Hidden symmetries in nonholonomic mechanics

Paweł Nurowski

Centrum Fizyki Teoretycznej Polska Akademia Nauk

Les rencontres du GDR GDM 2043, 13.11.2019

- Physicists are mainly concerned with *dynamics*. *Kinematics* is considered to be boring.
- What if we consider kinematics with nontrivial constraints?
- For the purpose of this talk nontrivial constraints are *nonholonomic*.
- A constraint $F(x, \dot{x}) = 0$ on positions x and velocities \dot{x} of a mechanical system is *nonholonomic* if it can *not* be integrated to a constraint on positions only. Such constraints prevent a reduction of the *configuration space* of positions of a mechanical system to a submanifold, and without introducing any dynamics usually equip the configuration space with a *nontrivial geometry*. And geometry, especially in its flat model version, goes in pair with symmetry.

- Physicists are mainly concerned with *dynamics*. *Kinematics* is considered to be boring.
- What if we consider kinematics with nontrivial constraints?
- For the purpose of this talk nontrivial constraints are *nonholonomic*.
- A constraint $F(x, \dot{x}) = 0$ on positions x and velocities \dot{x} of a mechanical system is *nonholonomic* if it can *not* be integrated to a constraint on positions only. Such constraints prevent a reduction of the *configuration space* of positions of a mechanical system to a submanifold, and without introducing any dynamics usually equip the configuration space with a *nontrivial geometry*. And geometry, especially in its flat model version, goes in pair with symmetry.

- Physicists are mainly concerned with *dynamics*. *Kinematics* is considered to be boring.
- What if we consider kinematics with nontrivial constraints?
- For the purpose of this talk nontrivial constraints are *nonholonomic*.
- A constraint $F(x, \dot{x}) = 0$ on positions x and velocities \dot{x} of a mechanical system is *nonholonomic* if it can *not* be integrated to a constraint on positions only. Such constraints prevent a reduction of the *configuration space* of positions of a mechanical system to a submanifold, and without introducing any dynamics usually equip the configuration space with a *nontrivial geometry*. And geometry, especially in its flat model version, goes in pair with symmetry.

- Physicists are mainly concerned with *dynamics*. *Kinematics* is considered to be boring.
- What if we consider kinematics with nontrivial constraints?
- For the purpose of this talk nontrivial constraints are *nonholonomic*.
- A constraint $F(x, \dot{x}) = 0$ on positions x and velocities \dot{x} of a mechanical system is *nonholonomic* if it can *not* be integrated to a constraint on positions only. Such constraints prevent a reduction of the *configuration space* of positions of a mechanical system to a submanifold, and without introducing any dynamics usually equip the configuration space with a *nontrivial geometry*. And geometry, especially in its flat model version, goes in pair with symmetry.

- Physicists are mainly concerned with *dynamics*. *Kinematics* is considered to be boring.
- What if we consider kinematics with nontrivial constraints?
- For the purpose of this talk nontrivial constraints are *nonholonomic*.
- A constraint $F(x, \dot{x}) = 0$ on positions x and velocities \dot{x} of a mechanical system is *nonholonomic* if it can *not* be integrated to a constraint on positions only. Such constraints prevent a reduction of the *configuration space* of positions of a mechanical system to a submanifold, and without introducing any dynamics usually equip the configuration space with a *nontrivial geometry*. And geometry, especially in its flat model version, goes in pair with symmetry.

- Physicists are mainly concerned with *dynamics*. *Kinematics* is considered to be boring.
- What if we consider kinematics with nontrivial constraints?
- For the purpose of this talk nontrivial constraints are *nonholonomic*.
- A constraint $F(x, \dot{x}) = 0$ on positions x and velocities \dot{x} of a mechanical system is *nonholonomic* if it can *not* be integrated to a constraint on positions only. Such

constraints prevent a reduction of the *configuration space* of positions of a mechanical system to a submanifold, and without introducing any dynamics usually equip the configuration space with a *nontrivial geometry*. And geometry, especially in its flat model version, goes in pair with symmetry.

- Physicists are mainly concerned with *dynamics*. *Kinematics* is considered to be boring.
- What if we consider kinematics with nontrivial constraints?
- For the purpose of this talk nontrivial constraints are *nonholonomic*.
- A constraint $F(x, \dot{x}) = 0$ on positions x and velocities \dot{x} of a mechanical system is *nonholonomic* if it can *not* be integrated to a constraint on positions only. Such constraints prevent a reduction of the *configuration space* of positions of a mechanical system to a submanifold, and without introducing any dynamics usually equip the configuration space with a *nontrivial geometry*. And geometry, especially in its flat model version, goes in pair with symmetry.

- Physicists are mainly concerned with *dynamics*. *Kinematics* is considered to be boring.
- What if we consider kinematics with nontrivial constraints?
- For the purpose of this talk nontrivial constraints are *nonholonomic*.
- A constraint $F(x, \dot{x}) = 0$ on positions x and velocities \dot{x} of a mechanical system is *nonholonomic* if it can *not* be integrated to a constraint on positions only. Such constraints prevent a reduction of the *configuration space* of positions of a mechanical system to a submanifold, and without introducing any dynamics usually equip the configuration space with a *nontrivial geometry*. And geometry, especially in its flat model version, goes in pair with symmetry.

- Physicists are mainly concerned with *dynamics*. *Kinematics* is considered to be boring.
- What if we consider kinematics with nontrivial constraints?
- For the purpose of this talk nontrivial constraints are *nonholonomic*.
- A constraint $F(x, \dot{x}) = 0$ on positions x and velocities \dot{x} of a mechanical system is *nonholonomic* if it can *not* be integrated to a constraint on positions only. Such constraints prevent a reduction of the *configuration space* of positions of a mechanical system to a submanifold, and without introducing any dynamics usually equip the configuration space with a *nontrivial geometry*. And geometry, especially in its flat model version, goes in pair with symmetry.

What is a car?

d-B (X+ Loosa, y+lsina) M4~ R2×S'×S' d (x,y, x, B) xy Configuration space of a car

- Configuration space is locally $M = R^2 \times S^1 \times S^1$
- Convenient coordinates: (x, y) position of the rear wheels, α - orientation of car's chasis, β - angle between the front wheels and the headlights
- When car is moving it traverses a curve $q(t) = (x(t), y(t), \alpha(t), \beta(t))$

in M

• Configuration space is locally $M = R^2 \times \mathbb{S}^1 \times \mathbb{S}^1$

- Convenient coordinates: (x, y) position of the rear wheels, α - orientation of car's chasis, β - angle between the front wheels and the headlights
- When car is moving it traverses a curve $q(t) = (x(t), y(t), \alpha(t), \beta(t))$

in M

- Configuration space is locally $M = R^2 \times \mathbb{S}^1 \times \mathbb{S}^1$
- Convenient coordinates: (x, y) position of the rear wheels, α - orientation of car's chasis, β - angle between the front wheels and the headlights
- When car is moving it traverses a curve $q(t) = (x(t), y(t), \alpha(t), \beta(t))$

in M

- Configuration space is locally $M = R^2 \times \mathbb{S}^1 \times \mathbb{S}^1$
- Convenient coordinates: (x, y) position of the rear wheels, α - orientation of car's chasis, β - angle between the front wheels and the headlights
- When car is moving it traverses a curve $q(t) = (x(t), y(t), \alpha(t), \beta(t))$

in M

- Configuration space is locally $M = R^2 \times \mathbb{S}^1 \times \mathbb{S}^1$
- Convenient coordinates: (x, y) position of the rear wheels, α - orientation of car's chasis, β - angle between the front wheels and the headlights
- When car is moving it traverses a curve $q(t) = (x(t), y(t), \alpha(t), \beta(t))$

in M

- Configuration space is locally $M = R^2 \times \mathbb{S}^1 \times \mathbb{S}^1$
- Convenient coordinates: (x, y) position of the rear wheels, α - orientation of car's chasis, β - angle between the front wheels and the headlights
- When car is moving it traverses a curve $q(t) = (x(t), y(t), \alpha(t), \beta(t))$

In M

- Configuration space is locally $M = R^2 \times \mathbb{S}^1 \times \mathbb{S}^1$
- Convenient coordinates: (x, y) position of the rear wheels, α - orientation of car's chasis, β - angle between the front wheels and the headlights
- When car is moving it traverses a curve $q(t) = (x(t), y(t), \alpha(t), \beta(t))$

in M

- Configuration space is locally $M = R^2 \times \mathbb{S}^1 \times \mathbb{S}^1$
- Convenient coordinates: (x, y) position of the rear wheels, α - orientation of car's chasis, β - angle between the front wheels and the headlights
- When car is moving it traverses a curve $q(t) = (x(t), y(t), \alpha(t), \beta(t))$

in M

Safe car has tires. Their role is to prevent car from skidding. Our

car will have *infinitely good* tires. They impose *nonholonomic constraints*. These are constraints on positions *a*nd velocities, that can not be integreted to constraints on positions only.

 Role of the tires: the curve q(t) = (x(t), y(t), α(t), β(t)) ∈ M⁴ at every moment of time t must satisfy

 $\frac{\mathrm{d}}{\mathrm{d}t}(\mathbf{x}, \mathbf{y}) \quad || \quad (\cos \alpha, \sin \alpha) \qquad \&$ $\frac{\mathrm{d}}{\mathrm{d}t}(\mathbf{x} + \ell \cos \alpha, \mathbf{y} + \ell \sin \alpha) \quad || \quad (\cos(\alpha - \beta), \sin(\alpha - \beta)),$

or, what is the same

 $\dot{\mathbf{x}} \sin \alpha - \dot{\mathbf{y}} \cos \alpha = \mathbf{0} \qquad \& \\ (\dot{\mathbf{x}} - \ell \dot{\alpha} \sin \alpha) \sin(\alpha - \beta) - (\dot{\mathbf{y}} + \ell \dot{\alpha} \cos \alpha) \cos(\alpha - \beta) = \mathbf{0}.$

Role of the tires:

the curve $q(t) = (x(t), y(t), \alpha(t), \beta(t)) \in M^4$ at every moment of time *t* must satisfy

 $\frac{\mathrm{d}}{\mathrm{d}t}(\mathbf{X}, \mathbf{y}) \quad || \quad (\cos \alpha, \sin \alpha) \qquad \&$ $\frac{\mathrm{d}}{\mathrm{d}t}(\mathbf{X} + \ell \cos \alpha, \mathbf{y} + \ell \sin \alpha) \quad || \quad (\cos(\alpha - \beta), \sin(\alpha - \beta)),$

or, what is the same

 $\dot{\mathbf{x}} \sin \alpha - \dot{\mathbf{y}} \cos \alpha = \mathbf{0} \qquad \& \\ (\dot{\mathbf{x}} - \ell \dot{\alpha} \sin \alpha) \sin(\alpha - \beta) - (\dot{\mathbf{y}} + \ell \dot{\alpha} \cos \alpha) \cos(\alpha - \beta) = \mathbf{0}.$

• Role of the tires:

the curve $q(t) = (x(t), y(t), \alpha(t), \beta(t)) \in M^4$ at every moment of time *t* must satisfy

