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@ The biharmonic Cauchy problem

© Cauchy problem in thin plate theory

o Numerical implementation using Discrete Kirchhoff finite elements

© Perspectives



@ The biharmonic Cauchy problem
o Equivalent formulation of the problem
@ The fading regularization method
@ Convergence of the continuous formulation



Cauchy problem associated with the biharmonic equation

Au=0 YxeQ
ou

Au=v Vxe
Av=0 VxeQ

N =T,uljetlyNI; =0

ollu, = % etv, = %

L'y
Thin plate bending

Stokes flow
u : the deflection of the plate

u : the stream function
v : the bending moment v : the vorticity of the fluid



B = S
Cauchy problem associated with the biharmonic equation
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No boundary condition is given on I';

ollu, = % etv, =

— ill-posed problem in the sens of Hada-
mard

the stability of the solution cannot be
guaranteed

— It’s an inverse problem !

— Cannot be solved by the usual methods




Examples of regularization methods

Based on a reformulation of the Cauchy problem :

The method based on minimization of an energy-like error Functional
(Andrieux et al. (2005-2006))

Transform the problem into two well-posed problem with mixed boundary conditions and minimize
the gap between the two field solutions.

Steklov-Poincaré algorithm (Belgacem et al. (2005))

Transform the problem into a Steklov-Poincaré problem, two direct problems with Dirichlet and
Neumann boundary data respectively.

Based on the regularization of the continuous problem :

Quasi-reversibility method (Lattés et al. (1967))
Second order ill-posed Cauchy problem ~~ Fourth order well-posed problem

Tikhonov methods (Tikhonov et al. (1986))

Regularization by adding a control term (well-posed problem).

Fading regularization method (Cimetiere et al. (2000,2001), Delvare (2000))

Iterative regularization by adding a control term that tend to O (well-posed problems).



Equivalent formulation of the problem

For ®; = (w4, Ya, pta, $a) @ quadruplet of compatible data on I, (i.e.
®, € H(T;)), the biharmonic Cauchy problem is equivalent to :

U= (u,uy,v,v,) € HT) suchas:
U=9o, only

with

H(T) = {® = (¢, ¢, 1, ¢) € X(T) such as Ju €
with v = Au and (u, u’,v,v') = (p, 90, 1, )} ,

such as
X(T) = H*() x H'/*(T') x H~'/>(I') x H3/*(T")

and
HP={ucH(Q) | A%u=0}.



The fading regularization method
Cimetiere et al. (2000,2001), Delvare (2000)

Basic idea : Seeking among all solutions of the equilibrium equation in 2, the one
that fits the best the boundary conditions available on I'y, with :
- independence to a regularization parameter,

- stability towards noisy data,

U = Argmin {[|V — @42, + ¢V — UA[2)
VeH(T)

v" A sequence of well-posed optimization problems,

v" Best agreement to the data (data relaxation),

v" Independence of the solution with respect to c,

v" Convergent algorithm.

—> Atiteration k, there exists a unique minimum characterized by the optimality equation :

(U — @, Vip, + (U — UK, V) =0 WV € H(T)



Convergence of the continuous formulation

Let ®, be the compatible Cauchy data associated with the compatible
solution U, € H(T). Then, the sequence (U*)icn generated by the iterative
algorithm verifies :

U~ o, in H(T,) strongly
U —~U, in H(') weakly




Convergence of the continuous formulation

Let ®, be the compatible Cauchy data associated with the compatible
solution U, € H(T). Then, the sequence (U")cn generated by the iterative
algorithm verifies :

U~ o, in H(T,) strongly
U —~U, in H(') weakly

For all n € N, the sequence (Uk)k generated by the iterative algorithm verifies :

Y n 2 n
U = Uefff + YU = U+ = U — @i, = (U° ~ Ul
k=0

k=0

where U, is the compatible solution of the Cauchy problem.

v




Convergence of the continuous formulation

For all n € N, the sequence (Uk )k generated by the iterative algorithm verifies :

N n 2 n
U7 = Ui+ D_ U = U+ 2D U = @i, = 10° — el
k=0 k=0

where U, is the compatible solution of the Cauchy problem.

