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Kinematics and nonholonomic constraints

Physicists are mainly concerned with dynamics.
Kinematics is considered to be boring.
What if we consider kinematics with nontrivial constraints?
For the purpose of this talk nontrivial constraints are
nonholonomic.
A constraint F (x , ẋ) = 0 on positions x and velocities ẋ of
a mechanical system is nonholonomic if it can not be
integrated to a constraint on positions only. Such
constraints prevent a reduction of the configuration space
of positions of a mechanical system to a submanifold, and
without introducing any dynamics usually equip the
configuration space with a nontrivial geometry. And
geometry, especially in its flat model version, goes in pair
with symmetry.
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What is a car?
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Configuration space and the movement

Configuration space is locally M = R2 × S1 × S1

Convenient coordinates: (x , y) - position of the rear
wheels, α - orientation of car’s chasis, β - angle between
the front wheels and the headlights
When car is moving it traverses a curve

q(t) = (x(t), y(t), α(t), β(t))
in M
Car’s velocity is q̇ = (ẋ , ẏ , α̇, β̇).
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4/50



Configuration space and the movement

Configuration space is locally M = R2 × S1 × S1

Convenient coordinates: (x , y) - position of the rear
wheels, α - orientation of car’s chasis, β - angle between
the front wheels and the headlights
When car is moving it traverses a curve

q(t) = (x(t), y(t), α(t), β(t))
in M
Car’s velocity is q̇ = (ẋ , ẏ , α̇, β̇).
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Role of the tires

Safe car has tires. Their role is to prevent car from skidding. Our
car will have infinitely good tires. They impose nonholonomic
constraints. These are constraints on positions and velocities,
that can not be integreted to constraints on positions only.
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Nonholonomic constraints
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Nonholonomic constraints

Role of the tires:
the curve q(t) = (x(t), y(t), α(t), β(t)) ∈ M4 at every
moment of time t must satisfy

d
dt (x , y) || (cosα, sinα) &
d
dt (x + ` cosα, y + ` sinα) || (cos(α− β), sin(α− β)),

or, what is the same

ẋ sinα− ẏ cosα = 0 &

(ẋ − `α̇ sinα) sin(α− β)− (ẏ + `α̇ cosα) cos(α− β) = 0.

Note that these constraints are LINEAR in the velocity
(ẋ , ẏ , α̇, β̇).
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ẋ sinα− ẏ cosα = 0 &
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Velocity distribution
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Car’s structure

Configuration space M is locally M = R2 × S1 × S1, with
points q parameterized as q = (x , y , α, β)

There is a rank 2 distribution DD on M, describing the space
of possible velocities, given by

DD = SpanF(M)(X3,X4)

with

X3 = ∂β

X4 = − sinβ∂α + ` cosβ(cosα∂x + sinα∂y )
.

Therefore ‘the structure of a car with perfect tires’ is

(M,DD)

- a 4-manifold M with a rank 2 distribution (M,DD).
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Is DD integrable?

Obviously NOT!
the commutators

[X3,X4] = − cosβ∂α − ` sinβ(sinα∂y + cosα∂x ) := X2

[X4,X2] = `(cosα∂y − sinα∂x ) := X1.

It is easy to check that

X1 ∧ X2 ∧ X3 ∧ X4 = `2∂x ∧ ∂y ∧ ∂α ∧ ∂β 6= 0.
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Car’s distribution is an Engel distribution

Observe that:
rank

D−1 := DD Span(X4,X3) 2
D−2 := [D−1,D−1] Span(X4,X3,X2) 3
D−3 := [D−1,D−2] Span(X4,X3,X2,X1) = TM 4
We have a filtration D−1 ⊂ D−2 ⊂ D−3 = TM of
distributions of the constant growth vector (2,3,4). By
definition DD is an Engel distribution.
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Equivalence