 $\frac{\mathrm{d}}{\mathrm{d}t}(\mathbf{X}, \mathbf{y}) \quad || \quad (\cos \alpha, \sin \alpha) \qquad \&$ $\frac{\mathrm{d}}{\mathrm{d}t}(\mathbf{X} + \ell \cos \alpha, \mathbf{y} + \ell \sin \alpha) \quad || \quad (\cos(\alpha - \beta), \sin(\alpha - \beta)),$

or, what is the same

 $\dot{x} \sin lpha - \dot{y} \cos lpha = \mathbf{0}$ & $(\dot{x} - \ell \dot{lpha} \sin lpha) \sin(lpha - eta) - (\dot{y} + \ell \dot{lpha} \cos lpha) \cos(lpha - eta) = \mathbf{0}.$

• Role of the tires:

the curve $q(t) = (x(t), y(t), \alpha(t), \beta(t)) \in M^4$ at every moment of time *t* must satisfy

 $\frac{\mathrm{d}}{\mathrm{d}t}(\mathbf{x}, \mathbf{y}) \quad || \quad (\cos\alpha, \sin\alpha) \qquad \&$ $\frac{\mathrm{d}}{\mathrm{d}t}(\mathbf{x} + \ell \cos\alpha, \mathbf{y} + \ell \sin\alpha) \quad || \quad (\cos(\alpha - \beta), \sin(\alpha - \beta)),$

or, what is the same

 $\dot{\mathbf{x}}\sin\alpha - \dot{\mathbf{y}}\cos\alpha = \mathbf{0} \qquad \& \\ (\dot{\mathbf{x}} - \ell\dot{\alpha}\sin\alpha)\sin(\alpha - \beta) - (\dot{\mathbf{y}} + \ell\dot{\alpha}\cos\alpha)\cos(\alpha - \beta) = \mathbf{0}.$

• Role of the tires:

the curve $q(t) = (x(t), y(t), \alpha(t), \beta(t)) \in M^4$ at every moment of time *t* must satisfy

 $\frac{\mathrm{d}}{\mathrm{d}t}(\mathbf{x},\mathbf{y}) \quad || \quad (\cos\alpha,\sin\alpha) \qquad \& \\ \frac{\mathrm{d}}{\mathrm{d}t}(\mathbf{x}+\ell\cos\alpha,\mathbf{y}+\ell\sin\alpha) \quad || \quad (\cos(\alpha-\beta),\sin(\alpha-\beta)), \end{cases}$

or, what is the same

 $\dot{\mathbf{x}}\sin\alpha - \dot{\mathbf{y}}\cos\alpha = \mathbf{0} \qquad \& \\ (\dot{\mathbf{x}} - \ell\dot{\alpha}\sin\alpha)\sin(\alpha - \beta) - (\dot{\mathbf{y}} + \ell\dot{\alpha}\cos\alpha)\cos(\alpha - \beta) = \mathbf{0}.$

• Role of the tires:

the curve $q(t) = (x(t), y(t), \alpha(t), \beta(t)) \in M^4$ at every moment of time *t* must satisfy

 $\frac{\mathrm{d}}{\mathrm{d}t}(\mathbf{x},\mathbf{y}) \quad || \quad (\cos\alpha,\sin\alpha) \qquad \& \\ \frac{\mathrm{d}}{\mathrm{d}t}(\mathbf{x}+\ell\cos\alpha,\mathbf{y}+\ell\sin\alpha) \quad || \quad (\cos(\alpha-\beta),\sin(\alpha-\beta)), \end{aligned}$

or, what is the same

 $\dot{x}\sinlpha - \dot{y}\coslpha = \mathbf{0}$ & $(\dot{x} - \ell\dot{lpha}\sinlpha)\sin(lpha - eta) - (\dot{y} + \ell\dot{lpha}\coslpha)\cos(lpha - eta) = \mathbf{0}.$

• Role of the tires:

the curve $q(t) = (x(t), y(t), \alpha(t), \beta(t)) \in M^4$ at every moment of time *t* must satisfy

 $\frac{\mathrm{d}}{\mathrm{d}t}(\mathbf{x},\mathbf{y}) \quad || \quad (\cos\alpha,\sin\alpha) \qquad \& \\ \frac{\mathrm{d}}{\mathrm{d}t}(\mathbf{x}+\ell\cos\alpha,\mathbf{y}+\ell\sin\alpha) \quad || \quad (\cos(\alpha-\beta),\sin(\alpha-\beta)), \end{cases}$

or, what is the same

 $\dot{x}\sin\alpha - \dot{y}\cos\alpha = 0 \qquad \&$ $(\dot{x} - \ell\dot{\alpha}\sin\alpha)\sin(\alpha - \beta) - (\dot{y} + \ell\dot{\alpha}\cos\alpha)\cos(\alpha - \beta) = 0.$

• Role of the tires:

the curve $q(t) = (x(t), y(t), \alpha(t), \beta(t)) \in M^4$ at every moment of time *t* must satisfy

 $\frac{\mathrm{d}}{\mathrm{d}t}(\mathbf{x},\mathbf{y}) \quad || \quad (\cos\alpha,\sin\alpha) \qquad \& \\ \frac{\mathrm{d}}{\mathrm{d}t}(\mathbf{x}+\ell\cos\alpha,\mathbf{y}+\ell\sin\alpha) \quad || \quad (\cos(\alpha-\beta),\sin(\alpha-\beta)), \end{cases}$

or, what is the same

 $\dot{x}\sin\alpha - \dot{y}\cos\alpha = \mathbf{0} \qquad \&$ $(\dot{x} - \ell\dot{\alpha}\sin\alpha)\sin(\alpha - \beta) - (\dot{y} + \ell\dot{\alpha}\cos\alpha)\cos(\alpha - \beta) = \mathbf{0}.$

• Role of the tires:

the curve $q(t) = (x(t), y(t), \alpha(t), \beta(t)) \in M^4$ at every moment of time *t* must satisfy

 $\frac{\mathrm{d}}{\mathrm{d}t}(\mathbf{x},\mathbf{y}) \quad || \quad (\cos\alpha,\sin\alpha) \qquad \& \\ \frac{\mathrm{d}}{\mathrm{d}t}(\mathbf{x}+\ell\cos\alpha,\mathbf{y}+\ell\sin\alpha) \quad || \quad (\cos(\alpha-\beta),\sin(\alpha-\beta)), \end{cases}$

or, what is the same

 $\dot{x}\sin\alpha - \dot{y}\cos\alpha = \mathbf{0} \qquad \&$ $(\dot{x} - \ell\dot{\alpha}\sin\alpha)\sin(\alpha - \beta) - (\dot{y} + \ell\dot{\alpha}\cos\alpha)\cos(\alpha - \beta) = \mathbf{0}.$

Velocity distribution

Velocity distribution

- Configuration space *M* is locally $M = \mathbb{R}^2 \times \mathbb{S}^1 \times \mathbb{S}^1$, with points *q* parameterized as $q = (x, y, \alpha, \beta)$
- There is a *rank 2* distribution \mathcal{D} on M, describing the space of possible velocities, given by

$$\mathcal{D} = \mathcal{S} pan_{\mathcal{F}(M)}(X_3, X_4)$$

with

 $X_3 = \partial_\beta$ $X_4 = -\sin\beta\partial_\alpha + \ell\cos\beta(\cos\alpha\partial_x + \sin\alpha\partial_y)^2$

• Therefore 'the structure of a car with perfect tires' is

 (M, \mathcal{D})

- Configuration space *M* is locally $M = \mathbb{R}^2 \times \mathbb{S}^1 \times \mathbb{S}^1$, with points *q* parameterized as $q = (x, y, \alpha, \beta)$
- There is a *rank 2* distribution \mathcal{D} on M, describing the space of possible velocities, given by

$$\mathcal{D} = Span_{\mathcal{F}(M)}(X_3, X_4)$$

with

 $X_3 = \partial_\beta$ $X_4 = -\sin\beta\partial_\alpha + \ell\cos\beta(\cos\alpha\partial_x + \sin\alpha\partial_y)^2$

• Therefore 'the structure of a car with perfect tires' is

 (M, \mathcal{D})

- Configuration space *M* is locally $M = \mathbb{R}^2 \times \mathbb{S}^1 \times \mathbb{S}^1$, with points *q* parameterized as $q = (x, y, \alpha, \beta)$
- There is a *rank 2* distribution \mathcal{D} on *M*, describing the space of possible velocities, given by

$$\mathcal{D} = Span_{\mathcal{F}(M)}(X_3, X_4)$$

with

 $X_3 = \partial_\beta$ $X_4 = -\sin\beta\partial_\alpha + \ell\cos\beta(\cos\alpha\partial_x + \sin\alpha\partial_y)^2$

• Therefore 'the structure of a car with perfect tires' is

 (M, \mathcal{D})

- Configuration space *M* is locally $M = \mathbb{R}^2 \times \mathbb{S}^1 \times \mathbb{S}^1$, with points *q* parameterized as $q = (x, y, \alpha, \beta)$
- There is a *rank 2* distribution \mathcal{D} on M, describing the space of possible velocities, given by

 $\mathcal{D} = Span_{\mathcal{F}(M)}(X_3, X_4)$

with

 $X_3 = \partial_\beta$ $X_4 = -\sin\beta\partial_\alpha + \ell\cos\beta(\cos\alpha\partial_x + \sin\alpha\partial_y)^2$

• Therefore 'the structure of a car with perfect tires' is

 (M, \mathcal{D})

- Configuration space *M* is locally $M = \mathbb{R}^2 \times \mathbb{S}^1 \times \mathbb{S}^1$, with points *q* parameterized as $q = (x, y, \alpha, \beta)$
- There is a *rank 2* distribution \mathcal{D} on M, describing the space of possible velocities, given by

$$\mathcal{D} = \mathcal{S} \mathcal{P} an_{\mathcal{F}(\mathcal{M})}(\mathcal{X}_3, \mathcal{X}_4)$$

with

$$X_3 = \partial_\beta$$

$$X_4 = -\sin\beta\partial_\alpha + \ell\cos\beta(\cos\alpha\partial_x + \sin\alpha\partial_y).$$

• Therefore 'the structure of a car with perfect tires' is

 (M, \mathcal{D})

- Configuration space *M* is locally $M = \mathbb{R}^2 \times \mathbb{S}^1 \times \mathbb{S}^1$, with points *q* parameterized as $q = (x, y, \alpha, \beta)$
- There is a *rank 2* distribution \mathcal{D} on M, describing the space of possible velocities, given by

$$\mathcal{D} = \mathcal{S} \mathcal{P} an_{\mathcal{F}(\mathcal{M})}(\mathcal{X}_3, \mathcal{X}_4)$$

with

$$X_3 = \partial_\beta$$

$$X_4 = -\sin\beta\partial_\alpha + \ell\cos\beta(\cos\alpha\partial_x + \sin\alpha\partial_y)$$

• Therefore 'the structure of a car with perfect tires' is

 (M, \mathcal{D})

Is *p* integrable?

- Obviously NOT!
- the commutators

 $[X_3, X_4] = -\cos\beta\partial_\alpha - \ell\sin\beta(\sin\alpha\partial_y + \cos\alpha\partial_x) := X_2$ $[X_4, X_2] = \ell(\cos\alpha\partial_y - \sin\alpha\partial_x) := X_1.$

It is easy to check that

 $X_1 \wedge X_2 \wedge X_3 \wedge X_4 = \ell^2 \partial_x \wedge \partial_y \wedge \partial_\alpha \wedge \partial_\beta \neq 0.$

Is *D* integrable?