@ The strong convergence

n
- The series ZHU]‘+1 — CDdepd is bounded,
k=0
— ||U* — @4|}, tends to 0,

— U — dzonTy.
k—+oo



Convergence of the continuous formulation

Forall n € N, the sequence (Uk )k generated by the iterative algorithm verifies :

n - 2 -
107 = Uelfe 4+ 30— O+ 2 U = @, = 0° - el
k=0 k=0

where U, is the compatible solution of the Cauchy problem.

@ The weak convergence

- Existence of a sub-sequence of (U*); that is weakly convergent to U,
o (|[U* — U.|/%) is bounded, hence (U¥); is bounded in H(I")
—» there exists a sub-sequence (U*),, of (U¥); such as :

U¥ — U in H(T)
o lim [U¥— &% =0,hence lim UK =,
p—+oo d p—r+oco

@ by uniquness of the limit on 'y : Uz|p, = @4
@ by uniquness of the harmonic extension (Holmgren’s theorem) :

U, =U.,onT.



Convergence of the continuous formulation

For all n € N, the sequence (Uk )k generated by the iterative algorithm verifies :

. n ) n
" = Ul + DU = U + ;ZHUHI — @It = U° — UeIr
k=0 k=0

where U, is the compatible solution of the Cauchy problem.

@ The weak convergence

- Existence of a sub-sequence of (Uk )« that is weakly convergent to U,
- Weak convergence of all the sequence (U*); to U, on T
— Proof by contradiction.



© Cauchy problem in thin plate theory
@ Formulation of the problem
@ Plate finite elements
@ Discrete Kirchhoff finite elements



Kirchhoff-Love hypotheses

K-L hypotheses,
normal section remains

The real
deformation

plane and normal
_____ 4] —_—— _\L — to the mid-surface
of 3 —%—I HZ

@ "Sections normal to the middle plane remain plane during deformation”

@ "Sections normal to the middle plane remain normal to the middle plane during
deformation”
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K-L hypotheses,
normal section remains

The real
deformation

plane and normal
_____ 4 —_— _L — to the mid-surface
o y —%—I HJ_C

@ Variational formulation :
/ ((LV)’D(LV)W) Sw dxdy :/ q(x,y)0w  dxdy
Q Q
N————

DA2w

Odw
+ /F [Mn o —Vn6w:| ds+zi:5w,-R,-
2
2

2 2 7t
where (LV) = {gT g—vz 2 a%v] et D is the flexural rigidity of the plate.
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Cauchy problem in thin plate theory

@ Cauchy problem associated with the biharmonic equation with mechanical
boundary conditions that relate to the thin plate bending problem

A’w =0 in Q
W= @q onlIy
W = Ya onTy

Mn = Md on Fd
V=V onIy

@ The boundary conditions of the Kirchhoff thin plate theory amount to
identifying the quantities w, % and the forces :

o? o? o2
M, =-D [Aw—l— 1-v) <2nxny$gy — nfa—;; —n,zfa—yv;)}

0Aw 0 Pw  O’w s o OPw
1—v)— \mmy( 55 — 55 T —ny
On +(1-v) Os [n m( oy Ox? )+ (n n})ﬁxﬁyﬂ

v =-p|



Cauchy problem in thin plate theory

@ Cauchy problem associated with the biharmonic equation with mechanical
boundary conditions that relate to the thin plate bending problem

A’w =0 in Q
W= @q onIy
W = Ya onTy

Mn = Md on Fd
Vn = Vd on Fd

@ The regularization functional becomes :
k 2 2 2
T W) = |lwir, — ballyzra ey +IWairy = Hallyyo oy + 1M, = Mally—1/2
2 k k
F1Varg = Vally—3/20,y + (I =W lla 2oy + e = w2

Mo = Ml 12+ Ve = Vil 320 )
YW = (w,wn, My, V,) € H(T).

where ¢ > 0 and H(T") is the space of the compatible quadruplets.



