Analyse topologique de données et estimation de support

EDDIE AAMARI Laboratoire de Probabilité, Statistiques et Modélisation CNRS, Université Paris Cité, Sorbonne Université

Congrès français de mécanique

NANTES

 $30~{\rm août}~2022$

Large Scale Galaxy Structures: one point represents a galaxy in \mathbb{R}^3 [2dF Galaxy Redshift Survey]

Extracting all the $s \times s$ patches of an image with $m \times n$ pixels. [Houdard - 2018]

Extracting all the $s \times s$ patches of an image with $m \times n$ pixels. [Houdard - 2018]

For s = 7, one image $M \in \mathbb{R}^{n \times m}$ yields $\asymp mn$ points in $\mathbb{R}^{7 \times 7} = \mathbb{R}^{49}$ [Xia - 2016]

Cyclo-octane (C_8H_{16}) conformations [Martin *et al.* - 2010]

One conformation is described with a point in $(\mathbb{R}^3)^{8+16} = \mathbb{R}^{72}$.

Uncover Data Structure

Input: a set $X_n = \{X_1, \ldots, X_n\}$ of observations. **Goal:** Understand the underlying structure of the data, for interpretation or summary.

Challenge 1: Dimension

What dimension is this S-shape?

Challenge 2: Noise

Are my data corrupted?

Challenge 3: Scale

Zoom in or zoom out?

Dendrogram is:

- informative
- unstable

 $\mathsf{Dendrogram} \to \mathsf{barcode}$

 $\mathsf{Dendrogram} \to \mathsf{barcode}$

16

Barcode is:

- less informative
- more stable

- Nested family (filtration) of sublevel-sets $f^{-1}((-\infty, t])$, for $t \in \mathbb{R}$.
- Track the evolution of the topology (homology) of the family.

- Nested family (filtration) of sublevel-sets $f^{-1}((-\infty, t])$, for $t \in \mathbb{R}$.
- Track the evolution of the topology (homology) of the family.

- Nested family (filtration) of sublevel-sets $f^{-1}((-\infty, t])$, for $t \in \mathbb{R}$.
- Track the evolution of the topology (homology) of the family.

- Nested family (filtration) of sublevel-sets $f^{-1}((-\infty, t])$, for $t \in \mathbb{R}$.
- Track the evolution of the topology (homology) of the family.

- Nested family (filtration) of sublevel-sets $f^{-1}((-\infty, t])$, for $t \in \mathbb{R}$.
- Track the evolution of the topology (homology) of the family.

- Nested family (filtration) of sublevel-sets $f^{-1}((-\infty, t])$, for $t \in \mathbb{R}$.
- Track the evolution of the topology (homology) of the family.

- Nested family (filtration) of sublevel-sets $f^{-1}((-\infty, t])$, for $t \in \mathbb{R}$.
- Track the evolution of the topology (homology) of the family.

- Nested family (filtration) of sublevel-sets $f^{-1}((-\infty, t])$, for $t \in \mathbb{R}$.
- Track the evolution of the topology (homology) of the family.

- Nested family (filtration) of sublevel-sets $f^{-1}((-\infty, t])$, for $t \in \mathbb{R}$.
- Track the evolution of the topology (homology) of the family.

- Nested family (filtration) of sublevel-sets $f^{-1}((-\infty, t])$, for $t \in \mathbb{R}$.
- Track the evolution of the topology (homology) of the family.

- Nested family (filtration) of sublevel-sets $f^{-1}((-\infty, t])$, for $t \in \mathbb{R}$.
- Track the evolution of the topology (homology) of the family.

Definition (Bottleneck Distance) Given two diagrams F and G,

 $d_b(F,G) = \inf\{\delta \mid \text{there exists a } \delta \text{-correspondence between } F \text{ and } G\}.$

Definition (Bottleneck Distance) Given two diagrams F and G,

 $d_b(F,G) = \inf\{\delta | \text{ there exists a } \delta \text{-correspondence between } F \text{ and } G\}.$

Theorem (Stability of Persistence) For all <u>nice</u> functions $f, g: X \to \mathbb{R}$, $d_{b}(dgm(f), dgm(g)) \leq ||f - g||_{\infty}$.

Stability for Sets

Definition (Hausdorff Distance)

The **Hausdorff distance** between two compact sets A and $B \subset \mathbb{R}^D$ is

$$d_{\mathrm{H}}(A,B) = \left\| \mathrm{d}_{A}(\cdot) - \mathrm{d}_{B}(\cdot) \right\|_{\infty},$$

where $d_K(x) = \inf_{p \in K} ||x - p||$ is the distance to K.