Obviously NOT!

the commutators

 $[X_3, X_4] = -\cos\beta\partial_\alpha - \ell\sin\beta(\sin\alpha\partial_y + \cos\alpha\partial_x) := X_2$ $[X_4, X_2] = \ell(\cos\alpha\partial_y - \sin\alpha\partial_x) := X_1.$

It is easy to check that

 $X_1 \wedge X_2 \wedge X_3 \wedge X_4 = \ell^2 \partial_x \wedge \partial_y \wedge \partial_\alpha \wedge \partial_\beta \neq 0.$

Is *p* integrable?

- Obviously NOT!
- the commutators

 $\begin{aligned} [X_3, X_4] &= -\cos\beta\partial_\alpha - \ell\sin\beta(\sin\alpha\partial_y + \cos\alpha\partial_x) := X_2\\ [X_4, X_2] &= \ell(\cos\alpha\partial_y - \sin\alpha\partial_x) := X_1. \end{aligned}$

It is easy to check that

 $X_1 \wedge X_2 \wedge X_3 \wedge X_4 = \ell^2 \partial_x \wedge \partial_y \wedge \partial_\alpha \wedge \partial_\beta \neq 0.$

Is *D* integrable?

- Obviously NOT!
- the commutators

 $\begin{aligned} [X_3, X_4] &= -\cos\beta\partial_\alpha - \ell\sin\beta(\sin\alpha\partial_y + \cos\alpha\partial_x) := X_2\\ [X_4, X_2] &= \ell(\cos\alpha\partial_y - \sin\alpha\partial_x) := X_1. \end{aligned}$

It is easy to check that

$$X_1 \wedge X_2 \wedge X_3 \wedge X_4 = \ell^2 \partial_x \wedge \partial_y \wedge \partial_\alpha \wedge \partial_\beta \neq 0.$$

• Observe that:

- $\mathcal{D}_{-1} := \mathcal{D}$ Span (X_4, X_3) 2
- $\mathcal{D}_{-2} := [\mathcal{D}_{-1}, \mathcal{D}_{-1}]$ Span (X_4, X_3, X_2) 3
- $\mathcal{D}_{-3} := [\mathcal{D}_{-1}, \mathcal{D}_{-2}]$ Span $(X_4, X_3, X_2, X_1) = TM$
- We have a filtration D₋₁ ⊂ D₋₂ ⊂ D₋₃ = TM of distributions of the *constant growth vector* (2, 3, 4). By definition D is an *Engel distribution*.

Observe that:

- $\mathcal{D}_{-1} := \mathcal{D} \qquad \qquad \text{Span}(X_4, X_3) \qquad 2$
- $\mathcal{D}_{-2} := [\mathcal{D}_{-1}, \mathcal{D}_{-1}]$ Span(X₄, X₃, X₂) 3
- $\mathcal{D}_{-3} := [\mathcal{D}_{-1}, \mathcal{D}_{-2}]$ Span $(X_4, X_3, X_2, X_1) = TM$
- We have a filtration D₋₁ ⊂ D₋₂ ⊂ D₋₃ = TM of distributions of the *constant growth vector* (2, 3, 4). By definition D is an *Engel distribution*.

Observe that:

- $\begin{array}{ll} \mathcal{D}_{-1} := \mathcal{D} & \text{Span}(X_4, X_3) & 2 \\ \mathcal{D}_{-2} := [\mathcal{D}_{-1}, \mathcal{D}_{-1}] & \text{Span}(X_4, X_3, X_2) & 3 \\ \mathcal{D}_{-3} := [\mathcal{D}_{-1}, \mathcal{D}_{-2}] & \text{Span}(X_4, X_3, X_2, X_1) = TM & 4 \end{array}$
- We have a filtration D₋₁ ⊂ D₋₂ ⊂ D₋₃ = TM of distributions of the *constant growth vector* (2, 3, 4). By definition D is an *Engel distribution*.

Observe that:

- $\mathcal{D}_{-1} := \mathcal{D} \qquad \text{Span}(X_4, X_3) \qquad 2$ $\mathcal{D}_{-2} := [\mathcal{D}_{-1}, \mathcal{D}_{-1}] \qquad \text{Span}(X_4, X_3, X_2) \qquad 3$ $\mathcal{D}_{-2} := [\mathcal{D}_{-1}, \mathcal{D}_{-1}] \qquad \text{Span}(X_4, X_3, X_2) \qquad 4$
- We have a filtration D₋₁ ⊂ D₋₂ ⊂ D₋₃ = TM of distributions of the *constant growth vector* (2,3,4). By definition D is an *Engel distribution*.

Observe that:

rank

 $\mathcal{D}_{-1} := \mathcal{D} \qquad \qquad \operatorname{Span}(X_4, X_3) \qquad \qquad 2$

$$\mathcal{D}_{-2} := [\mathcal{D}_{-1}, \mathcal{D}_{-1}] \qquad \text{Span}(X_4, X_3, X_2) \qquad \mathbf{3}$$

$$\mathcal{D}_{-3} := [\mathcal{D}_{-1}, \mathcal{D}_{-2}] \quad \text{Span}(X_4, X_3, X_2, X_1) = TM$$

 We have a filtration D₋₁ ⊂ D₋₂ ⊂ D₋₃ = TM of distributions of the *constant growth vector* (2, 3, 4). By definition D is an *Engel distribution*.

Observe that:

- $\mathcal{D}_{-1} := \mathcal{D} \qquad \text{Span}(X_4, X_3) \qquad 2$
- $\mathcal{D}_{-2} := [\mathcal{D}_{-1}, \mathcal{D}_{-1}]$ Span (X_4, X_3, X_2) 3
- $\mathcal{D}_{-3} := [\mathcal{D}_{-1}, \mathcal{D}_{-2}] \quad \text{Span}(X_4, X_3, X_2, X_1) = TM$ 4
- We have a filtration D₋₁ ⊂ D₋₂ ⊂ D₋₃ = TM of distributions of the *constant growth vector* (2,3,4). By definition D is an *Engel distribution*.

Observe that:

rank

 $\mathcal{D}_{-1} := \mathcal{D}$ Span (X_4, X_3) 2

$$\mathcal{D}_{-2} := [\mathcal{D}_{-1}, \mathcal{D}_{-1}] \qquad \text{Span}(X_4, X_3, X_2) \qquad 3$$

$$\mathcal{D}_{-3} := [\mathcal{D}_{-1}, \mathcal{D}_{-2}] \quad \text{Span}(X_4, X_3, X_2, X_1) = TM$$
 4

We have a filtration D₋₁ ⊂ D₋₂ ⊂ D₋₃ = TM of distributions of the *constant growth vector* (2, 3, 4). By definition D is an *Engel distribution*.

- Car's structure: (M, \mathcal{D}) with \mathcal{D} Engel.
- Two distributions \mathcal{D} and $\overline{\mathcal{D}}$ of the same rank on manifolds M and \overline{M} of the same dimension are *(locally) equivalent* iff there exists a (local) diffeomorphism $\phi : M \to \overline{M}$ such that $\phi_* \mathcal{D} = \overline{\mathcal{D}}$.
- Selfequivalence maps φ are called symmetries of D. They form a group of symmetry of D.
- Infinitesimally: X -vector field on M is an *infinitesimal* symmetry of D iff L_XD ⊂ D. Commutator of two infinitesimal symmetries is also an infinitesimal symmetry ⇒ Lie algebra g_D of symmetries of D.

• Car's structure: (M, \mathcal{D}) with \mathcal{D} Engel.

- Two distributions \mathcal{D} and $\overline{\mathcal{D}}$ of the same rank on manifolds M and \overline{M} of the same dimension are *(locally) equivalent* iff there exists a (local) diffeomorphism $\phi : M \to \overline{M}$ such that $\phi_* \mathcal{D} = \overline{\mathcal{D}}$.
- Selfequivalence maps φ are called symmetries of D. They form a group of symmetry of D.
- Infinitesimally: X -vector field on M is an *infinitesimal* symmetry of D iff L_XD ⊂ D. Commutator of two infinitesimal symmetries is also an infinitesimal symmetry ⇒ Lie algebra g_D of symmetries of D.

- Car's structure: (M, \mathcal{D}) with \mathcal{D} Engel.
- Two distributions \mathcal{D} and $\overline{\mathcal{D}}$ of the same rank on manifolds M and \overline{M} of the same dimension are *(locally) equivalent* iff there exists a (local) diffeomorphism $\phi : M \to \overline{M}$ such that $\phi_*\mathcal{D} = \overline{\mathcal{D}}$.
- Selfequivalence maps φ are called symmetries of D. They form a group of symmetry of D.
- Infinitesimally: X -vector field on M is an *infinitesimal* symmetry of D iff L_XD ⊂ D. Commutator of two infinitesimal symmetries is also an infinitesimal symmetry ⇒ Lie algebra g_D of symmetries of D.

- Car's structure: (M, \mathcal{D}) with \mathcal{D} Engel.
- Two distributions \mathcal{D} and $\overline{\mathcal{D}}$ of the same rank on manifolds M and \overline{M} of the same dimension are *(locally) equivalent* iff there exists a (local) diffeomorphism $\phi : M \to \overline{M}$ such that $\phi_*\mathcal{D} = \overline{\mathcal{D}}$.
- Selfequivalence maps φ are called symmetries of D. They form a group of symmetry of D.
- Infinitesimally: X -vector field on M is an *infinitesimal* symmetry of D iff L_XD ⊂ D. Commutator of two infinitesimal symmetries is also an infinitesimal symmetry ⇒ Lie algebra g_D of symmetries of D.

- Car's structure: (M, \mathcal{D}) with \mathcal{D} Engel.
- Two distributions \mathcal{D} and $\overline{\mathcal{D}}$ of the same rank on manifolds M and \overline{M} of the same dimension are *(locally) equivalent* iff there exists a (local) diffeomorphism $\phi : M \to \overline{M}$ such that $\phi_*\mathcal{D} = \overline{\mathcal{D}}$.
- Selfequivalence maps φ are called symmetries of D. They form a group of symmetry of D.
- Infinitesimally: X -vector field on M is an *infinitesimal* symmetry of D iff L_XD ⊂ D. Commutator of two infinitesimal symmetries is also an infinitesimal symmetry ⇒ Lie algebra g_D of symmetries of D.

- Car's structure: (M, \mathcal{D}) with \mathcal{D} Engel.
- Two distributions \mathcal{D} and $\overline{\mathcal{D}}$ of the same rank on manifolds M and \overline{M} of the same dimension are *(locally) equivalent* iff there exists a (local) diffeomorphism $\phi : M \to \overline{M}$ such that $\phi_*\mathcal{D} = \overline{\mathcal{D}}$.
- Selfequivalence maps φ are called symmetries of D. They form a group of symmetry of D.
- Infinitesimally: X -vector field on M is an infinitesimal symmetry of D iff L_XD ⊂ D. Commutator of two infinitesimal symmetries is also an infinitesimal symmetry ⇒ Lie algebra g_D of symmetries of D.

- Car's structure: (M, \mathcal{D}) with \mathcal{D} Engel.
- Two distributions \mathcal{D} and $\overline{\mathcal{D}}$ of the same rank on manifolds M and \overline{M} of the same dimension are *(locally) equivalent* iff there exists a (local) diffeomorphism $\phi : M \to \overline{M}$ such that $\phi_* \mathcal{D} = \overline{\mathcal{D}}$.
- Selfequivalence maps φ are called symmetries of D. They form a group of symmetry of D.
- Infinitesimally: X -vector field on M is an *infinitesimal* symmetry of \mathcal{D} iff $\mathcal{L}_X \mathcal{D} \subset \mathcal{D}$. Commutator of two infinitesimal symmetries is also an infinitesimal symmetry \Rightarrow Lie algebra $\mathfrak{g}_{\mathcal{D}}$ of symmetries of \mathcal{D} .

