Analyse topologique de données et estimation de support

Eddie AAmari
Laboratoire de Probabilité, Statistiques et Modélisation CNRS, Université Paris Cité, Sorbonne Université

Congrès français de mécanique
Nantes

30 AOÛT 2022

Data with a Global Geometric Structure

Large Scale Galaxy Structures: one point represents a galaxy in \mathbb{R}^{3}
[2dF Galaxy Redshift Survey]

Data with a Global Geometric Structure

Extracting all the $s \times s$ patches of an image with $m \times n$ pixels.
[Houdard - 2018]

Data with a Global Geometric Structure

Extracting all the $s \times s$ patches of an image with $m \times n$ pixels. [Houdard - 2018]

For $s=7$, one image $M \in \mathbb{R}^{n \times m}$ yields $\asymp m n$ points in $\mathbb{R}^{7 \times 7}=\mathbb{R}^{49}$

$$
[\mathrm{Xia}-2016]
$$

Data with a Global Geometric Structure

One conformation is described with a point in $\left(\mathbb{R}^{3}\right)^{8+16}=\mathbb{R}^{72}$.

Uncover Data Structure

Input: a set $\mathbb{X}_{n}=\left\{X_{1}, \ldots, X_{n}\right\}$ of observations.
Goal: Understand the underlying structure of the data, for interpretation or summary.

Challenge 1: Dimension

Challenge 2: Noise

Are my data corrupted?

Challenge 3: Scale

Zoom in or zoom out?

Dendrogram, Persistence Barcodes and Generalization

Dendrogram, Persistence Barcodes and Generalization

Dendrogram, Persistence Barcodes and Generalization

$\mathrm{d}_{\mathcal{P}}: \quad \mathbb{R}^{2} \rightarrow \mathbb{R}$
$x \mapsto \min _{p \in \mathcal{P}}\|x-p\|$

Dendrogram, Persistence Barcodes and Generalization

Dendrogram, Persistence Barcodes and Generalization

$$
\begin{aligned}
\mathrm{d}_{\mathcal{P}}: & \mathbb{R}^{2} \rightarrow \mathbb{R} \\
& x \mapsto \min _{p \in \mathcal{P}}\|x-p\|
\end{aligned}
$$

Dendrogram, Persistence Barcodes and Generalization

$\mathrm{d}_{\mathcal{P}}: \quad \mathbb{R}^{2} \rightarrow \mathbb{R}$
$x \mapsto \min _{p \in \mathcal{P}}\|x-p\|$

Dendrogram, Persistence Barcodes and Generalization

Dendrogram, Persistence Barcodes and Generalization

Dendrogram, Persistence Barcodes and Generalization

Dendrogram, Persistence Barcodes and Generalization

$\mathrm{d}_{\mathcal{P}}: \mathbb{R}^{2} \rightarrow \mathbb{R}$
$x \mapsto \min _{p \in \mathcal{P}}\|x-p\|$

Dendrogram is:

- informative
- unstable

Dendrogram, Persistence Barcodes and Generalization

Dendrogram \rightarrow barcode

Dendrogram, Persistence Barcodes and Generalization

Dendrogram \rightarrow barcode

Dendrogram, Persistence Barcodes and Generalization

Dendrogram \rightarrow barcode

Dendrogram, Persistence Barcodes and Generalization

Barcode is:

- less informative
- more stable

Dendrogram, Persistence Barcodes and Generalization

Dendrogram, Persistence Barcodes and Generalization

Dendrogram, Persistence Barcodes and Generalization

$$
\begin{aligned}
\mathrm{d}_{\mathcal{P}}: & \mathbb{R}^{2} \rightarrow \mathbb{R} \\
& x \mapsto \min _{p \in \mathcal{P}}\|x-p\|
\end{aligned}
$$

Barcode is:

- less informative
- more stable
- generalizable

Dendrogram, Persistence Barcodes and Generalization

Dendrogram, Persistence Barcodes and Generalization

Dendrogram, Persistence Barcodes and Generalization

Persistence Diagrams

Inside the black box:

- Nested family (filtration) of sublevel-sets $f^{-1}((-\infty, t])$, for $t \in \mathbb{R}$.
- Track the evolution of the topology (homology) of the family.