- — —| Plate finite elements I— —— 7
C1 regularity for CO regularity for w and
the displacement w independent interpolation
for the rotation field

Example of non-conforming

1 1

1 1

| elements : 1

| =ity 1 : Example of thick plate :

| -Cheung 1968 | I elements : I

-Bazeley B

| Bazeley 1966 I | -Mircs I

: -Melosh 1963 : 1 -DSQ 1
1 -DKMQ 1

1 1 i ]

R

Poor performance due to

c! regularity issue when
rotation field interpolation
comes from displacement field




- — —| Plate finite elements I— —— 7

Discrete Kirchhoff

Getridof C!
cl regularity for in a discrete way co regularity for w and
the displacement w independent interpolation
for the rotation field

Example of non-conforming I Discrete Kirchhoff (DK)

| Discrete Kirchhoff

| |

| | i

i v | finite elements

| -Adini1960 | : Example of thick plate :

| -Cheung 1968 | Neglecting the shear force I elements : |

| _Bazel ey 1966 1 by applying discrete Kirchhoff’s _MITC4

1 1 theory (at corner nodes | |

| “Melosh 1963 I and element edges) | DsQ I

| | | -DKMQ |
' '

RN Vol

| |
1 Example of DK finite 1
Polor performance due to | elements : |
C’ regularity issue when
rotation field interpolation | =D I |
comes from displacement field 1 - DKT Batoz 1980 |
I .DKQBatoz 1982 |
I| - MKQ12 2017 :




DK (Discrete Kirchhoff) finite elements

@ Thick plate finite element : Including shear deformation 6, = v, + %

Vx l_

\— The deformation of the initial normal

e normal to the mid-surface plane

The initial normal ———
x

@ Independent discretization of the displacement and the rotation field :
w = ZiNiWi Gx = ZiN,-le. Hy = ZiN,»Hi

@ Finite element with 3 degrees of freedom per node : :

w1 w1 w4
(Ox 1 Ox 1 0)(4
By, Fy, s

wo 2)3 wo 33

Ox, 0"3 0x, 0)‘3

32 3 Oy, 2
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DK (Discrete Kirchhoff) finite elements

ow

© DK finite element : Kirchhoff hypotheses 75 = 0 = 0, = &+

+— The deformation of the initial normal

e normal to the mid-surface plane

The initial normal ——
X

@ Independent discretization of the displacement and the rotation field :
w= ZiNiWi 0, = ZiN,-le. Hy = ZiN,»Hyi such that HS, = %‘,

@ Finite element with 3 degrees of freedom per node :

w1 w1 W4
W1,x W1,x W4 x
Wi,y Wi,y W4,y
wo w3 W) w3
W2 x V3, W2 x V3.
W2y W3,y W, W3,y
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© Numerical implementation using Discrete Kirchhoff finite elements
@ Numerical implementation of the iterative algorithm
@ Numerical reconstructions



Numerical implementation of the iterative algorithm

@ Interpolation of the displacement vector :

@ Interpolation the strain vector :

(LV)w® = ey:y =B’d*
Or,y + Oy x

@ Finite element formulation :

(/ Q’QQdQ)g:/ {_E’anLE’v,,} ds
Q r ’

M,

Kd =[— [p N, ds [ Nds] {Xn }
=F v
=b

E(Y):=Kd—Fb=0telque V= (d, M,,V,)




Numerical implementation of the iterative algorithm

@ The fading regularization algorithm :

