Description eulérienne pour l'hyper-élasticité anisotrope avec une formulation covariante

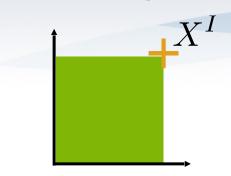
Emmanuelle Rouhaud
Gamma3 UTT & S3AM STMS IRCAM

Benoît Panicaud, UTT
Alexandre Charles, UTT Safran
Richard Kerner, SU
Jacky Cresson, U. Pau
Thomas Hélie, IRCAM
Darid Roze, IRCAM
GDR GDM

CFM Nantes 2022

- Contexte
- Aspects géométriques
- Tenseur énergie-impulsion
- Hyper-élasticité anisotrope covariante
- Conclusion

Rappels Transformations finies



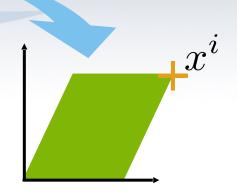
Configuration matérielle

Transformation:

$$x^i(X^J,t)$$

Application tangente F:

$$F^i_{\ J} = \frac{\partial x^i}{\partial X^J}$$



Configuration eulérienne

 ρ_0

Masse volumique

$$oldsymbol{E} = rac{1}{2} (oldsymbol{F}^T oldsymbol{F} - \mathbf{I})$$

Tenseur des déformations de Lagrange

$$\boldsymbol{e} = \frac{1}{2} (\boldsymbol{I} - \boldsymbol{F}^{-T} \boldsymbol{F}^{-1})$$

Tenseur des déformations d'Euler

S

Second tenseur des contraintes de Piola-Kirschhoff (PK2)

Tenseur des contraintes de Cauchy

ullet Transformations hyper-élastiques existence d'un potentiel : $W({m E})$

Bilan de puissance sur la configuration matérielle :

$$\boldsymbol{S}:\boldsymbol{D}-\dot{W}(\boldsymbol{E})=0$$

S: le second tenseur des contraintes de Piola-Kirschhoff (PK2),

D : taux de déformations matériel

E : tenseur des déformations de Lagrange

Hyper-élasticité et anisotropie Les difficultés

- lacksquare A partir de : $oldsymbol{S}:oldsymbol{D}-\dot{W}(oldsymbol{E})=0$
 - Sur la configuration matérielle :

avec
$$\dot{m{E}} = m{D}$$
 $m{S} = rac{\partial vv}{\partial m{E}}$

Sur la configuration eulérienne :

$$m{S}=rac{\partial W}{\partial m{E}}$$
 $m{\sigma}=-2rac{
ho}{
ho_0}m{b}rac{\partial W}{\partial m{b}}$ b: tenseur de déformations eulérien + objectivité

b: tenseur de eulérien

n'est pas le bon objet ?
$$\dot{m E}=m D$$
 $\dot{m ?}=m d$

Hyper-élasticité et anisotropie Les difficultés

v<<c

Quasi-statique HPP

OK

v<<c Dynamique Transformations finies

ObjectivitéConfigurations (Euler/ Lagrange)

 Anisotropie et description eulérienne du mouvement

Newton

Description espace-temps

v<<c

Quasi-statique HPP

OK

v<<c Dynamique Transformations finies

ObjectivitéConfigurations (Euler/ Lagrange)

- Anisotropie et description eulérienne du mouvement

Approche classique

V ≈ c Champ de gravitation

Tout observateur : Covariance

Relativité

- Contexte
- Aspects géométriques
- Tenseur énergie-impulsion
- Hyper-élasticité anisotrope covariante
- Conclusion

Aspects géométriques

- ■Variété différentiable 4D riemannienne *M* tenseur métrique **g** de signature (1,-1,-1)
- ■Un événement P : un point de M
- •Un système de coordonnées défini poli x^{μ} un v_{B} is in g_{B} autours de P:

$$e_{\mu} = \frac{\partial}{\partial x^{\mu}}$$

•Observateur : vecteurs de base dans l'espace tangent en P : $e_{\mu} = \left(\frac{\partial x^{\kappa}}{\partial y^{\mu}}\right) \frac{\partial}{\partial x^{\kappa}}$