Persistence Diagrams

Inside the black box:

- Nested family (filtration) of sublevel-sets $f^{-1}((-\infty, t])$, for $t \in \mathbb{R}$.
- Track the evolution of the topology (homology) of the family.

Persistence Diagrams

Inside the black box:

- Nested family (filtration) of sublevel-sets $f^{-1}((-\infty, t])$, for $t \in \mathbb{R}$.
- Track the evolution of the topology (homology) of the family.

Persistence Diagrams

Inside the black box:

- Nested family (filtration) of sublevel-sets $f^{-1}((-\infty, t])$, for $t \in \mathbb{R}$.
- Track the evolution of the topology (homology) of the family.

Persistence Diagrams

Inside the black box:

- Nested family (filtration) of sublevel-sets $f^{-1}((-\infty, t])$, for $t \in \mathbb{R}$.
- Track the evolution of the topology (homology) of the family.

Persistence Diagrams

Inside the black box:

- Nested family (filtration) of sublevel-sets $f^{-1}((-\infty, t])$, for $t \in \mathbb{R}$.
- Track the evolution of the topology (homology) of the family.

Persistence Diagrams

Inside the black box:

- Nested family (filtration) of sublevel-sets $f^{-1}((-\infty, t])$, for $t \in \mathbb{R}$.
- Track the evolution of the topology (homology) of the family.

Persistence Diagrams

Inside the black box:

- Nested family (filtration) of sublevel-sets $f^{-1}((-\infty, t])$, for $t \in \mathbb{R}$.
- Track the evolution of the topology (homology) of the family.

Persistence Diagrams

Inside the black box:

- Nested family (filtration) of sublevel-sets $f^{-1}((-\infty, t])$, for $t \in \mathbb{R}$.
- Track the evolution of the topology (homology) of the family.

Persistence Diagrams

Inside the black box:

- Nested family (filtration) of sublevel-sets $f^{-1}((-\infty, t])$, for $t \in \mathbb{R}$.
- Track the evolution of the topology (homology) of the family.

Persistence Diagrams

Inside the black box:

- Nested family (filtration) of sublevel-sets $f^{-1}((-\infty, t])$, for $t \in \mathbb{R}$.
- Track the evolution of the topology (homology) of the family.

Persistence Diagrams

Definition (Bottleneck Distance)

Given two diagrams F and G, $\mathrm{d}_{b}(F, G)=\inf \{\delta \mid$ there exists a δ-correspondence between F and $G\}$.

Persistence Diagrams

Definition (Bottleneck Distance)

Given two diagrams F and G, $\mathrm{d}_{b}(F, G)=\inf \{\delta \mid$ there exists a δ-correspondence between F and $G\}$.

Theorem (Stability of Persistence)
For all nice functions $f, g: X \rightarrow \mathbb{R}$,

$$
\mathrm{d}_{\mathrm{b}}(\operatorname{dgm}(f), \operatorname{dgm}(g)) \leq\|f-g\|_{\infty}
$$

Stability for Sets

Definition (Hausdorff Distance)
The Hausdorff distance between two compact sets A and $B \subset \mathbb{R}^{D}$ is

$$
\mathrm{d}_{\mathrm{H}}(A, B)=\left\|\mathrm{d}_{A}(\cdot)-\mathrm{d}_{B}(\cdot)\right\|_{\infty},
$$

where $\mathrm{d}_{K}(x)=\inf _{p \in K}\|x-p\|$ is the distance to K.