Stability for Sets

Definition (Hausdorff Distance)

The **Hausdorff distance** between two compact sets A and $B \subset \mathbb{R}^D$ is

$$d_{\mathrm{H}}(A,B) = \left\| \mathrm{d}_{A}(\cdot) - \mathrm{d}_{B}(\cdot) \right\|_{\infty},$$

where $d_K(x) = \inf_{p \in K} ||x - p||$ is the distance to K.

Proposition (Persistence Stability for Sets) Write dgm(K) for the diagram of the offset filtration

$$K^r = \mathbf{d}_K^{-1}([0, r]), \text{ for } r \ge 0.$$

Then for all compact $A, B \subset \mathbb{R}^D$,

$$d_{\mathrm{b}}(\mathrm{dgm}(A), \mathrm{dgm}(B)) \le \|d_A(\cdot) - d_B(\cdot)\|_{\infty} = d_{\mathrm{H}}(A, B).$$

Stability for Sets

Definition (Hausdorff Distance)

The **Hausdorff distance** between two compact sets A and $B \subset \mathbb{R}^D$ is

$$d_{\mathrm{H}}(A,B) = \left\| \mathrm{d}_{A}(\cdot) - \mathrm{d}_{B}(\cdot) \right\|_{\infty},$$

where $d_K(x) = \inf_{p \in K} ||x - p||$ is the distance to K.

Proposition (Persistence Stability for Sets) Write dgm(K) for the diagram of the offset filtration

$$K^r = d_K^{-1}([0, r]), \text{ for } r \ge 0.$$

Then for all compact $A, B \subset \mathbb{R}^D$,

$$d_{\mathrm{b}}(\mathrm{dgm}(A), \mathrm{dgm}(B)) \le \|d_A(\cdot) - d_B(\cdot)\|_{\infty} = d_{\mathrm{H}}(A, B).$$

Approximating persistence reduces to approximating sets for Hausdorff loss.

Homology in a Nutshell

 β_0 : connected components β_1 : holes β_2 : voids

Support Estimation

Data: A *n*-sample $X_1, \ldots, X_n \sim_{i.i.d.} P$. **Goal:** Estimate the set C = Support(P) =K. $K{\subset}\mathbb{R}^D$ closed $\overline{P}(K)=1$

Support Estimation

If we know (by advance) that C is convex, a good candidate is $\hat{C}_n = \text{Conv}(\{X_1, \dots, X_n\}).$

Support Estimation

If we know (by advance) that C is convex, a good candidate is $\hat{C}_n = \text{Conv}(\{X_1, \dots, X_n\}).$

Support Estimation: Convex Case(s)

Theorem (Dümbgen, Walther – 1996)

Assume that $P = Unif_C$ is uniform over the convex set $C \subset \mathbb{R}^D$. Write

$$\hat{C}_n = \operatorname{Conv}(\{X_1, \dots, X_n\}).$$

- Then,

$$d_{\mathrm{H}}(C, \mathbb{X}_n) \le d_{\mathrm{H}}(C, \hat{C}_n) = O\left(\frac{\log n}{n}\right)^{\frac{1}{D}} a.s.$$

– If in addition, ∂C is C^2 ,

$$d_{\mathrm{H}}(C, \hat{C}_n) = O\left(\frac{\log n}{n}\right)^{\frac{2}{D+1}} \ a.s.$$

Beyond Convexity

How to model the support of these data?

- Low-dimensional and curved \rightarrow Submanifold of \mathbb{R}^D .
- Not convex, but locally around it the projection uniquely defined.

Reminder: For a closed set $C \subset \mathbb{R}^D$,

 $C \subset \mathbb{R}^D$ is convex \Leftrightarrow Every $z \in \mathbb{R}^D$ has a unique nearest neighbor on Ci.e. $\exists! \pi_C(z) \in C$ with $||z - \pi_C(z)|| = d_C(z)$.

Medial Axis

The **medial axis** of $M \subset \mathbb{R}^D$ is the set of points that have at least two nearest neighbors on M.

 $Med(M) = \{z \in \mathbb{R}^D, z \text{ has several nearest neighbors on } M\},\$

Medial Axis

The **medial axis** of $M \subset \mathbb{R}^D$ is the set of points that have at least two nearest neighbors on M.

 $Med(M) = \{z \in \mathbb{R}^D, z \text{ has several nearest neighbors on } M\},\$

Medial axis of a point cloud (Voronoi faces)

Medial Axis

The **medial axis** of $M \subset \mathbb{R}^D$ is the set of points that have at least two nearest neighbors on M.