•Changement $\left(\begin{array}{c} \partial x^{\kappa} \\ \partial y^{\mu} \end{array} \right)$ servateurs = transformation :

où la matrice appartient au groupe $GL(4,\mathbb{R})$

Covariance = invariance par changement d'observateurs

 $ullet \mathcal{M} imes GL(4,\mathbb{R})$ ្រាមខ្លែងក្រុង ៤៤៣ gement de coordonnées 4D

- Un corps ${\cal B}$ est un volume, sous espace 3D, de ${\cal M}$
- ullet Ligne d'univers $\gamma(s):\mathbb{R} o\mathcal{M}$
- Vitesse $u^{\mu}=\frac{dx^{\mu}}{ds}$ vecteur normé sans dimension

 Il n'y a pas de notion de configurations dans une description espace-temps.

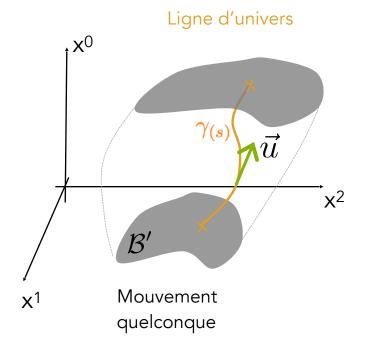
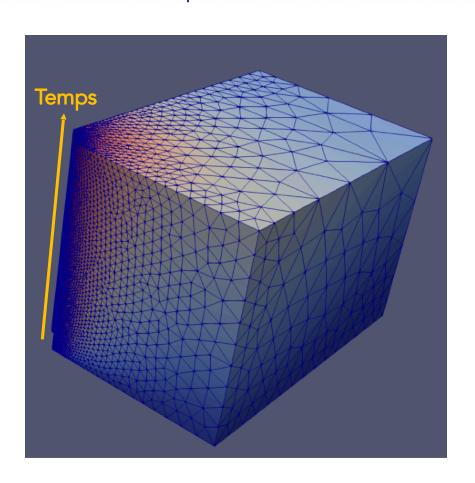
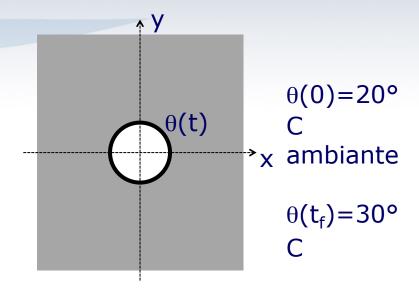
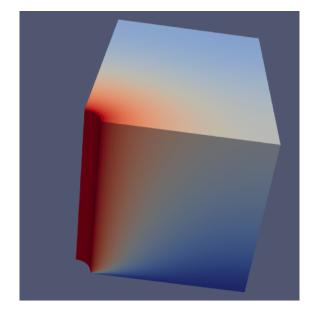


Illustration : calculs éléments-finis

Plaque trouée soumise à une variation de température





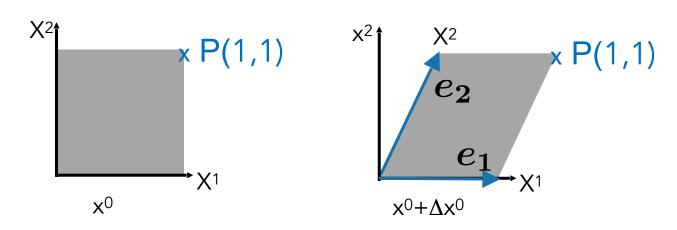


• Observateur propre X^{μ} tel que

$$u^{\mu}=rac{dX^{\mu}}{ds}=egin{pmatrix}1\0\0\0\end{pmatrix}$$
 en tout point

• Matrice de passage F : $X^{\mu} \to x^{\nu}$ $F^{\mu}_{\ \nu} = \frac{\partial x^{\mu}}{\partial X^{\nu}}$ et son inverse F'

Exemple avec un glissement :



