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Introduction of the phase field

@ ¢ is a phase-field function that
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Gradient flow models

@ Models of the gradient flow take the form:

9
20 = gy E(9), (11)

where E[¢(x, t)] is the free energy functional associated to the phys-
ical problem, grady F(¢) is the functional derivative of E in the
Sobolev space H.

e Multiplying both sides of (1.1) by 6E/d¢ and integrating the re-
sulting equation gives following energy dissipation law:

CB(6) = (g B©), 20) = ~gmad g @ (12)
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The gradient flow in L? : Allen Cahn Equation

In this talk we will consider the Ginzburg-Landau energy
E:HY(Q) =R

2
€
B(o) = [ GIVeF + Fo)da. (13)
According to the definition of the gradient flow in L?,we have

_OE

(gradr2E(¢),v)p. = 56

(u)(v) = /Q (—2Ap+ F(@)vda.  (1.4)

Then,
grad2E(¢) = —A¢ + F (). (1.5)

Allen-Cahn equation is the L?-gradient flow of the Ginzburg-Landau
energy

O = —gradp2E(¢) = —(—*Ad + F () (1.6)
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Classic Allen-Cahn Equation

The Allen-Cahn equation with homogeneous Neumann B.C. is defined
by
& —cAo+ () = 0, (x,1) €2x(0,T],
Vé-nly, = 0, (L.7)
¢(t=0) = ¢o(x), x €.
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Fractional Allen-Cahn equation (FACE)

Our model is a Fractional Allen-Cahn equation (0 < s <1)

& (=L + () =0, (z,1) €2x(0,T],
Vo nly, = 0, (1.8)
p(t=0) = ¢o(x), x € .

The Allen-Cahn equation has been widely used in many complicated

moving interface problems in materials science and fluid dynamics
through a phase-field approach.
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Spectral fractional Laplacian (—A)*

We adopt the spectral decomposition approach to define fractional
Laplacian.

Let (A\i, i)52,, be eigenpairs of the Laplacian —A:
o —Ap; = N\jp;, A\; > 0 with corresponding B.C.
e {p;} is a complete orthonormal basis, in the sense

If u(z) = 3 2, cipi(x), the define

(—A)’u(x) = Z Xeipi(x), (0<s<1). (1.9)
i=1

The operator T =
and g= Z?il bigpi; then <Tf7 g> = Z@ 1 @i z(Pz == <f7 Tg>
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Scalar auxiliary variable approach for (SAV) FACE

We assume 3C such that [, F(¢)dx + C1 > 0. And, introducing a
scalar auxiliary variable

r(t) := \//QF((ﬁ) dx + C4

Then, we rewrite the phase-field equation (1.7) as

9% _

at — M Vo nly, =0
_ s r(t)
p=—e(=A)"¢ — Wf(d’), (1.10)

"= e o [(9)5) dv.
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Energy dissipation law for (1.10)

Theorem

If ¢ € LQ((O,T],HS(Q)), 0 < s < 1, is the solution of equations (1.10)
then we have the following energy dissipation law

d
G (P 5108) == [ Il ee

Ifu v e H(Q), 0 < s <1, it holds ((—A)%u,v) = D72, Wit A =
(u, (=A)*v) = ((—A)?u, (- A)S/Qv). We define
|,U|S/2 _ ((_A)S/Z 3/2 Z’ Z|2)\5 1/2
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SAV/BDF1 scheme

We construct a First-order backward difference (BDF1) semi-implicit
scheme for (1.10):

Given ¢° = ¢y, find ¢"*1 € H*(Q) such that,

pntl—gn _ n+1 v¢n+1

At =p ) : nl@ﬂ = 07
n+l _ _ _(_ s on+1 rntl n
prtt = —e(=A)sg TTFearal @) (1.11)
7‘"+1—T‘ ¢n+l n

At ZW fQ ¢n dzx.
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Discrete energy law

Theorem

The scheme is unconditionally energy stable in the sense that

1
E (H(¢n+1, ,r,n-i-l)

= " HE ~

with the modified enerqgy

- H((an? Tn))
1

n+l . n

(rn—l-l . 7071)2.

H(g,r) =143 |¢|s/2
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Implement

To summarize, we implement (1.11)(Scalar Auxiliary Variable
approach with a first-order semi-implicit scheme) as follows: Find
a1 gl e [0S such that

@ Compute " = [ F(¢™)dz +C1, & = (F(#"),¢"), & = S — 59

@ Compute  g" := Z7é" —E1f(¢");

@ Solve

1
e Solve A—tanJrl + a(fA)sanJrl =g";

1
E/Bn+1 +6(7A)Sﬂn+1 :f(¢n);

@ Compute & = (f(¢™), B"T1), &3 = (f(6™), ™), &1 =33/(2c™ +é2);
n nt+ly _ ~
Tn+1:Tn+(f(¢ )s ¢ ) ‘o

1 ndl = andtl
@ Compute ¢n+ =« — 4P H
2y c™
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Implement for SAV/BDF2

Ps: Implement Scalar Auxiliary Variable approche with a semi-implicit
second-order scheme based on BDF (SAV/BDF2) as follows:

@ Compute g™ =26 — "7, Tl = [ F(¢"Td= 4+ C1, &0 = (F(47T), 49" —
4rm—pn—1 é

n—1 S _ _ & .
® )/8, b= v/ant1 2enF1’

n_n—1 _ —
e Compute g" := % — & f(emTth).