- Car's structure: (M, \mathcal{D}) with \mathcal{D} Engel.
- Two distributions \mathcal{D} and $\overline{\mathcal{D}}$ of the same rank on manifolds M and \overline{M} of the same dimension are *(locally) equivalent* iff there exists a (local) diffeomorphism $\phi : M \to \overline{M}$ such that $\phi_* \mathcal{D} = \overline{\mathcal{D}}$.
- Selfequivalence maps φ are called symmetries of D. They form a group of symmetry of D.
- Infinitesimally: X -vector field on M is an *infinitesimal* symmetry of \mathcal{D} iff $\mathcal{L}_X \mathcal{D} \subset \mathcal{D}$. Commutator of two infinitesimal symmetries is also an infinitesimal symmetry \Rightarrow Lie algebra $\mathfrak{g}_{\mathcal{D}}$ of symmetries of \mathcal{D} .

- Take ℝ⁴ with coordinates (x, y, p, q) and consider X₃ = ∂_q and X₄ = ∂_x + p∂_y + q∂_p.
- We have $[X_3, X_4] = \partial_{\rho} = X_2$ and $[X_4, X_2] = -\partial_y = X_1$.
- Hence $\mathcal{D}_E = (\partial_q, \partial_x + p\partial_y + q\partial_p)$ is a (2,3,4) distribution, therefore an *Engel distribution*.
- **Theorem** (Engel) Every Engel distribution is locally equivalent to the distribution \mathcal{D}_E .
- Car structure (M, D) is Engel, so NO geometry associated to the car. :-(((

- Take ℝ⁴ with coordinates (x, y, p, q) and consider X₃ = ∂_q and X₄ = ∂_x + p∂_y + q∂_p.
- We have $[X_3, X_4] = \partial_{\rho} = X_2$ and $[X_4, X_2] = -\partial_y = X_1$.
- Hence $\mathcal{D}_E = (\partial_q, \partial_x + p\partial_y + q\partial_p)$ is a (2,3,4) distribution, therefore an *Engel distribution*.
- **Theorem** (Engel) Every Engel distribution is locally equivalent to the distribution \mathcal{D}_E .
- Car structure (M, D) is Engel, so NO geometry associated to the car. :-(((

- Take ℝ⁴ with coordinates (x, y, p, q) and consider X₃ = ∂_q and X₄ = ∂_x + p∂_y + q∂_p.
- We have $[X_3, X_4] = \partial_p = X_2$ and $[X_4, X_2] = -\partial_y = X_1$.
- Hence $\mathcal{D}_E = (\partial_q, \partial_x + p\partial_y + q\partial_p)$ is a (2,3,4) distribution, therefore an *Engel distribution*.
- **Theorem** (Engel) Every Engel distribution is locally equivalent to the distribution \mathcal{D}_E .
- Car structure (M, D) is Engel, so NO geometry associated to the car. :-(((

- Take ℝ⁴ with coordinates (x, y, p, q) and consider X₃ = ∂_q and X₄ = ∂_x + p∂_y + q∂_p.
- We have $[X_3, X_4] = \partial_p = X_2$ and $[X_4, X_2] = -\partial_y = X_1$.
- Hence $\mathcal{D}_E = (\partial_q, \partial_x + p\partial_y + q\partial_p)$ is a (2,3,4) distribution, therefore an *Engel distribution*.
- **Theorem** (Engel) Every Engel distribution is locally equivalent to the distribution \mathcal{D}_E .
- Car structure (M, D) is Engel, so NO geometry associated to the car. :-(((

- Take ℝ⁴ with coordinates (x, y, p, q) and consider X₃ = ∂_q and X₄ = ∂_x + p∂_y + q∂_p.
- We have $[X_3, X_4] = \partial_p = X_2$ and $[X_4, X_2] = -\partial_y = X_1$.
- Hence $\mathcal{D}_E = (\partial_q, \partial_x + p\partial_y + q\partial_p)$ is a (2,3,4) distribution, therefore an *Engel distribution*.
- **Theorem** (Engel) Every Engel distribution is locally equivalent to the distribution \mathcal{D}_E .
- Car structure (M, D) is Engel, so NO geometry associated to the car. :-(((

- Take ℝ⁴ with coordinates (x, y, p, q) and consider X₃ = ∂_q and X₄ = ∂_x + p∂_y + q∂_p.
- We have $[X_3, X_4] = \partial_p = X_2$ and $[X_4, X_2] = -\partial_y = X_1$.
- Hence $\mathcal{D}_E = (\partial_q, \partial_x + p \partial_y + q \partial_p)$ is a (2,3,4) distribution, therefore an *Engel distribution*.
- **Theorem** (Engel) Every Engel distribution is locally equivalent to the distribution \mathcal{D}_E .
- Car structure (M, D) is Engel, so NO geometry associated to the car. :-(((

- Take ℝ⁴ with coordinates (x, y, p, q) and consider X₃ = ∂_q and X₄ = ∂_x + p∂_y + q∂_p.
- We have $[X_3, X_4] = \partial_p = X_2$ and $[X_4, X_2] = -\partial_y = X_1$.
- Hence $\mathcal{D}_E = (\partial_q, \partial_x + p\partial_y + q\partial_p)$ is a (2,3,4) distribution, therefore an *Engel distribution*.
- Theorem (Engel) Every Engel distribution is locally equivalent to the distribution D_E.
- Car structure (M, D) is Engel, so NO geometry associated to the car. :-(((

- Take ℝ⁴ with coordinates (x, y, p, q) and consider X₃ = ∂_q and X₄ = ∂_x + p∂_y + q∂_p.
- We have $[X_3, X_4] = \partial_p = X_2$ and $[X_4, X_2] = -\partial_y = X_1$.
- Hence $\mathcal{D}_E = (\partial_q, \partial_x + p\partial_y + q\partial_p)$ is a (2,3,4) distribution, therefore an *Engel distribution*.
- Theorem (Engel) Every Engel distribution is locally equivalent to the distribution D_E.
- Car structure (M, D) is Engel, so NO geometry associated to the car. :-(((

- Take ℝ⁴ with coordinates (x, y, p, q) and consider X₃ = ∂_q and X₄ = ∂_x + p∂_y + q∂_p.
- We have $[X_3, X_4] = \partial_p = X_2$ and $[X_4, X_2] = -\partial_y = X_1$.
- Hence $\mathcal{D}_E = (\partial_q, \partial_x + p\partial_y + q\partial_p)$ is a (2,3,4) distribution, therefore an *Engel distribution*.
- Theorem (Engel) Every Engel distribution is locally equivalent to the distribution D_E.
- Car structure (M, D) is Engel, so NO geometry associated to the car. :-(((

- Look at the vector field:
 - $X_4 = -\sin\beta\partial_\alpha + \ell\cos\beta(\cos\alpha\partial_x + \sin\alpha\partial_y).$
- When β = 0 it is X₄ = ℓ(cos α∂_x + sin α∂_y), i.e. if the car chooses this direction of its velocity it goes along a straight line in the direction (cos α, sin α) in the (x, y) plane.
- On the other hand, if the car chooses its velocity in the direction of X₃ = ∂_β, then it really does not move in the (x, y) space but it performs 'my 3-years old daughter's play' with the steering wheel of the car, when the engine is at iddle.
- Car owners/producers perfectly know and *make use* of the two particular directions, determined by the vector fields (X₃, X₄), in the distribution D. In particular
Look at the vector field:

- When $\beta = 0$ it is $X_4 = \ell(\cos \alpha \partial_x + \sin \alpha \partial_y)$, i.e. if the car chooses this direction of its velocity it goes along a straight line in the direction $(\cos \alpha, \sin \alpha)$ in the (x, y) plane.
- On the other hand, if the car chooses its velocity in the direction of X₃ = ∂_β, then it really does not move in the (x, y) space but it performs 'my 3-years old daughter's play' with the steering wheel of the car, when the engine is at iddle.
- Car owners/producers perfectly know and *make use* of the two particular directions, determined by the vector fields (X₃, X₄), in the distribution D. In particular

• Look at the vector field:

- When β = 0 it is X₄ = ℓ(cos α∂_x + sin α∂_y), i.e. if the car chooses this direction of its velocity it goes along a straight line in the direction (cos α, sin α) in the (x, y) plane.
- On the other hand, if the car chooses its velocity in the direction of X₃ = ∂_β, then it really does not move in the (x, y) space but it performs 'my 3-years old daughter's play' with the steering wheel of the car, when the engine is at iddle.
- Car owners/producers perfectly know and *make use* of the two particular directions, determined by the vector fields (X₃, X₄), in the distribution D. In particular

• Look at the vector field:

- When β = 0 it is X₄ = ℓ(cos α∂_x + sin α∂_y), i.e. if the car chooses this direction of its velocity it goes along a straight line in the direction (cos α, sin α) in the (x, y) plane.
- On the other hand, if the car chooses its velocity in the direction of $X_3 = \partial_\beta$, then it really does not move in the (x, y) space but it performs 'my 3-years old daughter's play' with the steering wheel of the car, when the engine is at iddle.
- Car owners/producers perfectly know and *make use* of the two particular directions, determined by the vector fields (X₃, X₄), in the distribution D. In particular

• Look at the vector field:

- When β = 0 it is X₄ = ℓ(cos α∂_x + sin α∂_y), i.e. if the car chooses this direction of its velocity it goes along a straight line in the direction (cos α, sin α) in the (x, y) plane.
- On the other hand, if the car chooses its velocity in the direction of $X_3 = \partial_\beta$, then it really does not move in the (x, y) space but it performs 'my 3-years old daughter's play' with the steering wheel of the car, when the engine is at iddle.
- Car owners/producers perfectly know and *make use* of the two particular directions, determined by the vector fields (X₃, X₄), in the distribution *D*. In particular

• Look at the vector field:

- When β = 0 it is X₄ = ℓ(cos α∂_x + sin α∂_y), i.e. if the car chooses this direction of its velocity it goes along a straight line in the direction (cos α, sin α) in the (x, y) plane.
- On the other hand, if the car chooses its velocity in the direction of $X_3 = \partial_\beta$, then it really does not move in the (x, y) space but it performs 'my 3-years old daughter's play' with the steering wheel of the car, when the engine is at iddle.
- Car owners/producers perfectly know and *make use* of the two particular directions, determined by the vector fields (X₃, X₄), in the distribution *D*. In particular

see the movie

- Car's structure is an Engel distribution *D* with a split!
- $\mathcal{D} = Span(X_3, X_4)$, with
 - $X_3 = \partial_\beta$ rotation of the steering wheel by the angle β ; this defines the STEERING WHEEL SPACE, $\mathcal{D} = Span(X_3)$,
 - $X_4 = -\sin\beta\partial_{\alpha} + \ldots$ this coresponds to an application of gas in the direction $(\cos\alpha, \sin\alpha)$ in the (x, y) plane, with a fixed position of the steereing wheel at an angle β ; this defines the GAS SPACE, $\mathcal{D} = Span(X_4)$.
- Thus, the car structure is $(M, \mathcal{D} = \mathcal{D} \oplus \mathcal{D})$, where \mathcal{D} is an Engel distribution, and *the ranks of the summands in* \mathcal{D} *are ONE*.

