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Data with a Global Geometric Structure

Large Scale Galaxy Structures: one point represents a galaxy in R3
[2dF Galaxy Redshift Survey]
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Data with a Global Geometric Structure

Extracting all the s x s patches of an image with m X n pixels.
[Houdard — 2018]
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Data with a Global Geometric Structure

Extracting all the s x s patches of an image with m X n pixels.
[Houdard — 2018]

For s = 7, one image M € R™*™ yields < mn points in R”*7 = R*°
[Xia - 2016]
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Data with a Global Geometric Structure
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Cyclo-octane (CsHi6) conformations
[Martin et al. — 2010]

One conformation is described with a point in (R3)8+16 =R".
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Uncover Data Structure

. .. L] .
o’ b 4 )
. L]
\d . I L)
L] ° | 4 L]
. [ . [ ]
L] ] > L[] L]
. ° . L]
L4 ] L4 ]
L] ° L] L4
° . o .
. . . .
. . . L]
. .

Input: aset X,, = {X1,...,X,,} of observations.
Goal: Understand the underlying structure of the data,
for interpretation or summary.
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Challenge 1: Dimension

\

What dimension is this S-shape?
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Challenge 2: Noise
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Are my data corrupted?
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Challenge 3: Scale

Zoom in or zoom out?
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Dendrogram, Persistence Barcodes and Generalization

dp: R2 R
— mi -
2+ min ||z — p

scale
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Dendrogram, Persistence Barcodes and Generalization

dpl

R*> > R
x — min ||z — p||
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Dendrogram, Persistence Barcodes and Generalization
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Dendrogram, Persistence Barcodes and Generalization

dp: R2 5 R
z = min [z — p||
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Dendrogram, Persistence Barcodes and Generalization

dp: R2 R
— mi -
2+ min ||z — p

Dendrogram is:
- informative
- unstable
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Dendrogram, Persistence Barcodes and Generalization

dp: R2 R
— mi -
2+ min ||z — p

Barcode is:

- less informative
- more stable

o
N
IS
o
Y
-
=)
-
¥}
-
IS
-
o

7/28



Dendrogram, Persistence Barcodes and Generalization
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Barcode is:

- less informative
- more stable
- generalizable
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Dendrogram, Persistence Barcodes and Generalization

dp: R2 R
— mi —
2+ min ||z — p
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- less informative
- more stable
- generalizable
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Dendrogram, Persistence Barcodes and Generalization
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Barcode is:

- less informative
- more stable
- generalizable
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Dendrogram, Persistence Barcodes and Generalization

dp: R2 R
— mi —
@ = min |z — pl|

Barcode is:

- less informative
- more stable
- generalizable ‘ ‘ ‘ ‘ \ \
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Dendrogram, Persistence Barcodes and Generalization

dp: R2 R
7 min|lz — )|

arcode is:

- less informative
- more stable
- generalizable
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Dendrogram, Persistence Barcodes and Generalization

dp: RZ5R
x — min ||z — p||

rcode is:

- less informative
- more stable
- generalizable
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Persistence Diagrams

Inside the black box:
® Nested family (filtration) of sublevel-sets f~!((—o0,]), for t € R.
® Track the evolution of the topology (homology) of the family.

R
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Persistence Diagrams

Inside the black box:
® Nested family (filtration) of sublevel-sets f~!((—o0,]), for t € R.
® Track the evolution of the topology (homology) of the family.
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Persistence Diagrams

Definition (Bottleneck Distance)

Given two diagrams F and G,

dp(F,G) = inf{d] there exists a §-correspondence between F and G}.
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Persistence Diagrams

Definition (Bottleneck Distance)

Given two diagrams F and G,

dp(F,G) = inf{d] there exists a §-correspondence between F and G}.