Car’s structure: (M,DD) with DD Engel.
Two distributions D and D̄ of the same rank on manifolds
M and M̄ of the same dimension are (locally) equivalent iff
there exists a (local) diffeomorphism φ : M → M̄ such that
φ∗D = D̄.
Selfequivalence maps φ are called symmetries of D. They
form a group of symmetry of D.
Infinitesimally: X -vector field on M is an infinitesimal
symmetry of D iff LXD ⊂ D. Commutator of two
infinitesimal symmetries is also an infinitesimal symmetry
⇒ Lie algebra gD of symmetries of D.
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Another Engel distribution

Take R4 with coordinates (x , y ,p,q) and consider X3 = ∂q
and X4 = ∂x + p∂y + q∂p.
We have [X3,X4] = ∂p = X2 and [X4,X2] = −∂y = X1.
Hence DE = (∂q, ∂x + p∂y + q∂p) is a (2,3,4) distribution,
therefore an Engel distribution.
Theorem (Engel) Every Engel distribition is locally
equivalent to the distribiution DE .
Car structure (M,DD) is Engel, so NO geometry associated
to the car. :-(((
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Really??

Look at the vector field:
X4 = − sinβ∂α + ` cosβ(cosα∂x + sinα∂y ).
When β = 0 it is X4 = `(cosα∂x + sinα∂y ), i.e. if the car
chooses this direction of its velocity it goes along a straight
line in the direction (cosα, sinα) in the (x , y) plane.
On the other hand, if the car chooses its velocity in the
direction of X3 = ∂β, then it really does not move in the
(x , y) space but it performs ‘my 3-years old daughter’s
play’ with the steering wheel of the car, when the engine is
at iddle.
Car owners/producers perfectly know and make use of the
two particular directions, determined by the vector fields
(X3,X4), in the distribution DD. In particular ....
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see the movie
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The split!

Car’s structure is an Engel distribution DD with a split!
DD = Span(X3,X4), with

X3 = ∂β - rotation of the steering wheel by the angle β;
this defines the STEERING WHEEL SPACE,
D = Span(X3),
X4 = − sinβ∂α + . . . - this coresponds to an application
of gas in the direction (cosα, sinα) in the (x , y) plane, with a
fixed position of the steereing wheel at an angle β ; this
defines the GAS SPACE, D = Span(X4).

Thus, the car structure is (M,DD = D ⊕D), where DD is an
Engel distribution, and the ranks of the summands in DD are
ONE.
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New geometry: Engel distributions with a split

Abstractly, irrespectively of car’s considerations, let us
consider a geometry in the form (M,D = D ⊕D), where
dimM=4, D is an Engel distribition on M, and both
subdistributions D and D in D have rank one. Let us call
this as an Engel structure with a split.
New equivalence problem: Two Engel structures with a
split (M,D = D ⊕D) and (M̄, D̄ = D̄ ⊕ D̄) are (locally)
equivalent iff there exists a (local) diffeomorphism
φ : M → M̄ such that φ∗D = D̄ and φ∗D = D̄.
Infinitesimally: X -vector field on M is an infinitesimal
symmetry of (M,D = D ⊕D) iff LXD ⊂ D and LXD ⊂ D.
This leads to a notion of the Lie algebra gD of symmetries
of an Engel structure with a split (M,D = D⊕D) as the Lie
algebra of the vectors fields X as above.
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Surprise!

Theorem
Consider the car structure (M,D) consisting of its velocity distributionD and the split ofD onto rank 1 distributions
D = D ⊕D withD = Span(∂β ), D = Span(− sin β∂α + ` cos β(cosα∂x + sinα∂y ).
The Lie algebra of infinitesimal symmetries of this Engel structure with a split is 10-dimensional, with the following
generators

