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Fractional calculus ? Beginning with a curious question

1695...Leibniz just invented the notation

dnf

dtn

for the n-th derivative of a function f .

L’Hopital receives the letter of Leibniz and writes

What if n be 1/2 ?
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Why not ?

Leibniz answer:

possible with infinite series...."one day, useful consequences will be drawn.”

1697 Leibniz write to Wallis that some functional equations can be solved using
fractional differential calculus.

Euler, Lagrange, Riemann, Liouville, Abel, etc

Classical reference: S. Samko, A. Kilbas and O. Marichev, Fractional integrals
and derivatives: theory and applications, Gordon and Beach, Yverdon, 1993.
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The algebraic problem

Finding an operator Dα, α ∈ R+, which is an extension of the classical
derivative, i.e. satisfying for n ∈ N

Dn[f ] =
dnf

dtn
. (1)

We want also that all these operators are linear
satisfies a semi-group property:

Dα ◦ Dβ = Dα+β . (2)
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Iterated left antiderivative

Let I = [a, b] be an interval and f : I → Rd be a sufficiently smooth function.
We denote by I 1a+[f ] the antiderivative of f vanishing at t = a, i.e.

∀ t ∈ I , I 1a+[f ](t) =

∫ t

a

f (s)ds. (3)

We denote by I ka+ the operator defined for all k ∈ N∗ by

I ka+ = I 1a+ ◦ · · · ◦ I 1a+ (k times). (4)

Using the Fubini’s theorem, we have

I 2a+[f ](t) =
∫ t

a

(∫ s

a
f (u)du

)
ds =

∫ t

a

(∫ t

u
ds

)
f (u)du,

=
∫ t

a
(t − u)f (u)du.

(5)

We can prove by induction and the Fubini theorem that for all t ∈ I , we have

I ka+[f ](t) =
1

(k − 1)!

∫ t

a

(t − u)k−1f (u)du. (6)

For every k ∈ N∗, the quantity quantity I ka+[f ] is called the left integral with
inferior limit a of order k of f .



Algebraic definition of iterated antiderivative

The left integral of order k with inferior limit a of f is the unique solution g of
the following problem

∀ 0 ≤ n ≤ k − 1, g (n)(a) = 0, g (k) = f . (7)

The terminology for left comes from the fact that the integral is evaluated
using value of f (s) on the left hand side, i.e. with s < t.



Iterated derivatives

The k-th derivative of f , satisfies for all t ∈ I ,(
d

dt

)k

[f ] =

(
d

dt

)k+1 [
I 1a+[f ]

]
, (8)

and (
d

dt

)k

[f ](t)−
(

d

dt

)k

[f ](a) = I 1a+

[(
d

dt

)k+1

[f ]

]
(t). (9)



Right iterated integrals

Let b ∈ R and f : I → f be a sufficiently smooth function. We denote by
I 1b−[f ] the minus antiderivative of f vanishing at t = b, i.e. for all t ∈ I ,

I 1b−[f ](t) =

∫ b

t

f (s)ds. (10)

For every k ∈ N∗, we denote by I kb− = I 1b− ◦ . . . I 1b− (k-times). We easily prove
that for all t ∈ I , we have

I kb−[f ](t) =
1

(k − 1)!

∫ b

t

(u − t)k−1f (u)du. (11)

The quantity I kb−[f ] is usually called the right integral of order k with superior
limit b of f .



Right iterated derivatives

The k-th antiderivative satisfies for all t ∈ I the relations(
− d

dt

)k

[f ] =

(
− d

dt

)k+1 [
I 1b−[f ]

]
, (12)

and (
− d

dt

)k

[f ](t)−
(
− d

dt

)k

[f ](b) = I 1b+

[(
− d

dt

)k+1

[f ]

]
(t). (13)



Main strategy

The basic idea behind fractional integrals and derivatives is that having a
generalization of the left (resp. right) integral of order k for positive real values
of k, then one can obtain a generalization of the notion of k-th derivative of f
using:

relations (8) leading to the left fractional Riemann-Liouville derivative
relations (9) leading to the left fractional Caputo derivative respectively.
The right analogue is also possible.
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Left Riemann-Liouville fractional integrals

The Gamma function of Euler denoted by Γ and defined for all α > 0 by

Γ(α) =

∫ +∞

0
sα−1e−sds. (14)

We have for all k ∈ N∗ that Γ(k) = (k − 1)!.