Stability for Sets

Definition (Hausdorff Distance)
The Hausdorff distance between two compact sets A and $B \subset \mathbb{R}^{D}$ is

$$
\mathrm{d}_{\mathrm{H}}(A, B)=\left\|\mathrm{d}_{A}(\cdot)-\mathrm{d}_{B}(\cdot)\right\|_{\infty},
$$

where $\mathrm{d}_{K}(x)=\inf _{p \in K}\|x-p\|$ is the distance to K.
Proposition (Persistence Stability for Sets)
Write $\operatorname{dgm}(K)$ for the diagram of the offset filtration

$$
K^{r}=\mathrm{d}_{K}^{-1}([0, r]), \text { for } r \geq 0
$$

Then for all compact $A, B \subset \mathbb{R}^{D}$,

$$
\mathrm{d}_{\mathrm{b}}(\operatorname{dgm}(A), \operatorname{dgm}(B)) \leq\left\|\mathrm{d}_{A}(\cdot)-\mathrm{d}_{B}(\cdot)\right\|_{\infty}=\mathrm{d}_{\mathrm{H}}(A, B)
$$

Stability for Sets

Definition (Hausdorff Distance)
The Hausdorff distance between two compact sets A and $B \subset \mathbb{R}^{D}$ is

$$
\mathrm{d}_{\mathrm{H}}(A, B)=\left\|\mathrm{d}_{A}(\cdot)-\mathrm{d}_{B}(\cdot)\right\|_{\infty},
$$

where $\mathrm{d}_{K}(x)=\inf _{p \in K}\|x-p\|$ is the distance to K.
Proposition (Persistence Stability for Sets)
Write $\operatorname{dgm}(K)$ for the diagram of the offset filtration

$$
K^{r}=\mathrm{d}_{K}^{-1}([0, r]), \text { for } r \geq 0
$$

Then for all compact $A, B \subset \mathbb{R}^{D}$,

$$
\mathrm{d}_{\mathrm{b}}(\operatorname{dgm}(A), \operatorname{dgm}(B)) \leq\left\|\mathrm{d}_{A}(\cdot)-\mathrm{d}_{B}(\cdot)\right\|_{\infty}=\mathrm{d}_{\mathrm{H}}(A, B)
$$

Approximating persistence reduces to approximating sets for Hausdorff loss.

Homology in a Nutshell

β_{0} : connected components $\quad \beta_{1}$: holes $\quad \beta_{2}$: voids

$$
\begin{aligned}
& \beta_{0}=1 \\
& \beta_{1}=1
\end{aligned}
$$

$$
\beta_{0}=1
$$

$$
\beta_{0}=1
$$

$$
\beta_{1}=2
$$

$$
\beta_{1}=1
$$

$$
\beta_{2}=1
$$

$$
\beta_{2}=0
$$

Support Estimation

Data: A n-sample $X_{1}, \ldots, X_{n} \sim_{i . i . d .} P$.
Goal: Estimate the set $C=\operatorname{Support}(P)=$

$$
\bigcap_{\substack{K \subset \mathbb{R}^{D} \text { closed } \\ P(K)=1}} K .
$$

$$

$$

Support Estimation

Data: A n-sample $X_{1}, \ldots, X_{n} \sim_{i . i . d .} P$.
Goal: Estimate the set $C=\operatorname{Support}(P)=$

$$
\begin{aligned}
& K \subset \mathbb{R}^{D} \text { closed } \\
& P(K)=1
\end{aligned}
$$

If we know (by advance) that C is convex, a good candidate is

$$
\hat{C}_{n}=\operatorname{Conv}\left(\left\{X_{1}, \ldots, X_{n}\right\}\right) .
$$

Support Estimation

Data: A n-sample $X_{1}, \ldots, X_{n} \sim_{i . i . d .} P$.
Goal: Estimate the set $C=\operatorname{Support}(P)=$
$\bigcap_{\substack{K \subset \mathbb{R}^{D} \text { closed } \\ P(K)=1}} K$.