Tenseur des déformations covariant

 Tenseur dont les composantes dans le système de coordonnés propre sont :

$$\hat{b}^{\mu\nu} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}$$

Tenseur des déformations : $b_{\mu\nu} = F'^{\lambda}_{\ \mu} F'^{\kappa}_{\ \nu} \hat{b}_{\lambda\kappa}$

• Taux de déformations d : $oldsymbol{d} = rac{1}{2}\mathscr{L}_u(oldsymbol{g})$

- Contexte
- Aspects géométriques
- Tenseur énergie-impulsion
- Hyper-élasticité anisotrope covariante
- Conclusion

Tenseur énergieimpulsion

• Tenseur énergie-impulsion : $oldsymbol{T}$ Tenseur ordre 2 symétrique

$$oldsymbol{T} egin{pmatrix} \mathcal{U} & q_x & q_y & q_z \ q_x & T_{\sigma xx} & T_{\sigma xy} & T_{\sigma xz} \ q_y & T_{\sigma xy} & T_{\sigma yy} & T_{\sigma yz} \ q_z & T_{\sigma xz} & T_{\sigma yz} & T_{\sigma zz} \end{pmatrix}$$

• Conservation: $\nabla .T = 0$

Hyper-élasticcité : pas de dissipation : $\mathbf{q} = \mathbf{0}$

- Projection sur l'espace : $\partial_{x^0}(\mathcal{U}u^i) + \partial_{x^j}(\mathcal{U}u^iu^j) \partial_{x^j}T_{\sigma}^{\ \ ij} = 0$
- Projection sur le temps, avec $\mathcal{U}=
 ho c^2+\mathcal{W}$:

$$T_{\sigma}: d - \mathscr{L}_{u}(\mathcal{W}) = 0$$

- Contexte
- Aspects géométriques
- Tenseur énergie-impulsion
- Hyper-élasticité anisotrope covariante
- Conclusion

Projection sur le temps :

$$T_{\sigma}: d - \mathscr{L}_{u}(\mathcal{W}) = 0 \iff S: D - \dot{W}(E) = 0$$

. Densité d'énergie :
$$\mathcal{W}=rac{\mathcal{E}^{lphaeta\kappa\lambda}}{2}(g_{lphaeta}-b_{lphaeta})(g_{\kappa\lambda}-b_{\kappa\lambda})$$

$$\left(\frac{\partial \mathcal{W}}{\partial \boldsymbol{b}}: \mathcal{L}_{\boldsymbol{u}}(\boldsymbol{b}) + \frac{\partial \mathcal{W}}{\partial \boldsymbol{g}}: \mathcal{L}_{\boldsymbol{u}}(\boldsymbol{g})\right) - \boldsymbol{T}_{\boldsymbol{\sigma}}: \boldsymbol{d} = 0$$

$$\mathscr{L}_{u}\boldsymbol{b} = 0$$
 $\boldsymbol{d} = \frac{1}{2}\mathscr{L}_{u}(\boldsymbol{g})$

$$T_{\sigma} = 2 \left(\frac{\partial \mathcal{W}}{\partial \boldsymbol{g}} \right)$$

Projection sur le temps :

$$T_{\sigma}: d - \mathscr{L}_{u}(\mathcal{W}) = 0 \iff S: D - \dot{W}(E) = 0$$

Densité d'énergie :
$${\cal W}=rac{{\cal E}^{lphaeta\kappa\lambda}}{2}(g_{lphaeta}-b_{lphaeta})(g_{\kappa\lambda}-b_{\kappa\lambda})$$

$$\left(\frac{\partial \mathcal{W}}{\partial \boldsymbol{b}}: \mathcal{L}_{\boldsymbol{u}}(\boldsymbol{b}) + \frac{\partial \mathcal{W}}{\partial \boldsymbol{g}}: \mathcal{L}_{\boldsymbol{u}}(\boldsymbol{g})\right) - \boldsymbol{T}_{\boldsymbol{\sigma}}: \boldsymbol{d} = 0$$

$$\mathscr{L}_{u}\boldsymbol{b} = 0$$
 $\boldsymbol{d} = \frac{1}{2}\mathscr{L}_{u}(\boldsymbol{g})$

$$m{T_{m{\sigma}}} = 2\left(rac{\partial \mathcal{W}}{\partial m{g}}
ight)$$
 \Longrightarrow $S = rac{\partial W}{\partial m{E}}$ si isotrope + objectivité