 $Med(M) = \{z \in \mathbb{R}^D, z \text{ has several nearest neighbors on } M\},\$

Medial axis of a continuous subset

Reach

For a closed subset $M \subset \mathbb{R}^D$, the **reach** τ_M of M is the least distance to its medial axis:

$$\tau_M = \inf_{x \in M} \mathrm{d}_{\mathrm{Med}(M)}\left(x\right),$$

where for all $x \in \mathbb{R}^D$, $d_K(x) = \inf_{p \in K} ||x - p||$.

One can also flip the formula:

$$\tau_M = \inf_{z \in \operatorname{Med}(M)} \mathrm{d}_M(z) \,.$$

Global Regularity

Narrow bottleneck structure $\Rightarrow \tau_M \ll 1$.

Local Regularity

High curvature \Leftrightarrow Small radius of curvature $\Rightarrow \tau_M \ll 1$.

Local Regularity

High curvature \Leftrightarrow Small radius of curvature $\Rightarrow \tau_M \ll 1$.

Proposition (Federer – 1959, Niyogi *et al.* – 2006) Let II_x^M denote the second fundamental form of M. For all unit tangent vector $v \in T_x M$, $\|II_x^M(v, v)\| \leq 1/\tau_M$.

As a consequence, the sectional curvatures κ of M satisfy

$$-2/\tau_M^2 \le \kappa \le 1/\tau_M^2.$$

Statistical Model

 $X_1, \ldots, X_n \stackrel{i.i.d.}{\sim} P$, where $M = \text{Support}(P) \subset \mathbb{R}^D$ satisfies:

- ${\cal M}$ is a compact connected $d\mbox{-dimensional submanifold},$
- -M has no boundary,
- $-\tau_M \ge \tau_{\min} > 0,$
- -P is (almost) the uniform distribution on M.

The set of distributions satisfying these conditions is denoted by \mathcal{P} .

A Reconstruction Theorem

Theorem (A, Levrard – 2018) There exists a computable estimator \hat{M} such that for all $n \ge 1$,

$$\mathbb{E}_{P^n}\left[\mathrm{d}_{\mathrm{H}}(M,\hat{M})\right] \le C\left(\frac{\log n}{n}\right)^{2/d},$$

where $C = C_{\tau_{\min},d}$ does not depend on the ambient dimension D.

The Tangential Delaunay Complex [Boissonnat & Ghosh - 2014]

Optimality: Studying the Minimax Risk

The **minimax risk** over the statistical model \mathcal{P} is

$$\inf_{\hat{M}_n} \sup_{P \in \mathcal{P}} \mathbb{E}_{P^n} \left[\mathrm{d}_{\mathrm{H}} (M, \hat{M}_n) \right],$$

where the infimum is taken over all the estimators $\hat{M}_n = \hat{M}_n(\mathbb{X}_n)$ computed over a *n*-sample $\mathbb{X}_n = \{X_1, \ldots, X_n\}$.

Optimality: Studying the Minimax Risk

The **minimax risk** over the statistical model ${\mathcal{P}}$ is

$$\inf_{\hat{M}_n} \sup_{P \in \mathcal{P}} \mathbb{E}_{P^n} \left[\mathrm{d}_{\mathrm{H}} (M, \hat{M}_n) \right],$$

where the infimum is taken over all the estimators $\hat{M}_n = \hat{M}_n(\mathbb{X}_n)$ computed over a *n*-sample $\mathbb{X}_n = \{X_1, \ldots, X_n\}$.

Proposition (Genovese et al - 2012)

For n large enough,

$$\inf_{\hat{M}_n} \sup_{P \in \mathcal{P}} \mathbb{E}_{P^n} \left[\mathrm{d}_{\mathrm{H}}(M, \hat{M}_n) \right] \le C \left(\frac{\log n}{n} \right)^{\frac{2}{d}},$$

where $C = C_{d,\tau_{\min}}$

Optimality: Studying the Minimax Risk

The **minimax risk** over the statistical model \mathcal{P} is

$$\inf_{\hat{M}_n} \sup_{P \in \mathcal{P}} \mathbb{E}_{P^n} \left[\mathrm{d}_{\mathrm{H}} (M, \hat{M}_n) \right],$$

where the infimum is taken over all the estimators $\hat{M}_n = \hat{M}_n(\mathbb{X}_n)$ computed over a *n*-sample $\mathbb{X}_n = \{X_1, \ldots, X_n\}$.