3 B

Q@ sotve " 4 e(-a)T " — f(GH;
3

e Solve EanJrl +e(—A) ot = g,

@ Compute &5 = (F(3"+1), B7F1), &3 = (F(E"HY), 0™ L), &4 = &3/ (28" H! 4 Ga);
gy 1 . (F(3™ 1), 671y — &
3 2v/en+1 ’

Q Compute ¢n+l ="t _ E45"+1, PR -
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Spatial discretizations

o X = {(&, pi); 0 <i < N} denote the sets of GLL formula.

+1

Vo € Poy_1(A =] —1,+1]), P(§) d€ = Z¢(€j) P
=0

(1.12)
where IPy(A) denotes the space of polynomials of degree < N.
e Lagrange basis h;(z) € IPy(A) built on ¥ by

hi(&5) = 63 0<4i,j<N, (1.13)
e ¢ will be approximated polynomial functions ¢y as follows
N N
=33 ai(Ohi(2)h; (). (1.14)
i=0 j=0

o The L?-inner products will be achieved using GLL :

(0, 9) = (9, )N = Z Zso &) (&) pip;- (1.15)
. Azaiez, S. Lin, X. Zhou, C. Xt August 30, 2022 15 /47




SAV /BDF2 scheme with different fractional order s

FiG.1.
@ SAV/BDF2 for Ex.1
log(err)-log(At)

@ crror in L? norm at T =
2.0

@ Spectral method in space
with Ny = N, = 32
(LGL).

Density error
=

—=— s=1.0 (SAV/BDF2)
—@— s=0.8 (SAV/BDF2)
——A—— s =0.3 (SAV/BDF2)
@ #(t,z,y) = ¥ —@— s=0.1(SAV/BDF2)

sin(t) cos(mx) cos(my),

@ f(¢)=0¢(¢%—1).
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Benchmark test : definition

The initial state is a circular phase interface of the radius Ry = 100 in
the rectangular domain | — 128, 1282

1, |z* <100
x,0) =
#(.0) {—1, ||? > 1002

Such a circular interface is unstable and the driving force will make it
shrink and eventually disappear. It has been shown the velocity and
the radius of the moving interface are given by

_drR 1

= = __ — 2 _9
V= = R() R2 —2t.
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Benchmark test: implementation

e We map the computational domain ] —128,128[2 to ] —1,1[2. There-
fore actually we are led to solve the fractional Allen-Cahn equation
(1.7) with the coefficients v = 1/1282 and & = 0.0078.

e the space resolution is set to N = 512, and the time step size is
At =0.1.

@ We use the Spectral Galerkin method to express ¢ as

b= D Gnimeln (¥)eny (),

n1,n2<N

with N = 512, and {ey, (z)en,(y)} are the numerical orthonormal
eigenfunctions of the Laplacian —A in (—1,1)? with homogeneous
Neumann boundary condition.
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Benchmark test: calculus

100
[ Exact Solution
+ SAV/BDF2 At=0.1
95 -
90 Exact Soluton
o Fo leons |—— saviBDF2at=0
B 90.2|
Fo
85? 90.15|
: 201
L 95 980 o5 040
80 -
e vy
0 500 1000 1500 2000

time
Figure: The evolution of radius R(t): comparison of the exact solution and
numerical result in the case s = 1.
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Figure: Evolution of the radius for different fractional order s: impact of the
order on the radius decay rate.




(a) s=1

b) s=0.9

(c) s=0.8

—~

Figure: Temporal evolution of a circular domain from left to right at times
t = 1000, 2000, 3000, 4000, 5000, for fractional order s = 1,0.9,0.8, for the top,
middle and bottom rows, respectively.
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Fractional Stokes problem




Definition of fractional calculus

Fractional integral

Let Q = [a,b] (a,b be finite or infinite). The left-sided and right-sided
Riemann-Liouville fractional integral of order s > 0 are defined by

L2f(@) =5 [ @0 o

(
b
(1 ) / (t — o)~ f(t) dt

oAp fz) = ()

v

Properties

If s > 0,0 > 0 then

oy f(@) = oLpaly f (@),
xI§+Uf(t) = xjgmlgf(w)
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Riemann-Liouville fractional derivatives
RL fractional derivatives of order s > 0 are defined by