S1 = ∂x

S2 = ∂y

S3 = x∂y − y∂x + ∂α

S4 = `(sinα∂x − cosα∂y ) + sin2
β∂β

S5 = x∂x + y∂y − sin β cos β∂β

S6 = (x2 − y2)∂x + 2xy∂y + 2y∂α − 2 cos β
(
` cos β sinα + x sin β

)
∂β

S7 = `
(

x(sinα∂x − cosα∂y )− cosα∂α

)
+ sin β

(
` cos β sinα + x sin β

)
∂β

S8 = `
(

y(sinα∂x − cosα∂y )− sinα∂α

)
− sin β

(
` cos β cosα− y sin β

)
∂β

S9 = 2xy∂x + (y2 − x2)∂y − 2x∂α + 2 cos β
(
` cos β cosα− y sin β

)
∂β

S10 = `(x2 + y2)
(
sinα∂x − cosα∂y

)
− 2`

(
x cosα + y sinα

)
∂α+(

2` sin β cos β
(
x sinα− y cosα

)
+ sin2

β(x2 + y2) + 2`2 cos2 β
)
∂β

It is isomorphic to the simple real Lie algebra so(2, 3) = sp(2,R). Moreover, there are plenty of locally
nonequivalent Engel distributions with a split, but the split on the (Engel) car distribution used by car owners and
provided by cars’ producers is THE MOST SYMETRIC.
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WHY???

Why the car structure (M,D = D ⊕D) of an Engel
distribution D with a particular (car’s) split has the simple
Lie algebra so(2,3) as the Lie algebra of ininfinitesimal
symmetries?
so(2,3) is the Lie algebra of the conformal group of the
3-dimensional Minkowski space. How on Earth Minkowski
space can be related to a car?
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Two directions at each point of M

20/50



lead to a double fibration

Trajectories of X3: β is channging, (x , y , α) are fixed; this is
a child’s play with the steering wheel; car is not moving in
the (x , y) space.
Trajectories of X4: β is fixed; front wheels are in a fixed
position; X4 corresponds in applying gas in such a
situation; car (its rear wheels) are moving along CIRCLES
in the (x , y) plane.
Actually, with a proper choice of β and starting position
(x0, y0) of the car, its rear wheels can draw ANY CIRCLE
on the plane (including lines=circles with center at infinity).
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The red trajectories

The red trajectories are helices in each slice β =const in
M.
The space of all of them is a 3D space Q3 of all circles
(including all lines and all points) in the plane.
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From the space of circles...

23/50



From circles...
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From circles...
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From circles to...
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From circles to the light...
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From circles to the light cones
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From circles to the light cones
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Conformal Loorentzian geometry in Q3
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Geometry of oriented circles on the plane...

is a geometry of light cones in 3D Minkowski space;
2 oriented circles are null separated if and only if they are
tangent to each other and their orientations match.
Therefore Q3 - the quotient of M by the trajectories of X4 is
naturally equipped with a FLAT conformal 3D Lorentzian
structure.
OBVIOUSLY SO(2,3) symmetric!
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Contact projective structure

A contact projective structure on a 3-dimensional manifold N is
given by the following data.

A contact distribution C, that is the distribution annihilated
by a 1-form ω on N, such that dω ∧ ω 6= 0.
A family of unparameterized curves everywhere tangent to
C and such that:

for a given point and a direction in C there is exactly one
curve passing through that point and tangent to that
direction,
curves of the family are among unparameterized geodesics
for some linear connection on N.

I have no time to show that P3 - the quotient of M by the
trajectories of X3 has a natural FLAT contact projective
structure in 3D. It is known that such a structure is also
naturally SO(2,3) symmetric.
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I have no time to show that P3 - the quotient of M by the
trajectories of X3 has a natural FLAT contact projective
structure in 3D. It is known that such a structure is also
naturally SO(2,3) symmetric.

37/50



Contact projective structure

A contact projective structure on a 3-dimensional manifold N is
given by the following data.

A contact distribution C, that is the distribution annihilated
by a 1-form ω on N, such that dω ∧ ω 6= 0.
A family of unparameterized curves everywhere tangent to
C and such that:

for a given point and a direction in C there is exactly one
curve passing through that point and tangent to that
direction,
curves of the family are among unparameterized geodesics
for some linear connection on N.