Proposition (Genovese et al - 2012)

For n large enough, (+ mild technical assumptions)

$$c\left(\frac{1}{n}\right)^{\frac{2}{d}} \leq \inf_{\hat{M}_n} \sup_{P \in \mathcal{P}} \mathbb{E}_{P^n} \left[\mathrm{d}_{\mathrm{H}}(M, \hat{M}_n) \right] \leq C \left(\frac{\log n}{n}\right)^{\frac{2}{d}},$$

where $C = C_{d,\tau_{\min}}$ and $c = c_{\tau_{\min}}$.

Lower Bound Technique: Le Cam's Lemma

Theorem (L. Le Cam)

For all $P_0, P_1 \in \mathcal{P}$,

$$\inf_{\hat{M}_n} \sup_{P \in \mathcal{P}} \mathbb{E}_{P^n} \left[\mathrm{d}_{\mathrm{H}} \left(M, \hat{M}_n \right) \right] \ge \frac{1}{2} \mathrm{d}_{\mathrm{H}} (M_0, M_1) \left(1 - \mathrm{TV}(P_0, P_1) \right)^n,$$

where

$$TV(P_0, P_1) = \sup_{B \in \mathcal{B}(\mathbb{R}^D)} |P_0(B) - P_1(B)|$$

denotes the total variation distance between P_0 and P_1 .

Lower Bound Technique: Le Cam's Lemma

Theorem (L. Le Cam)

For all $P_0, P_1 \in \mathcal{P}$,

$$\inf_{\hat{M}_n} \sup_{P \in \mathcal{P}} \mathbb{E}_{P^n} \left[\mathrm{d}_{\mathrm{H}} \left(M, \hat{M}_n \right) \right] \ge \frac{1}{2} \mathrm{d}_{\mathrm{H}} (M_0, M_1) \left(1 - \mathrm{TV}(P_0, P_1) \right)^n,$$

where

$$TV(P_0, P_1) = \sup_{B \in \mathcal{B}(\mathbb{R}^D)} |P_0(B) - P_1(B)|$$

denotes the total variation distance between P_0 and P_1 .

Deriving a good lower bound amounts to find P_0, P_1 such that:

- $-P_0, P_1 \in \mathcal{P},$
- $\mathrm{d}_{\mathrm{H}}(M_0, M_1)$ is large,
- $\mathrm{TV}(P_0, P_1)$ is small.

Le Cam's Lemma Heuristic

Le Cam's Lemma Heuristic

- P_0 and P_1 both belong to \mathcal{P} as soon as $\eta \lesssim \ell^2$,
- $\mathrm{d}_{\mathrm{H}}(\underline{M}_{0}, M_{1}) \geq \eta,$
- $-\operatorname{TV}(P_0, P_1) \lesssim \ell^d.$

Le Cam's Lemma Heuristic

Hence, for $\eta \approx \ell^2$ and $\ell \approx (1/n)^{1/d}$, $\inf_{\hat{\tau}_n} \sup_{P \in \mathcal{P}} \mathbb{E}_{P^n} \left[\mathrm{d}_{\mathrm{H}}(M, \hat{M}_n) \right] \gtrsim \eta \left(1 - \ell^d \right)^n \approx (1/n)^{2/d}.$

Extension to a Noisy Model

Theorem (A, Levrard – 2018)

For all $\delta > 0$, there exists a computable estimator $\hat{M}_n^{(\delta)}$ such that for all $n \ge 1$,

$$\mathbb{E}\left[\mathrm{d}_{\mathrm{H}}(M, \hat{M}_{n}^{(\delta)})\right] \leq C\left(\frac{\log n}{n}\right)^{2/d-\delta}$$

Denoising Outline

$$\begin{array}{ll} P\left(S(x,T_{\pi(x)}M)\right) \asymp h^d & \text{if} \quad \mathrm{d}(x,M) \le h^2, \\ P\left(S(x,T)\right) \asymp h^{2D-d} & \text{for all } T, \text{ if} \quad \mathrm{d}(x,M) > h^2, \end{array}$$

Since $h^{2D-d} \ll h^d$, the measure $P\left(S(x,T)\right)$ of the slabs are discriminative for denoising.

The Catchy Slide...

The Catchy Slide...

...with Cute Cats

The Catchy Slide...

... with Buzzwords

Lots of theoretical related topics:

- High-Dimensional statistics
- Nonparametric statistics
- Time series
- Computational geometry
- Geometry processing
- Abstract algebra

With applications in

- Material science
- Image analysis
- Physical chemistry
- Cosmology
- Network analysis
- . . .