Dif(@) = o g2 f(@) (n=[+1)
1 d"”

= F(n—s)dw”/a (@ —t)" 7 f(t)dt

and
Dif(@): = ()L f@) (n=[s]+1)

_1\n n b
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Fractional Stokes equation

For 1 < a < 2, the fractional incompressible Stokes problem reads :
Find (u,p)

—vA2u+Vp = f, inQ,
V-u = 0, in £,
u = 0, on 09,

where
o Q:= A% denote the 2- and 3-D domains, i.e d = 2,3,
@ x is a generic point of 2.

f = f(x) describes the body force

@ v is a positive parameter which represents the kinematic viscosity
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Fractional Stokes equation

e We consider a symmetric definition of fractional laplacian

Jj=1

e For 0 < s < 1 we define fractional gradient and divergence operators

by
1
Vig:= 9 ((085;1 - glas) g, (Ca;d o g:188) g)T’
1o :
VS SV L= 2; (a;z _(Ezas) ’UZ.

Then the fractional laplacian can be written as

A% =V32.V2.

August 30, 2022
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Fractional Stokes equation

To express the variational formulation of the Stokes equation we
introduce the Sobolev spaces :

e For the velocity :
X = {ve HZ Q)% V-ve L}Q)}
endowed with the norm
1
2
Ivlix = (IvIE + 19 vI3)*

Obviously, if v € H(2)?, we have ||v|x < [|v].

o For pressure p, we define the space

Q:= {q e L*(Q): /Qq(x)dx = o} .
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Fractional Stokes equation

The weak formulation reads : for a given f € X', find a pair (u,p) in
X x Q such that

a(u,v) +b(v,p) = (f.v), W eX
b(u,q) =0, VgeQ
where bilinear forms a(-,-) and b(-,-) are defined by

sz:zd: [(8%ui,83§jvi> + <g;j8%ui,x].8%vi>

=1 j=1

B (&%inagvi) _ <Ija%ui7aévi>}

M. Azaiez, S. Lin, X. Zhou,
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Spectral approximation : tools

e For a fixed integer N > 2, Px(£2) denotes the space of polynomials
of degree < N with respect to any space variable.

e For s,0 > —1, the Jacobi polynomials, denoted by J;’(z), are
orthogonal with respect to the Jacobi weight function w®?(z) :=
(1 —2x)*(1 4+ z)? over A, namely,

1
| I @) @ @) o =22
-1

where 0,,,,, is the Kronecker-delta symbol and

25t 4+ s+ DI (n+ o +1)
2n+s+o+1)nlln+s+o+1)

7 = (
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Spectral approximation : tools

o We introduce the Jacobi-Gauss-Lobatto nodes (£3%)o<i<n roots of
(1—€2)J577% and corresponding weights (057 )o<i<n

e the Jacobi-Gauss nodes (ff\’,gi)ogig ~ roots of J3% ; and correspond-
ing Weights (ﬁ}g\}irz’)oﬁiSN'

@ We define three discrete scalar product:

UUNS Z/ 5175 gNj)pNj
(u,v)NF = Z/ 5wa Ni,y)p?\}?i dy,

0,0 0,0
(u,v)Na + = Z (wa ) (wa N,j)pszN,J
i,j=0

M. Azaiez, S. Lin, X. Zhou, C. Xt August



Spectral approximation

We set Xy = Py(Q)¢N X, and Qar = Par(Q2) N Q. The discrete

problem reads : find (uy,par) € Xy X Qs such that
an(un,vN) +bn(VN,PMr) (f,vn)na,  Vvy € X,

bn(un,qu) = 0, Vanm € Qur-

bn(vn,am) = —(V - v, qar)Na

M. Azaiez, S. Lin, X. Zhou,




Spurious modes and SEM

A naive choice leads to an ill-posed approximation due to the pollution
induced by the spurious modes set

Znm = 1{qm € Qum Vv € X, by (V,qm) =0} .

e When M = N and for o = 2, the dimension of Zy y is 7 for d = 2
and (12N + 3) for d = 3.

o Maday and Patera suggested for the case of a = 2, to reduce the
pressure space to Qy_o

o This choice solves partially the problem since such a mixed element
has the so-called weak spurious modes. A weak spurious mode is a
pressure mode gy € Qn_2 such that,

Jim ( . b@Nva)) .

vNEXN ||VN||X
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Stable SEM : Error estimation

Discret Inf-Sup condition

For any qy € Qn_2, Iwy € Py (Q)4N H&(Q)d s.t.

(V-wy,pn) = —(an,pN), VPN € Pn_2(92),

and
lwnlli < By llawllo,

where By = N —5" is call the Inf-Sup constant.