• Car's structure is an Engel distribution *D* with a split!

• $\mathcal{D} = Span(X_3, X_4)$, with

- $X_3 = \partial_\beta$ rotation of the steering wheel by the angle β ; this defines the STEERING WHEEL SPACE, $\mathcal{D} = Span(X_3)$,
- $X_4 = -\sin\beta\partial_{\alpha} + \ldots$ this coresponds to an application of gas in the direction $(\cos\alpha, \sin\alpha)$ in the (x, y) plane, with a fixed position of the steereing wheel at an angle β ; this defines the GAS SPACE, $\mathcal{D} = Span(X_4)$.
- Thus, the car structure is $(M, \mathcal{D} = \mathcal{D} \oplus \mathcal{D})$, where \mathcal{D} is an Engel distribution, and *the ranks of the summands in* \mathcal{D} *are ONE*.

• Car's structure is an Engel distribution *D* with a split!

• $\mathcal{D} = Span(X_3, X_4)$, with

- $X_3 = \partial_\beta$ rotation of the steering wheel by the angle β ; this defines the STEERING WHEEL SPACE, $\mathcal{D} = Span(X_3)$,
- $X_4 = -\sin\beta\partial_{\alpha} + \ldots$ this coresponds to an application of gas in the direction $(\cos\alpha, \sin\alpha)$ in the (x, y) plane, with a fixed position of the steereing wheel at an angle β ; this defines the GAS SPACE, $\mathcal{D} = Span(X_4)$.
- Thus, the car structure is $(M, \mathcal{D} = \mathcal{D} \oplus \mathcal{D})$, where \mathcal{D} is an Engel distribution, and *the ranks of the summands in* \mathcal{D} *are ONE*.

• Car's structure is an Engel distribution *D* with a split!

- $\mathcal{D} = Span(X_3, X_4)$, with
 - $X_3 = \partial_\beta$ rotation of the steering wheel by the angle β ; this defines the STEERING WHEEL SPACE, $\mathcal{D} = Span(X_3)$,
 - $X_4 = -\sin\beta\partial_{\alpha} + \ldots$ this coresponds to an application of gas in the direction $(\cos\alpha, \sin\alpha)$ in the (x, y) plane, with a fixed position of the steereing wheel at an angle β ; this defines the GAS SPACE, $\mathcal{D} = Span(X_4)$.
- Thus, the car structure is $(M, \mathcal{D} = \mathcal{D} \oplus \mathcal{D})$, where \mathcal{D} is an Engel distribution, and *the ranks of the summands in* \mathcal{D} *are ONE*.

- Car's structure is an Engel distribution *D* with a split!
- $\mathcal{D} = Span(X_3, X_4)$, with
 - $X_3 = \partial_{\beta}$ rotation of the steering wheel by the angle β ; this defines the STEERING WHEEL SPACE, $\mathcal{D} = Span(X_3)$,
 - $X_4 = -\sin\beta\partial_{\alpha} + \ldots$ this coresponds to an application of gas in the direction $(\cos\alpha, \sin\alpha)$ in the (x, y) plane, with a fixed position of the steereing wheel at an angle β ; this defines the GAS SPACE, $\mathcal{D} = Span(X_4)$.
- Thus, the car structure is $(M, \mathcal{D} = \mathcal{D} \oplus \mathcal{D})$, where \mathcal{D} is an Engel distribution, and *the ranks of the summands in* \mathcal{D} *are ONE*.

- Car's structure is an Engel distribution *D* with a split!
- $\mathcal{D} = Span(X_3, X_4)$, with
 - $X_3 = \partial_{\beta}$ rotation of the steering wheel by the angle β ; this defines the STEERING WHEEL SPACE,

 $\mathcal{D} = Span(X_3),$

- $X_4 = -\sin\beta\partial_{\alpha} + \ldots$ this coresponds to an application of gas in the direction $(\cos\alpha, \sin\alpha)$ in the (x, y) plane, with a fixed position of the steereing wheel at an angle β ; this defines the GAS SPACE, $\mathcal{D} = Span(X_4)$.
- Thus, the car structure is $(M, \mathcal{D} = \mathcal{D} \oplus \mathcal{D})$, where \mathcal{D} is an Engel distribution, and *the ranks of the summands in* \mathcal{D} *are ONE*.

- Car's structure is an Engel distribution *D* with a split!
- $\mathcal{D} = Span(X_3, X_4)$, with
 - $X_3 = \partial_\beta$ rotation of the steering wheel by the angle β ; this defines the STEERING WHEEL SPACE, $\mathcal{D} = Span(X_3)$,
 - $X_4 = -\sin\beta\partial_{\alpha} + \ldots$ this coresponds to an application of gas in the direction $(\cos\alpha, \sin\alpha)$ in the (x, y) plane, with a fixed position of the steereing wheel at an angle β ; this defines the GAS SPACE, $\mathcal{D} = Span(X_4)$.
- Thus, the car structure is (*M*, *D* = *D* ⊕ *D*), where *D* is an Engel distribution, and *the ranks of the summands in D are ONE*.

- Car's structure is an Engel distribution *D* with a split!
- $\mathcal{D} = Span(X_3, X_4)$, with
 - $X_3 = \partial_\beta$ rotation of the steering wheel by the angle β ; this defines the STEERING WHEEL SPACE, $\mathcal{D} = Span(X_3)$,
 - $X_4 = -\sin\beta\partial_{\alpha} + \dots$ this coresponds to an application of gas in the direction $(\cos\alpha, \sin\alpha)$ in the (x, y) plane, with a fixed position of the steereing wheel at an angle β ; this defines the GAS SPACE, $\mathcal{D} = Span(X_4)$.
- Thus, the car structure is (*M*, *D* = *D* ⊕ *D*), where *D* is an Engel distribution, and *the ranks of the summands in D are ONE*.

- Car's structure is an Engel distribution *D* with a split!
- $\mathcal{D} = Span(X_3, X_4)$, with
 - $X_3 = \partial_\beta$ rotation of the steering wheel by the angle β ; this defines the STEERING WHEEL SPACE, $\mathcal{D} = Span(X_3)$,
 - $X_4 = -\sin\beta\partial_{\alpha} + \ldots$ this coresponds to an application of gas in the direction $(\cos\alpha, \sin\alpha)$ in the (x, y) plane, with a fixed position of the steereing wheel at an angle β ; this defines the GAS SPACE, $\mathcal{D} = Span(X_4)$.
- Thus, the car structure is $(M, \mathcal{D} = \mathcal{D} \oplus \mathcal{D})$, where \mathcal{D} is an Engel distribution, and *the ranks of the summands in* \mathcal{D} *are ONE*.

- Car's structure is an Engel distribution *D* with a split!
- $\mathcal{D} = Span(X_3, X_4)$, with
 - $X_3 = \partial_\beta$ rotation of the steering wheel by the angle β ; this defines the STEERING WHEEL SPACE, $\mathcal{D} = Span(X_3)$,
 - $X_4 = -\sin\beta\partial_{\alpha} + \ldots$ this coresponds to an application of gas in the direction $(\cos\alpha, \sin\alpha)$ in the (x, y) plane, with a fixed position of the steereing wheel at an angle β ; this defines the GAS SPACE, $\mathcal{D} = Span(X_4)$.
- Thus, the car structure is (M, D = D ⊕ D), where D is an Engel distribution, and the ranks of the summands in D are ONE.

- Car's structure is an Engel distribution *D* with a split!
- $\mathcal{D} = Span(X_3, X_4)$, with
 - $X_3 = \partial_\beta$ rotation of the steering wheel by the angle β ; this defines the STEERING WHEEL SPACE, $\mathcal{D} = Span(X_3)$,
 - $X_4 = -\sin\beta\partial_{\alpha} + \ldots$ this coresponds to an application of gas in the direction $(\cos\alpha, \sin\alpha)$ in the (x, y) plane, with a fixed position of the steereing wheel at an angle β ; this defines the GAS SPACE, $\mathcal{D} = Span(X_4)$.
- Thus, the car structure is (M, D = D ⊕ D), where D is an Engel distribution, and the ranks of the summands in D are ONE.

- Car's structure is an Engel distribution *D* with a split!
- $\mathcal{D} = Span(X_3, X_4)$, with
 - $X_3 = \partial_\beta$ rotation of the steering wheel by the angle β ; this defines the STEERING WHEEL SPACE, $\mathcal{D} = Span(X_3)$,
 - $X_4 = -\sin\beta\partial_{\alpha} + \ldots$ this coresponds to an application of gas in the direction $(\cos\alpha, \sin\alpha)$ in the (x, y) plane, with a fixed position of the steereing wheel at an angle β ; this defines the GAS SPACE, $\mathcal{D} = Span(X_4)$.
- Thus, the car structure is $(M, \mathcal{D} = \mathcal{D} \oplus \mathcal{D})$, where \mathcal{D} is an Engel distribution, and *the ranks of the summands in* \mathcal{D} *are ONE*.

- Abstractly, irrespectively of car's considerations, let us consider a geometry in the form (*M*, *D* = *D* ⊕ *D*), where dim*M*=4, *D* is an Engel distribution on *M*, and both subdistributions *D* and *D* in *D* have rank one. Let us call this as an *Engel structure with a split*.
- Infinitesimally: X -vector field on M is an infinitesimal symmetry of (M, D = D ⊕ D) iff L_XD ⊂ D and L_XD ⊂ D.
- This leads to a notion of the Lie algebra g_D of symmetries of an Engel structure with a split (M, D = D ⊕ D) as the Lie algebra of the vectors fields X as above.

- Abstractly, irrespectively of car's considerations, let us consider a geometry in the form (*M*, *D* = *D* ⊕ *D*), where dim*M*=4, *D* is an Engel distribution on *M*, and both subdistributions *D* and *D* in *D* have rank one. Let us call this as an Engel structure with a split.
- Infinitesimally: X -vector field on M is an infinitesimal symmetry of (M, D = D ⊕ D) iff L_XD ⊂ D and L_XD ⊂ D
- This leads to a notion of the Lie algebra g_D of symmetries of an Engel structure with a split (M, D = D ⊕ D) as the Lie algebra of the vectors fields X as above.

- Abstractly, irrespectively of car's considerations, let us consider a geometry in the form (*M*, *D* = *D* ⊕ *D*), where dim*M*=4, *D* is an Engel distribution on *M*, and both subdistributions *D* and *D* in *D* have rank one. Let us call this as an *Engel structure with a split*.
- Infinitesimally: X -vector field on M is an *infinitesimal* symmetry of (M, D = D ⊕ D) iff L_XD ⊂ D and L_XD ⊂ D
- This leads to a notion of the Lie algebra g_D of symmetries of an Engel structure with a split (M, D = D ⊕ D) as the Lie algebra of the vectors fields X as above.

- Abstractly, irrespectively of car's considerations, let us consider a geometry in the form (*M*, *D* = *D* ⊕ *D*), where dim*M*=4, *D* is an Engel distribution on *M*, and both subdistributions *D* and *D* in *D* have rank one. Let us call this as an *Engel structure with a split*.
- Infinitesimally: X -vector field on M is an infinitesimal symmetry of (M, D = D ⊕ D) iff L_XD ⊂ D and L_XD ⊂ D.
- This leads to a notion of the Lie algebra g_D of symmetries of an Engel structure with a split (M, D = D ⊕ D) as the Lie algebra of the vectors fields X as above.