X

Theorem (Stability of Persistence)
For all nice functions f,g: X — R,
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Stability for Sets

Definition (Hausdorff Distance)

The Hausdorff distance between two compact sets A and B C RP is
du(4, B) = [|da() =dB ()l ;

where dg (z) = in}f{ ||z — pl| is the distance to K.
pe
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Stability for Sets

Definition (Hausdorff Distance)

The Hausdorff distance between two compact sets A and B C RP is
du(4, B) = [|da() —ds()llw »
where dg (z) = plél}f{ |z — pl| is the distance to K.
Proposition (Persistence Stability for Sets)
Write dgm(K) for the diagram of the offset filtration
K" = dz*([0,7]), forr >0.
Then for all compact A, B C RP,

dy(dgm(A),dgm(B)) < [[da(-) —ds ()|l = du(4, B).
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Stability for Sets

Definition (Hausdorff Distance)
The Hausdorff distance between two compact sets A and B C RP is
du(4, B) = [[da() =dB()llw

where dg (z) = in}f{ |z — pl| is the distance to K.
pe

Proposition (Persistence Stability for Sets)
Write dgm(K) for the diagram of the offset filtration

K" = dz*([0,7]), forr >0.
Then for all compact A, B C RP,

dy(dgm(A),dgm(B)) < [[da(-) —ds ()|l = du(4, B).

Approximating persistence reduces to approximating sets

for HausdorfT loss. 10/ 28



Homology in a Nutshell

Bo: connected components [B1: holes [Bo: voids

Bo=1 Bo=1 By =1
ﬂlz 61:2 ﬂlzl
ﬂ2:: 1 ﬂziz 0
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Support Estimation

Data: A n-sample Xq,..., X, ~;iq P.

Goal: Estimate the set C' = Support(P) = ﬂ K.
KCRP closed
P(K)=1
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Data: A n-sample Xq,..., X, ~;iq P.
Goal: Estimate the set C' = Support(P) = ﬂ K.

KCRP closed
P(K)=1

If we know (by advance) that C' is convex, a good candidate is

Cp = Conv({X1,..., X, }).
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Support Estimation

Data: A n-sample Xq,..., X, ~;iq P.
Goal: Estimate the set C' = Support(P) = m K.

KCRP closed
P(K)=1

du(C, Cy)

If we know (by advance) that C' is convex, a good candidate is

Cp = Conv({X1,..., X, }).
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Support Estimation: Convex Case(s)

Theorem (Diimbgen, Walther — 1996)

Assume that P = Unifc is uniform over the convex set C C RP.
Write

A

Cp = Conv({X1,...,Xn}).

— Then,

o~

. 1
dn(C,X,,) < du(C,Cp) = O < °§”> a.s.

— If in addition, OC is C?,

. 5T
du(C,C) = 0 (hﬂ) a.s. .
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Beyond Convexity

.‘.",..

R ﬁ'(
How to model the support of these data?
— Low-dimensional and curved — Submanifold of RP”.

— Not convex, but locally around it the projection uniquely defined.

Reminder: For a closed set C C R,

Every z € RP has a unique nearest neighbor on C

D -
CCRT s convex & 31 10 (2) € C with ||z — mo(2)]| = de(2).
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Medial Axis

The medial axis of M C RP? is the set of points that have at least
two nearest neighbors on M.

Med(M) = {z € RP, » has several nearest neighbors on M},
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Medial Axis

The medial axis of M C RP? is the set of points that have at least
two nearest neighbors on M.

Med(M) = {z € RP, » has several nearest neighbors on M},

Medial axis of a point cloud (Voronoi faces)
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Medial Axis

The medial axis of M C RP? is the set of points that have at least
two nearest neighbors on M.

Med(M) = {z € RP, » has several nearest neighbors on M},

M

. Med(M)

e .

Medial axis of a continuous subset
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Reach

For a closed subset M C RP, the reach 7, of M is the least distance
to its medial axis:

™ = IléljadMed(M) (),

where for all z € RP, dg(x) = inf ||z — p)|.
pEK

\

One can also flip the formula:

= inf :
™ aition™ @)
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Global Regularity

\ Med(11')

Narrow bottleneck structure = 3y < 1.
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Local Regularity

Med (M)

\
\
\
~

High curvature < Small radius of curvature = 73 < 1.
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Local Regularity

Med (M)

\
\
\
~

High curvature < Small radius of curvature = 73 < 1.

Proposition (Federer — 1959, Niyogi et al. —2006)

Let ITM denote the second fundamental form of M.
For all unit tangent vector v € T, M, ||II£,V1(U,U)|| <1/7p.