The Riemann-Liouville α-fractional integrals, R ∋ α > 0, for f : [a, b]Rd ,
d ∈ N, a AC 2([a, b]) function and [a, b] ⊂ R, 0 ≤ a < b:

Iα−f (t) =
1

Γ(α)

∫ t

a

(t − τ)α−1f (τ) dτ, t ∈ (a, b],

Iα+ f (t) =
1

Γ(α)

∫ b

t

(τ − t)α−1f (τ) dτ, t ∈ [a, b),

(15)

We set I 0−f = I 0+f = f .



Left Riemann-Liouville fractional integrals

The Gamma function of Euler denoted by Γ and defined for all α > 0 by

Γ(α) =

∫ +∞

0
sα−1e−sds. (14)

We have for all k ∈ N∗ that Γ(k) = (k − 1)!.

The Riemann-Liouville α-fractional integrals, R ∋ α > 0, for f : [a, b]Rd ,
d ∈ N, a AC 2([a, b]) function and [a, b] ⊂ R, 0 ≤ a < b:

Iα−f (t) =
1

Γ(α)

∫ t

a

(t − τ)α−1f (τ) dτ, t ∈ (a, b],

Iα+ f (t) =
1

Γ(α)

∫ b

t

(τ − t)α−1f (τ) dτ, t ∈ [a, b),

(15)

We set I 0−f = I 0+f = f .



Example

The left fractional integral of Riemann-Liouville for the function
f (t) = (t − a)β with β > −1. We have

Iα+ [f ](t) =
Γ(β + 1)

Γ(β + α+ 1)
(t − a)β+α, (16)

for every t ∈ [a,+∞[ if β + α ≥ 0 and t ∈]a,+∞[ if β + α < 0.



Riemann-Liouville fractional derivatives

Restricting to α ∈ [0.1], we obtained what is called the Riemann-Liouville
α-fractional derivatives:

Dα
−[f ] =

d

dt

[
I 1−α
− [f ]

]
, ,

Dα
+ [f ] = − d

dt

[
I 1−α
+ [f ]

]
.

(17)

It is easy to see that D0
−f = D0

+f = f , whereas it can be proven that

D1
−f = −D1

+f = df /dt. (18)



Some examples

The left fractional Riemann-Liouville derivative of a constant is not zero.
Indeed, we have

Dα
+ [c] = .

c

Γ(1 − α)
(t − a)−α, (19)

for α ∈]0, 1[ and t > a. This properties in particular implies that a geometric
interpretation of the fractional derivative is not possible. Indeed, from a
geometrical view point, for an arbitrary constant c ∈ R, the fonction f and
f + c have the exactly the same geometric properties but not the same
fractional derivatives.

The left fractional Riemann-Liouville derivative of f (t) = (t − a)β is given by

Dα
+ [f ](t) =

Γ(β + 1)
Γ(β − α+ 1)

(t − a)β−α, (20)

for every t ∈ [a,+∞[ if β − α ≥ 0 and for every t ∈]a,+∞[ if −1 < β < 0.
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Left Caputo fractional derivative

cD
α
+ [f ] = I 1−α

+

[
df
dt

]
,

cD
α
−[f ] = I 1−α

−
[
df
dt

] (21)

cD
α
σ [c] = 0, α ∈]0, 1[, σ = ±. (22)



Connection between the RL and Caputo fractional derivative

Lemma
For every α ∈]0, 1[ and every f ∈ AC([a, b],Rd), Dα

+ [f ] and cD
α
+ [f ] are defined

almost everywhere on [a, b] and

Dα
+ [f ](t) = cD

α
+ [f ](t) +

1
Γ(1 − α)

f (a)

(t − a)α
, (23)

or more simply that
cD

α
+ [f ] = Dα

+ [f − f (a)]. (24)



Properties of fractional deriavtives

▶ Integration by part:∫ b

a

f (t)Dα
σ g(t)dt =

∫ b

a

Dα
−σf (t)g(t)dt, σ = ±. (25)

▶ Semi-group property:

Dα
σD

β
σ = Dα+β

σ , 0 ≤ α, β ≤ 1/2, (26)

where we assume both functions f , g ∈ AC 2([a, b]).