- Abstractly, irrespectively of car's considerations, let us consider a geometry in the form (*M*, *D* = *D* ⊕ *D*), where dim*M*=4, *D* is an Engel distribution on *M*, and both subdistributions *D* and *D* in *D* have rank one. Let us call this as an *Engel structure with a split*.
- New equivalence problem: Two Engel structures with a split $(M, \mathcal{D} = \mathcal{D} \oplus \mathcal{D})$ and $(\overline{M}, \overline{\mathcal{D}} = \overline{\mathcal{D}} \oplus \overline{\mathcal{D}})$ are *(locally)* equivalent iff there exists a (local) diffeomorphism $\phi : M \to \overline{M}$ such that $\phi_* \mathcal{D} = \overline{\mathcal{D}}$ and $\phi_* \mathcal{D} = \overline{\mathcal{D}}$.
- Infinitesimally: X -vector field on M is an infinitesimal symmetry of (M, D = D ⊕ D) iff L_XD ⊂ D and L_XD ⊂ D.
- This leads to a notion of the Lie algebra 𝔅
 of an Engel structure with a split (𝑘, 𝔅) = 𝔅 ⊕𝔅) as the Lie algebra of the vectors fields 𝑋 as above.

- Abstractly, irrespectively of car's considerations, let us consider a geometry in the form (*M*, *D* = *D* ⊕ *D*), where dim*M*=4, *D* is an Engel distribution on *M*, and both subdistributions *D* and *D* in *D* have rank one. Let us call this as an *Engel structure with a split*.
- New equivalence problem: Two Engel structures with a split $(M, \mathcal{D} = \mathcal{D} \oplus \mathcal{D})$ and $(\overline{M}, \overline{\mathcal{D}} = \overline{\mathcal{D}} \oplus \overline{\mathcal{D}})$ are *(locally)* equivalent iff there exists a (local) diffeomorphism $\phi : M \to \overline{M}$ such that $\phi_* \mathcal{D} = \overline{\mathcal{D}}$ and $\phi_* \mathcal{D} = \overline{\mathcal{D}}$.
- Infinitesimally: X -vector field on M is an infinitesimal symmetry of (M, D = D ⊕ D) iff L_XD ⊂ D and L_XD ⊂ D.
- This leads to a notion of the Lie algebra g_D of symmetries of an Engel structure with a split (M, D = D ⊕ D) as the Lie algebra of the vectors fields X as above.

- Abstractly, irrespectively of car's considerations, let us consider a geometry in the form (*M*, *D* = *D* ⊕ *D*), where dim*M*=4, *D* is an Engel distribution on *M*, and both subdistributions *D* and *D* in *D* have rank one. Let us call this as an *Engel structure with a split*.
- New equivalence problem: Two Engel structures with a split $(M, \mathcal{D} = \mathcal{D} \oplus \mathcal{D})$ and $(\overline{M}, \overline{\mathcal{D}} = \overline{\mathcal{D}} \oplus \overline{\mathcal{D}})$ are *(locally)* equivalent iff there exists a (local) diffeomorphism $\phi : M \to \overline{M}$ such that $\phi_* \mathcal{D} = \overline{\mathcal{D}}$ and $\phi_* \mathcal{D} = \overline{\mathcal{D}}$.
- Infinitesimally: X -vector field on M is an infinitesimal symmetry of (M, D = D ⊕ D) iff L_XD ⊂ D and L_XD ⊂ D.
- This leads to a notion of the Lie algebra g_D of symmetries of an Engel structure with a split (M, D = D ⊕ D) as the Lie algebra of the vectors fields X as above.

- Abstractly, irrespectively of car's considerations, let us consider a geometry in the form (*M*, *D* = *D* ⊕ *D*), where dim*M*=4, *D* is an Engel distribution on *M*, and both subdistributions *D* and *D* in *D* have rank one. Let us call this as an *Engel structure with a split*.
- New equivalence problem: Two Engel structures with a split $(M, \mathcal{D} = \mathcal{D} \oplus \mathcal{D})$ and $(\overline{M}, \overline{\mathcal{D}} = \overline{\mathcal{D}} \oplus \overline{\mathcal{D}})$ are *(locally)* equivalent iff there exists a (local) diffeomorphism $\phi: M \to \overline{M}$ such that $\phi_* \mathcal{D} = \overline{\mathcal{D}}$ and $\phi_* \mathcal{D} = \overline{\mathcal{D}}$.
- Infinitesimally: X -vector field on M is an infinitesimal symmetry of (M, D = D ⊕ D) iff L_XD ⊂ D and L_XD ⊂ D.
- This leads to a notion of the Lie algebra g_D of symmetries of an Engel structure with a split (M, D = D ⊕ D) as the Lie algebra of the vectors fields X as above.

- Abstractly, irrespectively of car's considerations, let us consider a geometry in the form (*M*, *D* = *D* ⊕ *D*), where dim*M*=4, *D* is an Engel distribution on *M*, and both subdistributions *D* and *D* in *D* have rank one. Let us call this as an *Engel structure with a split*.
- New equivalence problem: Two Engel structures with a split $(M, \mathcal{D} = \mathcal{D} \oplus \mathcal{D})$ and $(\overline{M}, \overline{\mathcal{D}} = \overline{\mathcal{D}} \oplus \overline{\mathcal{D}})$ are *(locally)* equivalent iff there exists a (local) diffeomorphism $\phi: M \to \overline{M}$ such that $\phi_* \mathcal{D} = \overline{\mathcal{D}}$ and $\phi_* \mathcal{D} = \overline{\mathcal{D}}$.
- Infinitesimally: X -vector field on M is an infinitesimal symmetry of (M, D = D ⊕ D) iff L_XD ⊂ D and L_XD ⊂ D.
- This leads to a notion of the Lie algebra g_D of symmetries of an Engel structure with a split (M, D = D ⊕ D) as the Lie algebra of the vectors fields X as above.

Theorem

Consider the car structure (M, D) consisting of its velocity distribution D and the split of D onto rank 1 distributions $D = D \oplus D$ with $D = \text{Span}(\partial_{\beta})$, $D = \text{Span}(-\sin\beta\partial_{\alpha} + \ell\cos\beta(\cos\alpha\partial_{x} + \sin\alpha\partial_{y}))$. The Lie algebra of infinitesimal symmetries of this Engel structure with a split is 10-dimensional, with the following generators

$$\begin{split} S_1 &= \partial_x \\ S_2 &= \partial_y \\ S_3 &= x\partial_y - y\partial_x + \partial_\alpha \\ S_4 &= \ell(\sin\alpha\partial_x - \cos\alpha\partial_y) + \sin^2\beta\partial_\beta \\ S_5 &= x\partial_x + y\partial_y - \sin\beta\cos\beta\partial_\beta \\ S_6 &= (x^2 - y^2)\partial_x + 2xy\partial_y + 2y\partial_\alpha - 2\cos\beta\left(\ell\cos\beta\sin\alpha + x\sin\beta\right)\partial_\beta \\ S_7 &= \ell\left(x(\sin\alpha\partial_x - \cos\alpha\partial_y) - \cos\alpha\partial_\alpha\right) + \sin\beta\left(\ell\cos\beta\sin\alpha + x\sin\beta\right)\partial_\beta \\ S_8 &= \ell\left(y(\sin\alpha\partial_x - \cos\alpha\partial_y) - \sin\alpha\partial_\alpha\right) - \sin\beta\left(\ell\cos\beta\cos\alpha - y\sin\beta\right)\partial_\beta \\ S_9 &= 2xy\partial_x + (y^2 - x^2)\partial_y - 2x\partial_\alpha + 2\cos\beta\left(\ell\cos\beta\cos\alpha - y\sin\beta\right)\partial_\beta \\ S_{10} &= \ell(x^2 + y^2)\left(\sin\alpha\partial_x - \cos\alpha\partial_y\right) - 2\ell\left(x\cos\alpha + y\sin\alpha\right)\partial_\alpha + \\ (2\ell\sin\beta\cos\beta(x\sin\alpha - y\cos\alpha) + \sin^2\beta(x^2 + y^2) + 2\ell^2\cos^2\beta)\partial_\beta \end{split}$$

It is isomorphic to the simple real Lie algebra $so(2, 3) = sp(2, \mathbb{R})$. Moreover, there are plenty of locally nonequivalent Engel distributions with a split, but the split on the (Engel) car distribution used by car owners and provided by cars' producers is THE MOST SYMETRIC.

Theorem

Consider the car structure (M, D) consisting of its velocity distribution D and the split of D onto rank 1 distributions $D = D \oplus D$ with $D = \text{Span}(\partial_{\beta})$, $D = \text{Span}(-\sin\beta\partial_{\alpha} + \ell\cos\beta(\cos\alpha\partial_{x} + \sin\alpha\partial_{y})$. The Lie algebra of infinitesimal symmetries of this Engel structure with a split is 10-dimensional, with the following generators

$$\begin{split} S_{1} &= \partial_{x} \\ S_{2} &= \partial_{y} \\ S_{3} &= x\partial_{y} - y\partial_{x} + \partial_{\alpha} \\ S_{4} &= \ell(\sin\alpha\partial_{x} - \cos\alpha\partial_{y}) + \sin^{2}\beta\partial_{\beta} \\ S_{5} &= x\partial_{x} + y\partial_{y} - \sin\beta\cos\beta\partial_{\beta} \\ S_{6} &= (x^{2} - y^{2})\partial_{x} + 2xy\partial_{y} + 2y\partial_{\alpha} - 2\cos\beta\left(\ell\cos\beta\sin\alpha + x\sin\beta\right)\partial_{\beta} \\ S_{7} &= \ell\left(x(\sin\alpha\partial_{x} - \cos\alpha\partial_{y}) - \cos\alpha\partial_{\alpha}\right) + \sin\beta\left(\ell\cos\beta\sin\alpha + x\sin\beta\right)\partial_{\beta} \\ S_{8} &= \ell\left(y(\sin\alpha\partial_{x} - \cos\alpha\partial_{y}) - \sin\alpha\partial_{\alpha}\right) - \sin\beta\left(\ell\cos\beta\cos\alpha - y\sin\beta\right)\partial_{\beta} \\ S_{9} &= 2xy\partial_{x} + (y^{2} - x^{2})\partial_{y} - 2x\partial_{\alpha} + 2\cos\beta\left(\ell\cos\beta\cos\alpha - y\sin\beta\right)\partial_{\beta} \\ S_{10} &= \ell(x^{2} + y^{2})\left(\sin\alpha\partial_{x} - \cos\alpha\partial_{y}\right) - 2\ell\left(x\cos\alpha + y\sin\alpha\right)\partial_{\alpha} + \\ &\left(2\ell\sin\beta\cos\beta(x\sin\alpha - y\cos\alpha) + \sin^{2}\beta(x^{2} + y^{2}) + 2\ell^{2}\cos^{2}\beta\right)\partial_{\beta} \end{split}$$

It is isomorphic to the simple real Lie algebra $so(2, 3) = sp(2, \mathbb{R})$. Moreover, there are plenty of locally nonequivalent Engel distributions with a split, but the split on the (Engel) car distribution used by car owners and provided by cars' producers is THE MOST SYMETRIC.