If we know (by advance) that C is convex, a good candidate is

$$
\hat{C}_{n}=\operatorname{Conv}\left(\left\{X_{1}, \ldots, X_{n}\right\}\right) .
$$

Support Estimation: Convex Case(s)

Theorem (Dümbgen, Walther - 1996)
Assume that $P=U n i f_{C}$ is uniform over the convex set $C \subset \mathbb{R}^{D}$. Write

$$
\hat{C}_{n}=\operatorname{Conv}\left(\left\{X_{1}, \ldots, X_{n}\right\}\right) .
$$

- Then,

$$
\mathrm{d}_{\mathrm{H}}\left(C, \mathbb{X}_{n}\right) \leq \mathrm{d}_{\mathrm{H}}\left(C, \hat{C}_{n}\right)=O\left(\frac{\log n}{n}\right)^{\frac{1}{D}} \text { a.s. }
$$

- If in addition, ∂C is \mathcal{C}^{2},

$$
\mathrm{d}_{\mathrm{H}}\left(C, \hat{C}_{n}\right)=O\left(\frac{\log n}{n}\right)^{\frac{2}{D+1}} \text { a.s. }
$$

Beyond Convexity

How to model the support of these data?

- Low-dimensional and curved \rightarrow Submanifold of \mathbb{R}^{D}.
- Not convex, but locally around it the projection uniquely defined.

Reminder: For a closed set $C \subset \mathbb{R}^{D}$,

$$
C \subset \mathbb{R}^{D} \text { is convex } \Leftrightarrow \begin{aligned}
& \text { Every } z \in \mathbb{R}^{D} \text { has a unique nearest neighbor on } C \\
& \text { i.e. } \exists!\pi_{C}(z) \in C \text { with }\left\|z-\pi_{C}(z)\right\|=\mathrm{d}_{C}(z) .
\end{aligned}
$$

Medial Axis

The medial axis of $M \subset \mathbb{R}^{D}$ is the set of points that have at least two nearest neighbors on M.
$\operatorname{Med}(M)=\left\{z \in \mathbb{R}^{D}, z\right.$ has several nearest neighbors on $\left.M\right\}$,

Medial Axis

The medial axis of $M \subset \mathbb{R}^{D}$ is the set of points that have at least two nearest neighbors on M.
$\operatorname{Med}(M)=\left\{z \in \mathbb{R}^{D}, z\right.$ has several nearest neighbors on $\left.M\right\}$,

Medial axis of a point cloud (Voronoi faces)

Medial Axis

The medial axis of $M \subset \mathbb{R}^{D}$ is the set of points that have at least two nearest neighbors on M.
$\operatorname{Med}(M)=\left\{z \in \mathbb{R}^{D}, z\right.$ has several nearest neighbors on $\left.M\right\}$,

Medial axis of a continuous subset

Reach

For a closed subset $M \subset \mathbb{R}^{D}$, the reach τ_{M} of M is the least distance to its medial axis:

$$
\tau_{M}=\inf _{x \in M} \mathrm{~d}_{\operatorname{Med}(M)}(x)
$$

where for all $x \in \mathbb{R}^{D}, \mathrm{~d}_{K}(x)=\inf _{p \in K}\|x-p\|$.

One can also flip the formula:

$$
\tau_{M}=\inf _{z \in \operatorname{Med}(M)} \mathrm{d}_{M}(z)
$$

Global Regularity

Narrow bottleneck structure $\Rightarrow \tau_{M} \ll 1$.

Local Regularity

High curvature \Leftrightarrow Small radius of curvature $\Rightarrow \tau_{M} \ll 1$.

Local Regularity

High curvature \Leftrightarrow Small radius of curvature $\Rightarrow \tau_{M} \ll 1$.

Proposition (Federer - 1959, Niyogi et al. - 2006)
Let $I I_{x}^{M}$ denote the second fundamental form of M.
For all unit tangent vector $v \in T_{x} M,\left\|I I_{x}^{M}(v, v)\right\| \leq 1 / \tau_{M}$.
As a consequence, the sectional curvatures κ of M satisfy

$$
-2 / \tau_{M}^{2} \leq \kappa \leq 1 / \tau_{M}^{2}
$$

Statistical Model

$X_{1}, \ldots, X_{n} \stackrel{i . i . d .}{\sim} P$, where $M=\operatorname{Support}(P) \subset \mathbb{R}^{D}$ satisfies:

- M is a compact connected d-dimensional submanifold,
- M has no boundary,
- $\tau_{M} \geq \tau_{\text {min }}>0$,
- P is (almost) the uniform distribution on M.