In particular, when α = β = 1/2, we have the specialization

D
1/2
− D

1/2
− = d/dt, D

1/2
+ D

1/2
+ = −d/dt. (27)



Interpreting fractional derivatives
Let Tt be a stochastic process with a probability density ρt . We assume that
the Laplace transform L of its probability density satisfies:

L[ρt ](s) = Eα(−stα), (28)

where 0 < α < 1 and Eα is the Mittag-Leffler function

Eα(z) =
∑
k≥0

zk

Γ(αk + 1)
. (29)

Let f be a sufficiently smooth function f : t → f (t), we denote by fα(t) the
quantity:

fα(t) = E(f (Tt)) =

∫ ∞

0
ρt(τ)f (τ) dτ, (30)

where E denotes the expectation.
The main property of this new dynamical variable is that it satisfies :

Theorem
Let f : R+ → R a sufficiently smooth function, then we have

∀t ≥ 0, E
(
df

dt
(Tt)

)
= cD

α
− (E(f (Tt))) , (31)

where cD
α
− is the fractional derivative of Caputo with inferior limit 0.
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Fractionalization of PDEs

Theorem
Let u : (t, x) ∈ R× Rd → u(t, x) be a solution of the following partial
differential equation

∂f

∂t
(t) + A(f (t)) = 0, (32)

where A is an operator satisfying the transfer property

E (A(f (Tt))) = A (E(f (Tt))) . (33)

Then, the function
uα(t, x) = E(u(Tt , x)), (34)

satisfies the fractional partial differential equation

c∂
α
t,−uα(t, x) + A .(uα(t, x)) = 0. (35)

where c∂
α
t,−uα is the Caputo derivative with respect to t of uα.



Discrete variational derivative and integrals
For all x ∈ R and n ∈ N, we denote by x (n) and (x)n the Pochhammer symbols
defined by x (0) = (x)0 = 1 and for all n ∈ N∗ by

x (n) = x(x + 1) · · · (x + n − 1), (x)n = x(x − 1) · · · (x − n + 1). (36)

Definition (Discrete fractional derivatives)
Let 0 < α < 1. The right discrete fractional derivative of Grünwald-Letnikov
of superior limit b of order α > 0 is the mapping from C(,Rd) to C(+,Rd)
defined for all f ∈ C(,Rd) by

∆α
+[f ](tk) =

1
hα

N−k∑
n=0

(−1)n

n!
(α)nfk+n, ∀ k = 0, ...,N − 1. (37)

The left discrete fractional derivative of Grünwald-Letnikov of inferior limit a of
order α > 0 is the mapping from C(,Rd) to C(−,Rd) defined for all
f ∈ C(,Rd) by

∆α
−[f ](tk) =

1
hα

k∑
n=0

(−1)n

n!
(α)nfk−n, ∀ k = 1, ...,N, (38)
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Discrete fractional integrals and properties

The previous formula keeps sense even for α < 0. Following K. Diethelm
([?],§.2.4), we denote by Jα

+ = ∆−α
+ and Jα

− = ∆−α
− the right and left discrete

fractional integrals.

∆α
−[f ] = ∆1

−
[
J1−α
− [f ]

]
, ∆α

+[f ] = ∆1
+

[
J1−α
+ [f ]

]
(39)

Lemma (Semi-group property)
For all α, β > 0, we have

∆α
σ

[
∆β

σ

]
= ∆α+β

σ , Jα
σ

[
Jβ
σ

]
= Jα+β

σ . (40)

Moreover, we have
∆α

σ [Jα
σ ] [f ] = f (41)
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Variational structure for dissipative systems

▶ Dissipative systems do not possess a classical variational formulation. This
follows from the Helmholtz’s Theorem . A discussion was first provided by
P.S. Bauer in 1931.