Theorem

Consider the car structure (M, \mathcal{D}) consisting of its velocity distribution \mathcal{D} and the split of \mathcal{D} onto rank 1 distributions $\mathcal{D} = \mathcal{D} \oplus \mathcal{D}$ with $\mathcal{D} = \text{Span}(\partial_{\beta})$, $\mathcal{D} = \text{Span}(-\sin\beta\partial_{\alpha} + \ell\cos\beta(\cos\alpha\partial_{x} + \sin\alpha\partial_{y})$. The Lie algebra of infinitesimal symmetries of this Engel structure with a split is 10-dimensional, with the following generators

$$\begin{split} S_{1} &= \partial_{x} \\ S_{2} &= \partial_{y} \\ S_{3} &= x\partial_{y} - y\partial_{x} + \partial_{\alpha} \\ S_{4} &= \ell(\sin\alpha\partial_{x} - \cos\alpha\partial_{y}) + \sin^{2}\beta\partial_{\beta} \\ S_{5} &= x\partial_{x} + y\partial_{y} - \sin\beta\cos\beta\partial_{\beta} \\ S_{6} &= (x^{2} - y^{2})\partial_{x} + 2xy\partial_{y} + 2y\partial_{\alpha} - 2\cos\beta\left(\ell\cos\beta\sin\alpha + x\sin\beta\right)\partial_{\beta} \\ S_{7} &= \ell\left(x(\sin\alpha\partial_{x} - \cos\alpha\partial_{y}) - \cos\alpha\partial_{\alpha}\right) + \sin\beta\left(\ell\cos\beta\sin\alpha + x\sin\beta\right)\partial_{\beta} \\ S_{8} &= \ell\left(y(\sin\alpha\partial_{x} - \cos\alpha\partial_{y}) - \sin\alpha\partial_{\alpha}\right) - \sin\beta\left(\ell\cos\beta\cos\alpha - y\sin\beta\right)\partial_{\beta} \\ S_{9} &= 2xy\partial_{x} + (y^{2} - x^{2})\partial_{y} - 2x\partial_{\alpha} + 2\cos\beta\left(\ell\cos\beta\cos\alpha - y\sin\beta\right)\partial_{\beta} \\ S_{10} &= \ell(x^{2} + y^{2})\left(\sin\alpha\partial_{x} - \cos\alpha\partial_{y}\right) - 2\ell\left(x\cos\alpha + y\sin\alpha\right)\partial_{\alpha} + \\ &\left(2\ell\sin\beta\cos\beta(x\sin\alpha - y\cos\alpha) + \sin^{2}\beta(x^{2} + y^{2}) + 2\ell^{2}\cos^{2}\beta\right)\partial_{\beta} \end{split}$$

It is isomorphic to the simple real Lie algebra $so(2, 3) = sp(2, \mathbb{R})$. Moreover, there are plenty of locally nonequivalent Engel distributions with a split, but the split on the (Engel) car distribution used by car owners and provided by cars' producers is THE MOST SYMETRIC.

Theorem

Consider the car structure (M, \mathcal{D}) consisting of its velocity distribution \mathcal{D} and the split of \mathcal{D} onto rank 1 distributions $\mathcal{D} = \mathcal{D} \oplus \mathcal{D}$ with $\mathcal{D} = \text{Span}(\partial_{\beta})$, $\mathcal{D} = \text{Span}(-\sin\beta\partial_{\alpha} + \ell\cos\beta(\cos\alpha\partial_{x} + \sin\alpha\partial_{y})$. The Lie algebra of infinitesimal symmetries of this Engel structure with a split is 10-dimensional, with the following generators

$$\begin{split} S_{1} &= \partial_{x} \\ S_{2} &= \partial_{y} \\ S_{3} &= x\partial_{y} - y\partial_{x} + \partial_{\alpha} \\ S_{4} &= \ell(\sin\alpha\partial_{x} - \cos\alpha\partial_{y}) + \sin^{2}\beta\partial_{\beta} \\ S_{5} &= x\partial_{x} + y\partial_{y} - \sin\beta\cos\beta\partial_{\beta} \\ S_{6} &= (x^{2} - y^{2})\partial_{x} + 2xy\partial_{y} + 2y\partial_{\alpha} - 2\cos\beta\left(\ell\cos\beta\sin\alpha + x\sin\beta\right)\partial_{\beta} \\ S_{7} &= \ell\left(x(\sin\alpha\partial_{x} - \cos\alpha\partial_{y}) - \cos\alpha\partial_{\alpha}\right) + \sin\beta\left(\ell\cos\beta\sin\alpha + x\sin\beta\right)\partial_{\beta} \\ S_{8} &= \ell\left(y(\sin\alpha\partial_{x} - \cos\alpha\partial_{y}) - \sin\alpha\partial_{\alpha}\right) - \sin\beta\left(\ell\cos\beta\cos\alpha - y\sin\beta\right)\partial_{\beta} \\ S_{9} &= 2xy\partial_{x} + (y^{2} - x^{2})\partial_{y} - 2x\partial_{\alpha} + 2\cos\beta\left(\ell\cos\beta\cos\alpha - y\sin\beta\right)\partial_{\beta} \\ S_{10} &= \ell(x^{2} + y^{2})\left(\sin\alpha\partial_{x} - \cos\alpha\partial_{y}\right) - 2\ell\left(x\cos\alpha + y\sin\alpha\right)\partial_{\alpha} + \\ &\left(2\ell\sin\beta\cos\beta(x\sin\alpha - y\cos\alpha) + \sin^{2}\beta(x^{2} + y^{2}) + 2\ell^{2}\cos^{2}\beta\right)\partial_{\beta} \end{split}$$

It is isomorphic to the simple real Lie algebra $\mathfrak{so}(2, 3) = \mathfrak{sp}(2, \mathbb{R})$. Moreover, there are plenty of locally nonequivalent Engel distributions with a split, but the split on the (Engel) car distribution used by car owners and provided by cars' producers is THE MOST SYMMETRIC.

Theorem

Consider the car structure (M, \mathcal{D}) consisting of its velocity distribution \mathcal{D} and the split of \mathcal{D} onto rank 1 distributions $\mathcal{D} = \mathcal{D} \oplus \mathcal{D}$ with $\mathcal{D} = \text{Span}(\partial_{\beta})$, $\mathcal{D} = \text{Span}(-\sin\beta\partial_{\alpha} + \ell\cos\beta(\cos\alpha\partial_{x} + \sin\alpha\partial_{y})$. The Lie algebra of infinitesimal symmetries of this Engel structure with a split is 10-dimensional, with the following generators

$$\begin{split} &S_{1} = \partial_{x} \\ &S_{2} = \partial_{y} \\ &S_{3} = x\partial_{y} - y\partial_{x} + \partial_{\alpha} \\ &S_{4} = \ell(\sin\alpha\partial_{x} - \cos\alpha\partial_{y}) + \sin^{2}\beta\partial_{\beta} \\ &S_{5} = x\partial_{x} + y\partial_{y} - \sin\beta\cos\beta\partial_{\beta} \\ &S_{6} = (x^{2} - y^{2})\partial_{x} + 2xy\partial_{y} + 2y\partial_{\alpha} - 2\cos\beta\left(\ell\cos\beta\sin\alpha + x\sin\beta\right)\partial_{\beta} \\ &S_{7} = \ell\left(x(\sin\alpha\partial_{x} - \cos\alpha\partial_{y}) - \cos\alpha\partial_{\alpha}\right) + \sin\beta\left(\ell\cos\beta\sin\alpha + x\sin\beta\right)\partial_{\beta} \\ &S_{8} = \ell\left(y(\sin\alpha\partial_{x} - \cos\alpha\partial_{y}) - \sin\alpha\partial_{\alpha}\right) - \sin\beta\left(\ell\cos\beta\cos\alpha - y\sin\beta\right)\partial_{\beta} \\ &S_{9} = 2xy\partial_{x} + (y^{2} - x^{2})\partial_{y} - 2x\partial_{\alpha} + 2\cos\beta\left(\ell\cos\beta\cos\alpha - y\sin\beta\right)\partial_{\beta} \\ &S_{10} = \ell(x^{2} + y^{2})\left(\sin\alpha\partial_{x} - \cos\alpha\partial_{y}\right) - 2\ell\left(x\cos\alpha + y\sin\alpha\right)\partial_{\alpha} + \\ &\left(2\ell\sin\beta\cos\beta(x\sin\alpha - y\cos\alpha) + \sin^{2}\beta(x^{2} + y^{2}) + 2\ell^{2}\cos^{2}\beta\right)\partial_{\beta} \end{split}$$

It is isomorphic to the simple real Lie algebra $\mathfrak{so}(2, 3) = \mathfrak{sp}(2, \mathbb{R})$. Moreover, there are plenty of locally nonequivalent Engel distributions with a split, but the split on the (Engel) car distribution used by car owners and provided by cars' producers is THE MOST SYMETRIC.

- Why the car structure $(M, D = D \oplus D)$ of an Engel distribution D with a particular (car's) split has the simple Lie algebra $\mathfrak{so}(2,3)$ as the Lie algebra of ininfinitesimal symmetries?
- so(2,3) is the Lie algebra of the conformal group of the 3-dimensional Minkowski space. How on Earth Minkowski space can be related to a car?

- Why the car structure (M, D = D ⊕ D) of an Engel distribution D with a particular (car's) split has the simple Lie algebra so(2,3) as the Lie algebra of ininfinitesimal symmetries?
- 50(2,3) is the Lie algebra of the conformal group of the 3-dimensional Minkowski space. How on Earth Minkowski space can be related to a car?

- Why the car structure (M, D = D ⊕ D) of an Engel distribution D with a particular (car's) split has the simple Lie algebra so(2,3) as the Lie algebra of ininfinitesimal symmetries?
- so(2,3) is the Lie algebra of the conformal group of the 3-dimensional Minkowski space. How on Earth Minkowski space can be related to a car?

- Why the car structure (M, D = D ⊕ D) of an Engel distribution D with a particular (car's) split has the simple Lie algebra so(2,3) as the Lie algebra of ininfinitesimal symmetries?
- so(2,3) is the Lie algebra of the conformal group of the 3-dimensional Minkowski space. How on Earth Minkowski space can be related to a car?
Two directions at each point of M

- Trajectories of X₃: β is channing, (x, y, α) are fixed; this is a child's play with the steering wheel; car is not moving in the (x, y) space.
- Trajectories of X₄: β is fixed; front wheels are in a fixed position; X₄ corresponds in applying gas in such a situation; car (its rear wheels) are moving along CIRCLES in the (x, y) plane.
- Actually, with a proper choice of β and starting position (x_0, y_0) of the car, its rear wheels can draw ANY CIRCLE on the plane (including lines=circles with center at infinity).

- Trajectories of X₃: β is channging, (x, y, α) are fixed; this is a child's play with the steering wheel; car is not moving in the (x, y) space.
- Trajectories of X₄: β is fixed; front wheels are in a fixed position; X₄ corresponds in applying gas in such a situation; car (its rear wheels) are moving along CIRCLES in the (x, y) plane.
- Actually, with a proper choice of β and starting position (x_0, y_0) of the car, its rear wheels can draw ANY CIRCLE on the plane (including lines=circles with center at infinity).