The set of distributions satisfying these conditions is denoted by \mathcal{P}.

A Reconstruction Theorem

Theorem (A, Levrard - 2018)
There exists a computable estimator \hat{M} such that for all $n \geq 1$,

$$
\mathbb{E}_{P^{n}}\left[\mathrm{~d}_{\mathrm{H}}(M, \hat{M})\right] \leq C\left(\frac{\log n}{n}\right)^{2 / d}
$$

where $C=C_{\tau_{\min }, d}$ does not depend on the ambient dimension D.

Outline of the Method

The Tangential Delaunay Complex [Boissonnat \& Ghosh - 2014]

Optimality: Studying the Minimax Risk

The minimax risk over the statistical model \mathcal{P} is

$$
\inf _{\hat{M}_{n}} \sup _{P \in \mathcal{P}} \mathbb{E}_{P^{n}}\left[\mathrm{~d}_{\mathrm{H}}\left(M, \hat{M}_{n}\right)\right],
$$

where the infimum is taken over all the estimators $\hat{M}_{n}=\hat{M}_{n}\left(\mathbb{X}_{n}\right)$ computed over a n-sample $\mathbb{X}_{n}=\left\{X_{1}, \ldots, X_{n}\right\}$.

Optimality: Studying the Minimax Risk

The minimax risk over the statistical model \mathcal{P} is

$$
\inf _{\hat{M}_{n}} \sup _{P \in \mathcal{P}} \mathbb{E}_{P^{n}}\left[\mathrm{~d}_{\mathrm{H}}\left(M, \hat{M}_{n}\right)\right],
$$

where the infimum is taken over all the estimators $\hat{M}_{n}=\hat{M}_{n}\left(\mathbb{X}_{n}\right)$ computed over a n-sample $\mathbb{X}_{n}=\left\{X_{1}, \ldots, X_{n}\right\}$.

Proposition (Genovese et al - 2012)
For n large enough,

$$
\inf _{\hat{M}_{n}} \sup _{P \in \mathcal{P}} \mathbb{E}_{P^{n}}\left[\mathrm{~d}_{\mathrm{H}}\left(M, \hat{M}_{n}\right)\right] \leq C\left(\frac{\log n}{n}\right)^{\frac{2}{d}},
$$

where $C=C_{d, \tau_{\text {min }}}$

Optimality: Studying the Minimax Risk

The minimax risk over the statistical model \mathcal{P} is

$$
\inf _{\hat{M}_{n}} \sup _{P \in \mathcal{P}} \mathbb{E}_{P^{n}}\left[\mathrm{~d}_{\mathrm{H}}\left(M, \hat{M}_{n}\right)\right],
$$

where the infimum is taken over all the estimators $\hat{M}_{n}=\hat{M}_{n}\left(\mathbb{X}_{n}\right)$ computed over a n-sample $\mathbb{X}_{n}=\left\{X_{1}, \ldots, X_{n}\right\}$.

Proposition (Genovese et al - 2012)
For n large enough, (+ mild technical assumptions)

$$
c\left(\frac{1}{n}\right)^{\frac{2}{d}} \leq \inf _{\hat{M}_{n}} \sup _{P \in \mathcal{P}} \mathbb{E}_{P^{n}}\left[\mathrm{~d}_{\mathrm{H}}\left(M, \hat{M}_{n}\right)\right] \leq C\left(\frac{\log n}{n}\right)^{\frac{2}{d}},
$$

where $C=C_{d, \tau_{\min }}$ and $c=c_{\tau_{\min }}$.

