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Data with a Global Geometric Structure

Large Scale Galaxy Structures: one point represents a galaxy in R3

[2dF Galaxy Redshift Survey]
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Data with a Global Geometric Structure

Extracting all the s × s patches of an image with m × n pixels.
[Houdard – 2018]

For s = 7, one image M ∈ Rn×m yields ≍ mn points in R7×7 = R49

[Xia – 2016]
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Data with a Global Geometric Structure

Cyclo-octane (C8H16) conformations
[Martin et al. – 2010]

One conformation is described with a point in
(
R3)8+16 = R72.
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Uncover Data Structure

Input: a set Xn = {X1, . . . , Xn} of observations.
Goal: Understand the underlying structure of the data,

for interpretation or summary.
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Challenge 1: Dimension

Rd

RD

Rd

What dimension is this S-shape?
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Challenge 2: Noise

Are my data corrupted?
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Challenge 3: Scale

Zoom in or zoom out?
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Dendrogram, Persistence Barcodes and Generalization

scale

dP : R2 → R
x 7→ min

p∈P
‖x− p‖
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Dendrogram, Persistence Barcodes and Generalization
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Dendrogram is:
- informative
- unstable
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Persistence Diagrams

Inside the black box:
• Nested family (filtration) of sublevel-sets f−1(

(−∞, t]
)
, for t ∈ R.

• Track the evolution of the topology (homology) of the family.

X

R

f

t

f−1((−∞, t])
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Inside the black box:
• Nested family (filtration) of sublevel-sets f−1(
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, for t ∈ R.

• Track the evolution of the topology (homology) of the family.
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Persistence Diagrams

Definition (Bottleneck Distance)
Given two diagrams F and G,
db(F, G) = inf{δ| there exists a δ-correspondence between F and G}.

Q What if f is slightly perturbed?

X

R

f

∞g

Theorem (Stability of Persistence)
For all

:::
nice functions f, g : X → R,

db(dgm(f), dgm(g)) ≤ ∥f − g∥∞ .
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Stability for Sets

Definition (Hausdorff Distance)
The Hausdorff distance between two compact sets A and B ⊂ RD is

dH(A, B) = ∥dA(·) − dB(·)∥∞ ,

where dK(x) = inf
p∈K

∥x − p∥ is the distance to K.

AB

dH(A,B)
a

b

Approximating persistence reduces to approximating sets
for Hausdorff loss.
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Homology in a Nutshell

β0: connected components β1: holes β2: voids

β0 = 1 β0 = 1 β0 = 1

β1 = 1 β1 = 2

β2 = 1

β1 = 1

β2 = 0
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Support Estimation
Data: A n-sample X1, . . . , Xn ∼i.i.d. P .
Goal: Estimate the set C = Support(P ) =

⋂
K⊂RD closed

P (K)=1

K.

If we know (by advance) that C is convex, a good candidate is
Ĉn = Conv({X1, . . . , Xn}).
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Support Estimation: Convex Case(s)

Theorem (Dümbgen, Walther – 1996)
Assume that P = UnifC is uniform over the convex set C ⊂ RD.
Write

Ĉn = Conv({X1, . . . , Xn}).

– Then,

dH(C,Xn) ≤ dH(C, Ĉn) = O

(
log n

n

) 1
D

a.s.

– If in addition, ∂C is C2,

dH(C, Ĉn) = O

(
log n

n

) 2
D+1

a.s.
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Beyond Convexity

How to model the support of these data?

– Low-dimensional and curved → Submanifold of RD.
– Not convex, but locally around it the projection uniquely defined.

Reminder: For a closed set C ⊂ RD,

C ⊂ RD is convex ⇔ Every z ∈ RD has a unique nearest neighbor on C
i.e. ∃! πC(z) ∈ C with ∥z − πC(z)∥ = dC(z).
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Medial Axis
The medial axis of M ⊂ RD is the set of points that have at least
two nearest neighbors on M .

Med(M) = {z ∈ RD, z has several nearest neighbors on M},

Medial axis of a point cloud (Voronoi faces)
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Medial Axis
The medial axis of M ⊂ RD is the set of points that have at least
two nearest neighbors on M .

Med(M) = {z ∈ RD, z has several nearest neighbors on M},

M

Med(M)

Medial axis of a continuous subset
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Reach

For a closed subset M ⊂ RD, the reach τM of M is the least distance
to its medial axis:

τM = inf
x∈M

dMed(M) (x) ,

where for all x ∈ RD, dK(x) = inf
p∈K

∥x − p∥.

τM

M

Med(M)

One can also flip the formula:

τM = inf
z∈Med(M)

dM (z) .
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Global Regularity

τM

M

Med(M)

M ′

Med(M ′)

τM ′

Narrow bottleneck structure ⇒ τM ≪ 1.
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Local Regularity

M
τM

Med(M)

High curvature ⇔ Small radius of curvature ⇒ τM ≪ 1.