Projection sur le temps :

$$T_{\sigma}: d - \mathscr{L}_{u}(\mathcal{W}) = 0 \iff S: D - \dot{W}(E) = 0$$

Densité d'énergie :
$${\cal W}=rac{{\cal E}^{lphaeta\kappa\lambda}}{2}(g_{lphaeta}-b_{lphaeta})(g_{\kappa\lambda}-b_{\kappa\lambda})$$

$$\left(\frac{\partial \mathcal{W}}{\partial \boldsymbol{b}}: \mathcal{L}_{\boldsymbol{u}}(\boldsymbol{b}) + \frac{\partial \mathcal{W}}{\partial \boldsymbol{g}}: \mathcal{L}_{\boldsymbol{u}}(\boldsymbol{g})\right) - \boldsymbol{T}_{\boldsymbol{\sigma}}: \boldsymbol{d} = 0$$

$$\mathscr{L}_{u}\boldsymbol{b} = 0$$
 $\boldsymbol{d} = \frac{1}{2}\mathscr{L}_{u}(\boldsymbol{g})$

$$T_{\sigma} = 2 \left(\frac{\partial \mathcal{W}}{\partial \boldsymbol{g}} \right)$$

n'est pas le bon objet ?
$$\dot{E}=D$$
 $\dot{?}=d$

Conclusion

v<<c

Quasi-statique **HPP**

OK

Newton

v<<c Dynamique Transformations finies

- Objectivité Covariance -Configurations (Euler/ Lagrange) - Anisotropie et description eulérienne du mouvement

Champ V ≈ c de gravitation

Tout Observateur 4D: (ct,x,y,z)

Covariance

Relativité

Mecamat Aussois 23-27 janvier 2023 Les grandes transformations : aujourd'hui et ... demain ?

https://aussois2023.sciencesconf.org/

Venez nombreux!

Hyper-élasticité et anisotropie Les difficultés

- Bilan de puissance pour les transformations réversibles adiabatiques :
 - ullet On part de : $oldsymbol{\sigma}:oldsymbol{d}ho\psi=0$
 - $lacksquare ext{On pose}: \dot{W} =
 ho_0 \dot{\psi} \qquad \qquad rac{
 ho_0}{
 ho} oldsymbol{\sigma}: oldsymbol{d} \dot{W} = 0$
 - Sur la configuration matérielle : $rac{
 ho_0}{
 ho}m{\sigma}:m{d}=m{S}:m{D}$
 - lacktrians Transformations hyper-élastiques : $W(oldsymbol{E})$
- Bilan de puissance sur la configuration matérielle

S: le second tenseur des contraintes de Piola-Kirschhoff (PK2),

D : taux de déformations matériel

E : tenseur des déformations de Lagrange

 σ : tenseur des contraintes de Cauchy, d : taux de déformations,

o : masse volumique w : énergie potentielle élastique

Hyper-élasticité et anisotropie Les difficultés

Bilan de puissance pour les transformations réversibles adiabatiques:

$$\boldsymbol{\sigma}: \boldsymbol{d} - \rho \dot{\psi} = 0$$

 σ : tenseur des contraintes de Cauchy,

d : taux de déformations,

 ρ : masse volumique,

 ψ : énergie potentielle élastique.

ullet Si HPP avec hopprox cte et $oldsymbol{d}pprox\dot{oldsymbol{arepsilon}}$:

$$\left(\boldsymbol{\sigma} - \frac{\partial(\rho\psi)}{\partial\boldsymbol{\varepsilon}}\right) : \dot{\boldsymbol{\varepsilon}} = 0$$

$$\boldsymbol{\sigma} = \frac{\partial(\rho\psi)}{\partial\boldsymbol{\varepsilon}}$$

Comment généraliser pour les transformations finies ?