Convergence

Let s,0,v be 3 positive real numbers. Assume the solution (u,p) of the
Stokes problem belongs to H*(Q)? x H?(Q) and f in HV(Q)d, then

lu—unllg +Bnlle —pxllo S N2 ~°llulls + N~ lplle + N|£]l,
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Uzawa Algorithm

The equivalent matrix formulation of the Fractional Stokes problem is

Anuy +Dup,, = Bnfy,

DﬂgN = 0,

where

e uy of unknowns for the velocity consists of the values of all the

components at the nodes (§Z N,fj N)1<%J<N 1.

@ The vector Py corresponding to the unknowns for the pressure is
made of the values of pys at the nodes (ég’](\),, AJO.”]?,)OSMSM.

@ A is the discrete Fractional Laplace operator

o D),y is the discrete Gradient operator.
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Uzawa Algorithm

= A Block Gaussian elimination is performed to uncouple the pressure
and the velocity.

@ Then the pressure is solved :
D;Ay'Dup,, = D, AL'By fy.
e The velocity up is computed by solving
Anyuy = Byfy — DM]EM‘

The Uzawa matrix is
o of dimension (M + 1)4,

o full, symmetric and positive definite
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Numerical results: Inf-Sup bihavior

O is inferred from kpn of the preconditioned Uzawa operator BX;SQ
through the estimate

CBy? < kn < C'BY

By in logscale
By in logscale

16 20 24 4 8 12 16 20 24

8 12
polynomianl degree N in logscale polynominal degree in logscale

(a)d=2 (b)d=3
Figure: 8y versus N for « € {1.1, 1.5, 1.9, 2}
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error in logscale
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Figure: Error as a function of polynomial for d = 2




sin(7x) sin(7y) sin(7z)
u= | sin(rz)sin(ry)sin(rz) |, p=a"+y7’ + 27
sin(m(x 4+ y)) cos(mz)

10° 100 b
10 107 F
2 R
g 10° g
g -
8 ERTan
£ 10" £
s s
H £ 107 [[—o—r118
w? e
1070 || ——=173
10 _ o eeT
107 || —2&—vy=233
o N
0
10
12 16 20 24 28 32 36 40 44 48 12 16 20 28 32 36 40 44 48
polynominal degree in logscale polynominal degree in logscale

(a) u (b) p

Figure: Error as a function of polynomial degree d = 3

{. Zhou,



7y sin(mz)
7y sin(mz) :
2(y 4+ 1)z"y" cos(mz)

p=sin(nr(z+y+z2))

10
"
10 10°
10° .
10
2 2
g . 3
g 10 2
g 8 5
E < 10
5 1o* H
5 —o— =101 5
08 10°
10°
—— =163
N 353
7 N 107
10 —A— y=22/3
e <
10° 10°
12 16 32 36 40 44 48 12 16 32 36 40 44 48 52

20 4 28
polynominal degree in logscale

(a) u

20
polynominal degree in logscale

(b) p

Figure: Error as a function of polynomial degree d = 3

{. Zhou,

August 3

40 /47



Fractional Navier - Stokes problem




NS Equation

Consider the following problem formulate on Q x [0,77]: find u and
pressure p such that

(?; —VvATu+ (u-Viu+Vp = f, inQx|0,7T],
Vou = 0, inQx][0,7T],
u = 0, ondQx|[0,T],
u(,t=0) = 0, on¢,

Py — Py_2 method based on Uzawa solution algorithm can be applied
but we turn to pressure correction method.... J
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Goda first order method

For k > 0 compute (a*+1, uf*! pF+1) s t.

ﬁk—i—l _ uk

——&ff—VAQHJ + (u* - AydF + Vpk = 5L in Q,

u=0, in 0F,
E+1 _ ~k+1

4 :' L V6=0, inQ

V- uél =0, in Q
ukFtl =0, in 011,

k-i-l ¢ +p

where ¢ is solution of laplace equation

ekt
Ap= YT
At
gﬁ =0, in 0N.
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Driven cavity problem is considered:

.

y

(0,1)‘ u=(1-2x-1)’v=0  (1,1)

u=v=0 u=v=0

(0,0) u=v=0 (1,0 '
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Driven cavity : Re = 400
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o PV LV RV

1.6 | 0.05827 | -4.50227E-5 | -5.37374E-4
1.7 1 0.06565 | -2.16562E-5 | -4.80161E-4
1.8 | 0.07264 | -1.11905E-5 | -4.06845E-4
1.9 | 0.07912 | -6.64049E-6 | -3.24419E-4
2.0 | 0.08499 | -4.19722E-6 | -2.43440E-4

Here

Table: Driven cavity

e PV: value in the center of principal vortex

e LV(resp. RV):value in the center of left(resp. right) secondary vor-

tex

M. Azaiez, S. Lin, X. Zhou,

C.

X
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