	0.4238	0.58827412192226618895774325859437

numerical results

We compare the approximate results of present Gaussian quadrature rules with the generalized Gaussian quadrature in Table 3 of [**Rokhlin**] to the singular function.

absolute error of $\int_0^1 x^{1/6} dx$				
N 5 10 15				
their method	5e-5	2e-6	4e-7	
our method	8e-11	3e-17	4e-13	

Table 4: the compared absolute error

The result show that our method is more efficient.

 J Ma, V Rokhlin, and Stephen Wandzura. Generalized gaussian quadrature rules for systems of arbitrary functions. SIAM Journal on Numerical Analysis, 33(3):971–996, 1996.

On PDEs with Nonlocal and Singular Operators CFM, 29 Aug-2 Sep 2022

We fix $\lambda = 0.01, q = 0$.

Left of figure gives approximate results about the integral of singular functions. Right of the figure concerns the integral of smooth functions

Figure 13: approximate results of numerical quadrature

Application to fractional differential equations

Given $f \in L^2(0,1)$, we consider the following Caputo fractional differential diffusion equation of order $s \in (0,1)$.

$$\begin{cases} {}^{C}_{0}D^{s}_{t}u(t) + q(t)u(t) = f(t), & t \in (0,1) \\ u(0) = u_{0}. \end{cases}$$
(9)

Setting $u = v + u_0$ into the above equation, we solve

$$\begin{cases} {}^{C}_{0}D^{s}_{t}v(t) + q(t)v(t) = f(t) - u_{0}q(t), & t \in (0,1) \\ v(0) = 0. \end{cases}$$
(10)

Let us denote W_M based on Müntz polynomial and Müntz-logarithmic polynomial respectively. The Müntz Galerkin method for (10) is: find $u_N \in W_N$ such that

$$\binom{C}{0} D_t^s v_N, w_N) + (q v_N, w_N) = (\tilde{f}, w_N), \quad \forall w_N \in W_N.$$
(11)

We consider :

$${}_{0}^{C}D_{t}^{s}u(t) = f(t), \quad u(0) = 0.$$
 (12)

We choose the exact solution to be $u(t) = t^{13/4}$.

Figure 14: the convergence rate based on Müntz polynomial with $s = 0.7, \lambda = 0.7, q = 0.1$ (left) and Müntz-logarithmic polynomial with $s = 0.6, \lambda = 0.1, q = 0.1$ (right)

Next we consider

$${}_{0}^{C}D_{t}^{s}u(t) + (1+\sin t)u(t) = \cos t, \quad u(0) = 1,$$
(13)

- Reference solution is the one computed with M = 30.
- The convergence rate based on Müntz polynomial is shown on when $s = 0.6, \lambda = 0.6, q = 0$.

On PDEs with Nonlocal and Singular Operators CFM, 29 Aug-2 Sep 2022

Elliptic equation with geometric singularities

We consider now the problem

$$-\Delta u = f \tag{14}$$

The domain Ω is the sector shown in figure with $\Theta = \frac{3\pi}{2}$.

Figure 16: Dirichlet boundary condition

Using the lemma about the regularity of the solution in [Li]. Consider first the homogeneous boundary conditions:

$$u|_{\theta=0} = 0, \quad u|_{\theta=\frac{3\pi}{2}} = 0.$$
 (15)

Therefore, the solution can be obtained as:

$$u = \sum_{k=0}^{\infty} a_k r^{\frac{2k}{3}} \sin(\frac{2k}{3}\theta).$$

$$(16)$$

 Z. C. Li and T. T. Lu. Singularities and Treatments of Elliptic Boundary Value. Mathematical and Computer Modeling 31 (2000) 97-145

■ In polar coordinates, this problem reads

$$-\frac{1}{r}(ru_r)_r - \frac{1}{r^2}u_{\theta\theta} = f, \quad (r,\theta) \in (0,1) \times (0,\frac{3\pi}{2}), \quad (17)$$
$$u|_{\partial\Omega} = 0.$$

We apply the following transform, $x = r, y = \frac{2\theta}{3\pi}$. Denote $\tilde{u}(x, y) = u(r, \theta), \ \tilde{f}(x, y) = f(r, \theta).$ • The problem (17) becomes $-(x\tilde{u}_x)_x - (\frac{2}{3\pi})^2 \frac{1}{x} \tilde{u}_{yy} = x\tilde{f}, \quad (x, y) \in (0, 1) \times (0, 1),$

$$\tilde{u}(x=0,1,0 \le y \le 1) = 0.$$
(18)

For EIM we consider a given finite-dimensional space

$$W_N = \{(1-x)x^{\lambda_k} \otimes (1-y)y^{\lambda_j}, \lambda_k = k\lambda + q, \lambda_j = j\lambda + q\}$$

$$k = 1, 2, \cdots m, j = 1, 2, \cdots, n, N = mn.$$

On PDEs with Nonlocal and Singular Operators CFM, 29 Aug-2 Sep 2022

Example 1 : the exact solution is $u(x, y) = (x - 1)^c x^c y^d (y - 1)^d$. Table 5 is for $\lambda = 1.1, q = 0.1$ and c = 5/4, d = 8/3. Table 5: the Max error on 2D square domain

N	4	9	16
L^{∞} -error	8e-10	1e-11	5e-13

Example 2 : the exact solution is $u(x, y) = (1 - x)^c x^d \sin(\pi y)$. Table 6 is for $\lambda = 1.1, q = 0.1$ and c = 8/3, d = 5/4.

Table 6: the Max error on 2D square domain

N	4	9	16
L^{∞} -error	2e-11	1e-10	1e-12

singular two point boundary value problem

In the last example, we use Müntz-logarithmic polynomial as basis functions to solve the following singular two point boundary value problem

$$(x^{\alpha}u')' = f, x \in (0,1), 0 \le \alpha < 1,$$

$$u(0) = u(1) = 0.$$
(20)

Let us denote

$$X_N := span\{x^{\lambda_k}(\log(x))^k, k = 1, 2, \cdots, N\}.$$
 (21)

Our Müntz-logarithmic Galerkin method is: find $u_N \in X_N$ such that

$$((x^{\alpha}u'_N)', w_N) = (I_N f, w_N), \quad \forall w_N \in X_N.$$
(22)

We now present some numerical results. We first take the exact solution to be $u(x) = x^{11/3}(1-x)$ and $u(x) = x^{7/3}(1-x)$ The convergence rate is shown on the Fig.17. We observe that the error converges exponentially in both cases despite the fact that the solutions are weakly singular near x = 0.

Figure 17: $u(x) = x^{11/3}(1-x)(\text{left}) \ u(x) = x^{7/3}(1-x)(\text{right})$

Concluding Remarks

- We first presented EIM and some of its properties
- We applied EIM based on Müntz polynomial and Müntzlogarithmic polynomial to approximate singular function.
- We derived a generalized Gauss quadrature based on lagrange interpolation polynomial using the magic points.
- We gave some numerical evidences demonstrated the efficiency of our approaches

Further directions:

- Continue with collocation methods for the singular problem.
- Interpolation error estimates about Müntz polynomial and Müntz-logarithmic polynomial based on EIM.