Classique

Masse volumique : ρ

Densité spécifique d'énergie : ψ

Taux de déformation : d

Accélération : \vec{a}

Tenseur des contraintes de Cauchy : $oldsymbol{\sigma}$

Conservation énergie (sans thermique) :

$$\boldsymbol{\sigma}: \boldsymbol{d} - \rho \dot{\psi} = 0$$

PFD:

$$\nabla . \boldsymbol{\sigma} = \rho \vec{a}$$

Espace-temps

Tenseur énergie-moment symétrique $oldsymbol{T}$ et :

$$\mathbf{T} = \mathcal{U}\vec{u} \otimes \vec{u} + \mathbf{T}_{\sigma}$$

(sans thermique). avec $\mathcal{U} = \rho c^2 + \rho \psi$

Exemple 2D + temps :

$$T^{\mu
u} = egin{pmatrix} \mathcal{U} & \mathcal{U} u^1 & \mathcal{U} u^2 \ \mathcal{U} u^1 & \mathcal{U} (u^1)^2 & \mathcal{U} u^1 u^2 \ \mathcal{U} u^2 & \mathcal{U} u^1 u^2 & \mathcal{U} (u^2)^2 \end{pmatrix} + egin{pmatrix} 0 & 0 & 0 \ 0 & -\sigma^{11} & -\sigma^{12} \ 0 & -\sigma^{12} & -\sigma^{22} \end{pmatrix}$$

avec
$$\vec{u} \left(egin{matrix} u^0 = 1 \\ u^i = rac{v^i}{c} \end{matrix}
ight)$$

Conservation : $\nabla .T = 0$

Projection sur le temps :

$$\vec{u} \cdot \nabla \cdot T = 0$$

Projection sur l'espace :

$$\partial_{x^0}(\mathcal{U}u^i) + \partial_{x^j}(\mathcal{U}u^iu^j) - \partial_{x^j}\sigma^{ij} = 0$$

$$\sigma: d - \rho_0 \dot{\psi} \ge 0 \quad \psi(e)$$

Définition de la dérivée de Lie

$$\mathcal{L}_{u}(T)_{\mu\nu} = u^{\lambda} \frac{\partial T_{\mu\nu}}{\partial x^{\lambda}} + T_{\lambda\nu} \frac{\partial u^{\lambda}}{\partial x^{\mu}} + T_{\mu\lambda} \frac{\partial u^{\lambda}}{\partial x^{\nu}} \qquad \mathcal{L}_{u}(a) = \frac{\mathrm{d}a}{\mathrm{d}t}$$

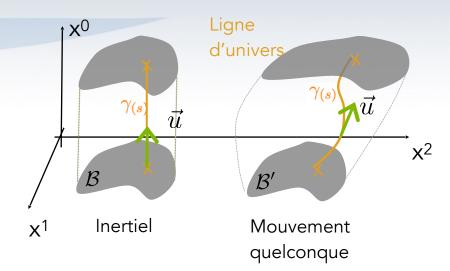
Dérivée de Lie de e $\mathcal{L}_v(e)_{\mu
u} = d_{\mu
u}$

$$\sigma: d - \rho \mathcal{L}(\psi) = 0$$
 $\sigma: d - \rho \frac{\partial \psi}{\partial e}: d = 0$

Pour un mouvement inertiel

Observateur propre = inertiel

$$u_0^\mu = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$
 en tout point du mouvement



Taux de déformation :

$$\boldsymbol{d_0} = \frac{1}{2} \mathcal{L}_{u_0}(\boldsymbol{g}) = 0$$

- Tenseur des déformations : $oldsymbol{b_0} = oldsymbol{g}$

$$b_{\mu
u} = F'^{\lambda}_{\ \mu} F'^{\kappa}_{\
u} \hat{b}_{\lambda\kappa} \quad \hat{b}^{\mu
u} = egin{pmatrix} 1 & 0 & 0 & 0 \ 0 & -1 & 0 & 0 \ 0 & 0 & -1 & 0 \ 0 & 0 & 0 & -1 \end{pmatrix}$$