As a consequence, the sectional curvatures x of M satisfy
—2/13, <Kk < 1/73.
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Statistical Model
X1,..., X, g P, where M = Support(P) C R satisfies:
— M is a compact connected d-dimensional submanifold,
— M has no boundary,
— TM 2 Tmin > 0,
— P is (almost) the uniform distribution on M.

The set of distributions satisfying these conditions is denoted by P.
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A Reconstruction Theorem

Theorem (A, Levrard — 2018)

There exists a computable estimator M such that foralln >1,

logn>2/d

Epn [dH(M, M)} <C ( -

where C = C.

Tmin,

4 does not depend on the ambient dimension D.
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Outline of the Method

21/28



Outline of the Method
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Outline of the Method

The Tangential Delaunay Complex [Boissonnat & Ghosh — 2014]
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Optimality: Studying the Minimax Risk

The minimax risk over the statistical model P is

ﬁf Isjlép Epn [dH(M M )}

where the infimum is taken over all the estimators M,, = M,, (Xn)
computed over a n-sample X, = {Xy,..., X, }.
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where the infimum is taken over all the estimators M,, = M,, (Xn)
computed over a n-sample X, = {Xy,..., X, }.

Proposition (Genovese et al — 2012)

For n large enough,

ipf sup ]Epn {dH(M,Mn)} < C <logn> 5
M, PP n

where C = Cq 1.
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Optimality: Studying the Minimax Risk

The minimax risk over the statistical model P is

ﬁf Isjlép Epn [dH(M M )}

where the infimum is taken over all the estimators M,, = M,, (Xn)
computed over a n-sample X, = {Xy,..., X, }.

Proposition (Genovese et al — 2012)

For n large enough, (+ mild technical assumptions)

c<1>d < inf sup Epn {dH(M,Mn)} <C <logn> ,

n M, PEP n

where C = Cq ., and ¢ =cq ..
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Lower Bound Technique: Le Cam’s Lemma

Theorem (L. Le Cam)
For all Py, P, € P,
N 1 n
lpf sup Epn [dH (M, Mn)] Z §dH(M0,M1)(1 - TV(P(), Pl)) 5
M, PeP

where

TV(Py, P1) = sup |Py(B)— Pi(B)]
BeB(RP)

denotes the total variation distance between Py and P;.
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Lower Bound Technique: Le Cam’s Lemma

Theorem (L. Le Cam)
For all Py, P, € P,

lpf sup Epn [dH (M, Mn)] > %dH(Mli)(l - TV(POa Pl))n7
M, PeP

where

TV(Py, P1) = sup |Py(B)— Pi(B)]
BeB(RP)

denotes the total variation distance between Py and P;.

Deriving a good lower bound amounts to find Py, P; such that:
- Py, P, €P,
— du (Mo, My) is large,
- TV (P, Py) is small.
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Le Cam’s Lemma Heuristic
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Le Cam’s Lemma Heuristic

~ Py and P, both belong to P as soon as n < £2,
- dH(]\JOv Z\[l) Z m,
~ TV(Py, Py) <04
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Le Cam’s Lemma Heuristic

~ Py and P, both belong to P as soon as n < £2,
- dH(]\JOv ]\[l) Z m,
~ TV(Py, Py) <04

Hence, for n ~ ¢? and { ~ (l/n)l/d,

inf sup Epn [dH(M M, )] > (1 —Ed)n ~ (l/n)Q/d.
n PeP
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Extension to a Noisy Model
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Theorem (A, Levrard — 2018)

For all 6 > 0, there exists a computable estimator My(fs) such that for
alln > 1,

- logn 2/d=0
E[du(M, M| < C < > )
n
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Denoising Outline

P (S(I,Tﬂ(w)M)) = h? if d(SC,M) < h2,
P(S(x,T)) < h2P—d for all T, if d(z, M) > h?,

Since h?P~? < h?, the measure P (S(z,T)) of the slabs are
discriminative for denoising.
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The Catchy Slide...
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The Catchy Slide... ...with Cute Cats

Sampling

. .
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The Catchy Slide... ...with Cute Cats
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The Catchy Slide... ... with Buzzwords

Lots of theoretical related topics:
® High-Dimensional statistics
® Nonparametric statistics
® Time series
® Computational geometry
® Geometry processing

Abstract algebra

With applications in

® Material science

® Image analysis

Physical chemistry

Cosmology

Network analysis
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