▶ Variational formulations can be obtained if one accepts to add to a given
dissipative system a complementary set of equations as proved by H.
Bateman in 1931. The main observation was that due to the irreversibility
of a dissipative system, a given equation must be considered as physically
incomplete as the dynamics is not invariant under time-reversing.
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Another strategy ?

The Helmholt’z theorem uses crucially the framework of the classial differential
calculus and is no longer valid when one use a different setting. The idea to
use the fractional calculus as a possible framework to overcome this difficulty is
originally due to F. Riewe in 1996.

Let L be a C 2 Lagrangian function L : Rd × RdR, (x , v) 7→ L(x , v), given
x , v ∈ Rd . The fractional action integral L : C 2([a, b],Rd)R is defined by

Lα(q) =

∫ b

a

L(q(t),Dα
−q(t)) dt. (42)

When α = 1, we have D1
− = D1

+ = d/dt so that (42) reduces to the classical
action functional.
Extremals of Lα are solutions of a fractional differential systems (see [?]) called
the fractional Euler-Lagrange equation denoted by (EL)α and given by

Dα
+
∂L

∂v
(q,Dα

−q) +
∂L

∂x
(q,Dα

−q) = 0. (43)

Problem: D
1/2
− ◦ D1/2

+ ̸= d/dt !
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Let L be a C 2 Lagrangian function L : Rd × RdR, (x , v) 7→ L(x , v), given
x , v ∈ Rd . The fractional action integral L : C 2([a, b],Rd)R is defined by

Lα(q) =

∫ b

a

L(q(t),Dα
−q(t)) dt. (42)

When α = 1, we have D1
− = D1

+ = d/dt so that (42) reduces to the classical
action functional.
Extremals of Lα are solutions of a fractional differential systems (see [?]) called
the fractional Euler-Lagrange equation denoted by (EL)α and given by

Dα
+
∂L

∂v
(q,Dα

−q) +
∂L

∂x
(q,Dα

−q) = 0. (43)

Problem: D
1/2
− ◦ D1/2

+ ̸= d/dt !



Restoring causality

H. Bateman idea: the classical set of variables used to described a dissipative
system has to be doubled in order to take into account the irreversibility of the
dynamics. The new variable is understood as encoding the time reversed
dynamics.

doubling state space coupled with the use of fractional derivatives proposed
by J. Cresson and P. Inizan in 2010.

L(x , y , vx , vy ,wx ,wy ), (44)

and fractional Lagrangian functionals of the form

Lα,β(x , y) =

∫ b

a

L(x , y , ẋ , ẏ ,Dα
−x ,D

β
+y) dt. (45)
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Time reversal

x⋆(x)(t) = x(a+ b − t), ∀ t ∈ [a, b]. (46)

Lemma (Time reversal duality)
Let x ∈ AC([a, b]), the following diagram commutes

x
Dα
− //

⋆a,b

��

Dα
−[x ]

⋆a,b

��
x⋆

Dα
+ // Dα

+ [x⋆]

, (47)

which implies the equality

Dα
+ [x⋆] = (Dα

−[x ])⋆ (48)



Constraining the extended Lagrangian

▶ The dissipative term must be connected with the emergence of a fractional
term in the Lagrangian.

▶ For a reversible dynamical system, the two equations must be the same
under time reversal.

L(x , x⋆, v , v⋆,w ,w⋆) = L(x , v) + L(x⋆, v⋆) + P(w ,w⋆), (49)

▶ The dynamics of x (resp. x⋆) depends only on x (resp. x⋆) and derivatives
of the form Dγ

−x (resp. Dγ
+x⋆).

▶ The dynamics satisfied by x⋆ is the time reversed dynamics of x .
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Restriction on variations ?

Considering reversible variation, i.e. such that

h = h⋆ (50)

and the previous constraints, we have

L(x , x⋆, v , v⋆,w ,w⋆) = L(x , v) + L(x⋆, v⋆) + γww⋆, (51)

If
d

dt

(
∂L

∂v
(x , ẋ)

)
− ∂L

∂x
(x , ẋ) + γDα+β

− x = 0. (52)

then (x , x⋆) is a critical point of L !