I have no time to show that P3 - the quotient of M by the
trajectories of X3 has a natural FLAT contact projective
structure in 3D. It is known that such a structure is also
naturally SO(2,3) symmetric.

37/50



Contact projective structure

A contact projective structure on a 3-dimensional manifold N is
given by the following data.

A contact distribution C, that is the distribution annihilated
by a 1-form ω on N, such that dω ∧ ω 6= 0.
A family of unparameterized curves everywhere tangent to
C and such that:

for a given point and a direction in C there is exactly one
curve passing through that point and tangent to that
direction,
curves of the family are among unparameterized geodesics
for some linear connection on N.

I have no time to show that P3 - the quotient of M by the
trajectories of X3 has a natural FLAT contact projective
structure in 3D. It is known that such a structure is also
naturally SO(2,3) symmetric.

37/50



Contact projective structure

A contact projective structure on a 3-dimensional manifold N is
given by the following data.

A contact distribution C, that is the distribution annihilated
by a 1-form ω on N, such that dω ∧ ω 6= 0.
A family of unparameterized curves everywhere tangent to
C and such that:

for a given point and a direction in C there is exactly one
curve passing through that point and tangent to that
direction,
curves of the family are among unparameterized geodesics
for some linear connection on N.

I have no time to show that P3 - the quotient of M by the
trajectories of X3 has a natural FLAT contact projective
structure in 3D. It is known that such a structure is also
naturally SO(2,3) symmetric.

37/50



Double fibration

Has anyone seen such a fibration before?
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Geometry of 3rd order ODEs

Chern in 1940 considered geomery of ODEs
y ′′′ = F (x , y , y ′, y ′′) up to contact transformations of variables.
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Geometry of 3rd order ODEs

A third order ODE that has both of the above point
invariants vanishing is y ′′′ = 0 corresponding to F = 0.

But there are others. E.g. y ′′′ = 3y ′y ′′2

1+y ′2

What is this equation? Well...
This is an equation whose every solution, considered as a
graph in the plane (x , y), is a circle.
Actually, the transformation of variables
(x , y , α, β)→ (x , y , y ′ = tgα, y ′′ = −`−1 tg β sec3 α)
transforms car’s Engel distribution with car’s split to the
rank 2 distribution on the jet space, whose split is given by
the vectors tangent to trajectories of the total differential of
the ODE y ′′′ = 3y ′y ′′2

1+y ′2 on one side, and the vectors tangent
to the natural fibers in the space of the second jets related
to the first jets.
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Lie’s description

Sophus Lie considered vector space R4 equipped with a
nondegenerate 2-form and the Lagrangian vector
subspaces in R4.
The space of all such subspaces Q is 3-dimensional, and
there is an invertible map between the space Q3 of all
points and lines and circles in the plane (x , y) and the Lie
space Q.
Lie established that the nonlinear condition of two circles
kissing each other in Q3 is, via this map, a linear condition
on the coresponding two Lagrangian planes in Q to
intersect along a line.
this leads to...
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Lie’s description
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Lie’s double fibration

Let V = (R4, ω) be equipped with a nondegenerate 2-form
ω. Let M be a space of all pairs (L,S) such that L is a
1-dim vector subspace in V and S is a Lagrangian 2-dim
vector subspace in V , and such that L ∈ S,

M = {(L,S) | L ∈ S}.

The manifold M is 4-dimensional and, using two natural
projections (L,S)→ S and (L,S)→ L, one can associate
two 3-dimensional manifolds Q and P with M.
This construction is naturally Sp(2,R) = SO(2,3)
symmetric, and this gives the Lie’s fibration, isomorphic to
car’s fibration:
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Lie’s correspondence
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Car and parabolics in SO(2,3)
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Car’s fibration and three flat parabolic geometries
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Geometry of a car
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Geometry of spacetime
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Geometry of a skate blade
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Rolling balls and flying saucers
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