Lower Bound Technique: Le Cam's Lemma

Theorem (L. Le Cam)
For all $P_{0}, P_{1} \in \mathcal{P}$,

$$
\inf _{\hat{M}_{n}} \sup _{P \in \mathcal{P}} \mathbb{E}_{P^{n}}\left[\mathrm{~d}_{\mathrm{H}}\left(M, \hat{M}_{n}\right)\right] \geq \frac{1}{2} \mathrm{~d}_{\mathrm{H}}\left(M_{0}, M_{1}\right)\left(1-\mathrm{TV}\left(P_{0}, P_{1}\right)\right)^{n},
$$

where

$$
\mathrm{TV}\left(P_{0}, P_{1}\right)=\sup _{B \in \mathcal{B}\left(\mathbb{R}^{D}\right)}\left|P_{0}(B)-P_{1}(B)\right|
$$

denotes the total variation distance between P_{0} and P_{1}.

Lower Bound Technique: Le Cam's Lemma

Theorem (L. Le Cam)
For all $P_{0}, P_{1} \in \mathcal{P}$,

$$
\inf _{\hat{M}_{n}} \sup _{P \in \mathcal{P}} \mathbb{E}_{P^{n}}\left[\mathrm{~d}_{\mathrm{H}}\left(M, \hat{M}_{n}\right)\right] \geq \frac{1}{2} \mathrm{~d}_{\mathrm{H}}\left(M_{0}, M_{1}\right)\left(1-\operatorname{TV}\left(P_{0}, P_{1}\right)\right)^{n},
$$

where

$$
\operatorname{TV}\left(P_{0}, P_{1}\right)=\sup _{B \in \mathcal{B}\left(\mathbb{R}^{D}\right)}\left|P_{0}(B)-P_{1}(B)\right|
$$

denotes the total variation distance between P_{0} and P_{1}.
Deriving a good lower bound amounts to find P_{0}, P_{1} such that:

- $P_{0}, P_{1} \in \mathcal{P}$,
$-\mathrm{d}_{\mathrm{H}}\left(M_{0}, M_{1}\right)$ is large,
$-\operatorname{TV}\left(P_{0}, P_{1}\right)$ is small.

Le Cam's Lemma Heuristic

Le Cam's Lemma Heuristic

- P_{0} and P_{1} both belong to \mathcal{P} as soon as $\eta \lesssim \ell^{2}$,
$-\mathrm{d}_{\mathrm{H}}\left(M_{0}, M_{1}\right) \geq \eta$,
$-\operatorname{TV}\left(P_{0}, P_{1}\right) \lesssim \ell^{d}$.

Le Cam's Lemma Heuristic

- P_{0} and P_{1} both belong to \mathcal{P} as soon as $\eta \lesssim \ell^{2}$,
$-\mathrm{d}_{\mathrm{H}}\left(M_{0}, M_{1}\right) \geq \eta$,
$-\mathrm{TV}\left(P_{0}, P_{1}\right) \lesssim \ell^{d}$.
Hence, for $\eta \approx \ell^{2}$ and $\ell \approx(1 / n)^{1 / d}$,

$$
\inf _{\hat{\tau}_{n}} \sup _{P \in \mathcal{P}} \mathbb{E}_{P^{n}}\left[\mathrm{~d}_{\mathrm{H}}\left(M, \hat{M}_{n}\right)\right] \gtrsim \eta\left(1-\ell^{d}\right)^{n} \approx(1 / n)^{2 / d} .
$$

Extension to a Noisy Model

Theorem (A, Levrard - 2018)
For all $\delta>0$, there exists a computable estimator $\hat{M}_{n}^{(\delta)}$ such that for all $n \geq 1$,

$$
\mathbb{E}\left[\mathrm{d}_{\mathrm{H}}\left(M, \hat{M}_{n}^{(\delta)}\right)\right] \leq C\left(\frac{\log n}{n}\right)^{2 / d-\delta}
$$

Denoising Outline

Since $h^{2 D-d} \ll h^{d}$, the measure $P(S(x, T))$ of the slabs are discriminative for denoising.

The Catchy Slide...

The Catchy Slide...

The Catchy Slide...

The Catchy Slide...

Lots of theoretical related topics:

- High-Dimensional statistics
- Nonparametric statistics
- Time series
- Computational geometry
- Geometry processing
- Abstract algebra

With applications in

- Material science
- Image analysis
- Physical chemistry
- Cosmology
- Network analysis
- ...