V! = Argmin JEH(V)
yeRSN

with V = (d, M,,V,) = (W, 0 .0, M,,V,)
under the equality constraints £(V) = 0
@ The functional to be optimized :
Jf+l (Y) = ”Eu—‘d - ?d”iZ(Fd) + ”ﬂyQ,x + ﬂJcQ,ylpd - ‘u'd“iz(Fd)
1Moy, = Mol + WVair, = Valltar,y + e (I8 = WoI2

10, = 0, K1y + 16, = 0,52y + 1M, = MEIZ ) + 1V, = Va1 )

3l

@ Resolution of the linear system :

[w{f“ ng} [V"“
nk+1

£ o ||




Reconstructions on the inner boundary of an annular domain

(compatible data)
w Won Analytical solution
06 [
0.2 Ugn (X) :EXI (sinx; cosh x,
o 0.4 — cosx; sinhxy)
02 x = (x1,x) €Q
0 -
s
—  Analytic 0 — Analytic -
*Reconstruction *Reconstruction
-0.1
0 01 02 03 04 05 0 01 02 03 04 05
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M, Vn

0.4
—  Analytic
*Reconstructios

0.08
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02
0.06

0.04

—— Analytic
*Reconstruction’ 02

0.02

0 01 02 03 04 05 0 01 02 03 04 05

curvilinear abscissa curvilinear abscissa



Reconstructions on the inner boundary of an annular domain

w
0.2
0.1
0 —— Analytic
o §=1%
8 =3%
-0.1 8§ =5%

(noisy data)

Won

06 A
o §
04 LS

02

nalytic

0 01 02 03 04 05

curvilinear abscissa

0 01 02 03 04

curvilinear abscissa

05

M, Vi
04 — Analytic
o 5§=1%
§=3%
02 5 =5%

0 01 02 03 04 05

curvilinear abscissa

0 01 02 03 04

curvilinear abscissa

05

A T; : unknowns
+« 'y : data



Reconstructions on the boundary of a square domain
(compatible data located on two opposite sides)

w Won
—_— Analylit{ —— Analytic
04 “+Reconstructiofi 1 *Reconstruction
o Data o Data

0, 1) (1, 1)
0 1 2 3 4
curvilinear abscissa curvilinear abscissa
M, Vi
005 ©,0 1,0
0 o Q=40 x 40
-0.05 AT : unknowns
0.1 + 'y : data
K -0.2
015 — Analytic —— Analytic
.02 +Reconstruction *Reconstruction
o Data o Data
04
0 1 2 3 4 0 1 2 3 4
curvilinear abscissa curvilinear abscissa



Reconstructions on the boundary of a square domain
(noisy data located on two opposite sides)

w Won
—_— Analylit{ —— Analytic
04 “+Reconstructiofi *Reconstruction
o Data 1 o Data
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05
0 R SO, b
0 t
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Reconstructions on the boundary of a square domain
(compatible data located on two adjacent sides)

w

—— Analytic
“+Reconstructiof
o Data

0.4

Won

—— Analytic
*Reconstruction
1 o

(1, 1)

0, 1)

0 1 2 3 4
curvilinear abscissa curvilinear abscissa
M, Vi
0.2
0
M 0
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0.1
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02y Analytic ——  Analytic
*Reconstruction *Reconstruction
o Data . o Data
03 0.4
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Reconstructions on the boundary of a square domain
(noisy data located on two adjacent sides)

—— Analytic
“+Reconstructiof
o Data

5§ =3%

Won

)

—— Analytic
*Reconstruction
o Data
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05
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© Perspectives



Perspectives

@ From a numerical point of view

- Use of other types of plate finite elements that ensure C' continuity (idea :
adding the cross derivative as nodal parameter (Bogner or Bazeley
elements))

- Use of other numerical methods (such as the method of fundamental
solutions) for the Cauchy problem in thin plate theory

@ Perspectives related to mechanics

- Data completion problems in thin plate theory (identification of fields
and/or boundary conditions, identification of defects, etc...)

- Use of experimental and real data
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