Proposition (Federer – 1959, Niyogi et al. – 2006)
Let IIM

x denote the second fundamental form of M .
For all unit tangent vector v ∈ TxM ,

∥∥IIM
x (v, v)

∥∥ ≤ 1/τM .

As a consequence, the sectional curvatures κ of M satisfy

−2/τ2
M ≤ κ ≤ 1/τ2

M .
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Statistical Model

X1, . . . , Xn
i.i.d.∼ P , where M = Support(P ) ⊂ RD satisfies:

– M is a compact connected d-dimensional submanifold,
– M has no boundary,
– τM ≥ τmin > 0,

– P is (almost) the uniform distribution on M .
The set of distributions satisfying these conditions is denoted by P.
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A Reconstruction Theorem

Theorem (A, Levrard – 2018)
There exists a computable estimator M̂ such that for all n ≥ 1,

EP n

[
dH(M, M̂)

]
≤ C

(
log n

n

)2/d

,

where C = Cτmin,d does not depend on the ambient dimension D.
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Outline of the Method

The Tangential Delaunay Complex [Boissonnat & Ghosh – 2014]
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Outline of the Method

M̂

The Tangential Delaunay Complex [Boissonnat & Ghosh – 2014]
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Optimality: Studying the Minimax Risk

The minimax risk over the statistical model P is

inf
M̂n

sup
P ∈P

EP n

[
dH

(
M, M̂n

)]
,

where the infimum is taken over all the estimators M̂n = M̂n(Xn)
computed over a n-sample Xn = {X1, . . . , Xn}.

Proposition (Genovese et al – 2012)
For n large enough,

(+ mild technical assumptions)

c

(
1
n

) 2
d

≤

inf
M̂n

sup
P ∈P

EP n

[
dH

(
M, M̂n

)]
≤ C

(
log n

n

) 2
d

,

where C = Cd,τmin

and c = cτmin .
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Lower Bound Technique: Le Cam’s Lemma

Theorem (L. Le Cam)
For all P0, P1 ∈ P,

inf
M̂n

sup
P ∈P

EP n

[
dH

(
M, M̂n

)]
≥ 1

2dH(M0, M1)
(
1 − TV(P0, P1)

)n
,

where
TV(P0, P1) = sup

B∈B(RD)
|P0(B) − P1(B)|

denotes the total variation distance between P0 and P1.

Deriving a good lower bound amounts to find P0, P1 such that:
– P0, P1 ∈ P,
– dH(M0, M1) is large,
– TV(P0, P1) is small.
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Le Cam’s Lemma Heuristic

η

τmin

`M0

M1

M0

– P0 and P1 both belong to P as soon as η ≲ ℓ2,
– dH(M0, M1) ≥ η,
– TV(P0, P1) ≲ ℓd.

Hence, for η ≈ ℓ2 and ℓ ≈ (1/n)1/d,

inf
τ̂n

sup
P ∈P

EP n

[
dH

(
M, M̂n

)]
≳ η

(
1 − ℓd

)n ≈ (1/n)2/d
.
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Extension to a Noisy Model

denoising

Theorem (A, Levrard – 2018)
For all δ > 0, there exists a computable estimator M̂

(δ)
n such that for

all n ≥ 1,

E
[
dH(M, M̂ (δ)

n )
]

≤ C

(
log n

n

)2/d−δ

.
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Denoising Outline

k1h

k2h
2

Tπ(Xj)M

M

T̂j

π(Xj)

Sj

Xj

Xj′

Sj′

T̂j′

P
(
S(x, Tπ(x)M)

)
≍ hd if d(x, M) ≤ h2,

P (S(x, T )) ≍ h2D−d for all T, if d(x, M) > h2,

Since h2D−d ≪ hd, the measure P (S(x, T )) of the slabs are
discriminative for denoising.
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The Catchy Slide...

Xn
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The Catchy Slide... ...with Cute Cats

Xn

M

Sampling
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The Catchy Slide... ...with Cute Cats

Re
co
ns
tru
cti
on

Homology “M is like a circle.”
(β0 = 1, β1 = 1)

Xn

M

Sampling

M̂

(dim(M) = 1)

Tangent space

Cu
rv
at
ur
e

Dimension“M is a curve.”

Segm
entationPersistence
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The Catchy Slide... ... with Buzzwords

Lots of theoretical related topics:
• High-Dimensional statistics
• Nonparametric statistics
• Time series
• Computational geometry
• Geometry processing
• Abstract algebra

With applications in
• Material science
• Image analysis
• Physical chemistry
• Cosmology
• Network analysis
• . . .
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