- Trajectories of X₃: β is channing, (x, y, α) are fixed; this is a child's play with the steering wheel; car is not moving in the (x, y) space.
- Trajectories of X₄: β is fixed; front wheels are in a fixed position; X₄ corresponds in applying gas in such a situation; car (its rear wheels) are moving along CIRCLES in the (x, y) plane.
- Actually, with a proper choice of β and starting position (x_0, y_0) of the car, its rear wheels can draw ANY CIRCLE on the plane (including lines=circles with center at infinity).

• Trajectories of X_3 : β is channeling, (x, y, α) are fixed; this is a child's play with the steering wheel; car is not moving in

the (*x*, *y*) space.

- Trajectories of X₄: β is fixed; front wheels are in a fixed position; X₄ corresponds in applying gas in such a situation; car (its rear wheels) are moving along CIRCLES in the (x, y) plane.
- Actually, with a proper choice of β and starting position (x_0, y_0) of the car, its rear wheels can draw ANY CIRCLE on the plane (including lines=circles with center at infinity).

- Trajectories of X₃: β is channeling, (x, y, α) are fixed; this is a child's play with the steering wheel; car is not moving in the (x, y) space.
- Trajectories of X₄: β is fixed; front wheels are in a fixed position; X₄ corresponds in applying gas in such a situation; car (its rear wheels) are moving along CIRCLES in the (x, y) plane.
- Actually, with a proper choice of β and starting position
 (x₀, y₀) of the car, its rear wheels can draw ANY CIRCLE
 on the plane (including lines=circles with center.at infinity).

- Trajectories of X₃: β is channging, (x, y, α) are fixed; this is a child's play with the steering wheel; car is not moving in the (x, y) space.
- Trajectories of X₄: β is fixed; front wheels are in a fixed position; X₄ corresponds in applying gas in such a situation; car (its rear wheels) are moving along CIRCLES in the (x, y) plane.
- Actually, with a proper choice of β and starting position
 (x₀, y₀) of the car, its rear wheels can draw ANY CIRCLE
 on the plane (including lines=circles with center at infinity).

- Trajectories of X₃: β is channging, (x, y, α) are fixed; this is a child's play with the steering wheel; car is not moving in the (x, y) space.
- Trajectories of X₄: β is fixed; front wheels are in a fixed position; X₄ corresponds in applying gas in such a situation; car (its rear wheels) are moving along CIRCLES in the (x, y) plane.
- Actually, with a proper choice of β and starting position
 (x₀, y₀) of the car, its rear wheels can draw ANY CIRCLE
 on the plane (including lines=circles with center at infinity).

- Trajectories of X₃: β is channeling, (x, y, α) are fixed; this is a child's play with the steering wheel; car is not moving in the (x, y) space.
- Trajectories of X₄: β is fixed; front wheels are in a fixed position; X₄ corresponds in applying gas in such a situation; car (its rear wheels) are moving along CIRCLES in the (x, y) plane.
- Actually, with a proper choice of β and starting position (x_0, y_0) of the car, its rear wheels can draw ANY CIRCLE on the plane (including lines=circles with center at infinity).

- Trajectories of X₃: β is channging, (x, y, α) are fixed; this is a child's play with the steering wheel; car is not moving in the (x, y) space.
- Trajectories of X₄: β is fixed; front wheels are in a fixed position; X₄ corresponds in applying gas in such a situation; car (its rear wheels) are moving along CIRCLES in the (x, y) plane.
- Actually, with a proper choice of β and starting position (x_0, y_0) of the car, its rear wheels can draw ANY CIRCLE on the plane (including lines=circles with center at infinity)

- Trajectories of X₃: β is channging, (x, y, α) are fixed; this is a child's play with the steering wheel; car is not moving in the (x, y) space.
- Trajectories of X₄: β is fixed; front wheels are in a fixed position; X₄ corresponds in applying gas in such a situation; car (its rear wheels) are moving along CIRCLES in the (x, y) plane.
- Actually, with a proper choice of β and starting position (x₀, y₀) of the car, its rear wheels can draw ANY CIRCLE on the plane (including lines=circles with center at infinity).

- Trajectories of X₃: β is channging, (x, y, α) are fixed; this is a child's play with the steering wheel; car is not moving in the (x, y) space.
- Trajectories of X₄: β is fixed; front wheels are in a fixed position; X₄ corresponds in applying gas in such a situation; car (its rear wheels) are moving along CIRCLES in the (x, y) plane.
- Actually, with a proper choice of β and starting position (x₀, y₀) of the car, its rear wheels can draw ANY CIRCLE on the plane (including lines=circles with center at infinity)₂

- Trajectories of X₃: β is channeling, (x, y, α) are fixed; this is a child's play with the steering wheel; car is not moving in the (x, y) space.
- Trajectories of X₄: β is fixed; front wheels are in a fixed position; X₄ corresponds in applying gas in such a situation; car (its rear wheels) are moving along CIRCLES in the (x, y) plane.
- Actually, with a proper choice of β and starting position (x₀, y₀) of the car, its rear wheels can draw ANY CIRCLE on the plane (including lines=circles with center at infinity).

- The red trajectories are *helices* in each slice $\beta = \text{const}$ in *M*.
- The space of all of them is a 3D space *Q*³ of all circles (including all lines and all points) in the plane.

- The red trajectories are *helices* in each slice $\beta = \text{const}$ in *M*.
- The space of all of them is a 3D space Q^3 of all circles (including all lines and all points) in the plane.

- The red trajectories are *helices* in each slice $\beta = \text{const}$ in *M*.
- The space of all of them is a 3D space Q³ of all circles (including all lines and all points) in the plane.

From the space of circles...

From circles to the light...

▲□ > ▲□ > ▲目 > ▲目 > ▲目 > ◇ < ♡ < ♡

・ロト・雪 ・ 小田 ・ 小田 ・ 今日・

31/50

▲ロト▲聞と▲臣と▲臣と 臣 のぐら

・ロト・西・・西・・日・ 日・ ろくの

34/50

Conformal Loorentzian geometry in Q⁸

- is a geometry of light cones in 3D Minkowski space;
- 2 oriented circles are *null separated* if and only if they are *tangent* to each other and *their orientations match*.
- Therefore Q³ the quotient of M by the trajectories of X₄ is naturally equipped with a FLAT conformal 3D Lorentzian structure.
- OBVIOUSLY SO(2,3) symmetric!

• is a geometry of light cones in 3D Minkowski space;

- 2 oriented circles are *null separated* if and only if they are *tangent* to each other and *their orientations match*.
- Therefore Q³ the quotient of M by the trajectories of X₄ is naturally equipped with a FLAT conformal 3D Lorentzian structure.
- OBVIOUSLY SO(2,3) symmetric!

• is a geometry of light cones in 3D Minkowski space;

- 2 oriented circles are *null separated* if and only if they are *tangent* to each other and *their orientations match*.
- Therefore Q³ the quotient of M by the trajectories of X₄ is naturally equipped with a FLAT conformal 3D Lorentzian structure.
- OBVIOUSLY SO(2,3) symmetric!

- is a geometry of light cones in 3D Minkowski space;
- 2 oriented circles are *null separated* if and only if they are *tangent* to each other and *their orientations match*.
- Therefore Q³ the quotient of M by the trajectories of X₄ is naturally equipped with a FLAT conformal 3D Lorentzian structure.
- OBVIOUSLY SO(2,3) symmetric!

- is a geometry of light cones in 3D Minkowski space;
- 2 oriented circles are *null separated* if and only if they are *tangent* to each other and *their orientations match*.
- Therefore Q³ the quotient of M by the trajectories of X₄ is naturally equipped with a FLAT conformal 3D Lorentzian structure.
- OBVIOUSLY SO(2,3) symmetric!

- is a geometry of light cones in 3D Minkowski space;
- 2 oriented circles are *null separated* if and only if they are *tangent* to each other and *their orientations match*.
- Therefore Q^3 the quotient of *M* by the trajectories of X_4 is naturally equipped with a FLAT *conformal 3D Lorentzian structure*.
- OBVIOUSLY SO(2,3) symmetric!

- is a geometry of light cones in 3D Minkowski space;
- 2 oriented circles are *null separated* if and only if they are *tangent* to each other and *their orientations match*.
- Therefore Q^3 the quotient of *M* by the trajectories of X_4 is naturally equipped with a FLAT *conformal 3D Lorentzian structure*.
- OBVIOUSLY SO(2,3) symmetric!
- is a geometry of light cones in 3D Minkowski space;
- 2 oriented circles are *null separated* if and only if they are *tangent* to each other and *their orientations match*.
- Therefore Q^3 the quotient of *M* by the trajectories of X_4 is naturally equipped with a FLAT *conformal 3D Lorentzian structure*.
- OBVIOUSLY SO(2,3) symmetric!

Contact projective structure

A contact projective structure on a 3-dimensional manifold N is given by the following data.

- A contact distribution C, that is the distribution annihilated by a 1-form ω on N, such that dω ∧ ω ≠ 0.
- A family of unparameterized curves everywhere tangent to C and such that:
 - for a given point and a direction in *C* there is exactly one curve passing through that point and tangent to that direction,
 - curves of the family are among unparameterized geodesics for some linear connection on *N*.

Contact projective structure

A contact projective structure on a 3-dimensional manifold N is given by the following data.

- A contact distribution C, that is the distribution annihilated by a 1-form ω on N, such that dω ∧ ω ≠ 0.
- A family of unparameterized curves everywhere tangent to C and such that:
 - for a given point and a direction in *C* there is exactly one curve passing through that point and tangent to that direction,
 - curves of the family are among unparameterized geodesics for some linear connection on *N*.

- A contact distribution C, that is the distribution annihilated by a 1-form ω on N, such that dω ∧ ω ≠ 0.
- A family of unparameterized curves everywhere tangent to $\ensuremath{\mathcal{C}}$ and such that:
 - for a given point and a direction in *C* there is exactly one curve passing through that point and tangent to that direction,
 - curves of the family are among unparameterized geodesics for some linear connection on *N*.

- A contact distribution C, that is the distribution annihilated by a 1-form ω on N, such that dω ∧ ω ≠ 0.
- A family of unparameterized curves everywhere tangent to *C* and such that:
 - for a given point and a direction in C there is exactly one curve passing through that point and tangent to that direction,
 - curves of the family are among unparameterized geodesics for some linear connection on *N*.

- A contact distribution C, that is the distribution annihilated by a 1-form ω on N, such that dω ∧ ω ≠ 0.
- A family of unparameterized curves everywhere tangent to *C* and such that:
 - for a given point and a direction in *C* there is exactly one curve passing through that point and tangent to that direction,
 - curves of the family are among unparameterized geodesics for some linear connection on *N*.

- A contact distribution C, that is the distribution annihilated by a 1-form ω on N, such that dω ∧ ω ≠ 0.
- A family of unparameterized curves everywhere tangent to *C* and such that:
 - for a given point and a direction in *C* there is exactly one curve passing through that point and tangent to that direction,
 - curves of the family are among unparameterized geodesics for some linear connection on *N*.

- A contact distribution C, that is the distribution annihilated by a 1-form ω on N, such that dω ∧ ω ≠ 0.
- A family of unparameterized curves everywhere tangent to *C* and such that:
 - for a given point and a direction in *C* there is exactly one curve passing through that point and tangent to that direction,
 - curves of the family are among unparameterized geodesics for some linear connection on *N*.

- A contact distribution C, that is the distribution annihilated by a 1-form ω on N, such that dω ∧ ω ≠ 0.
- A family of unparameterized curves everywhere tangent to *C* and such that:
 - for a given point and a direction in *C* there is exactly one curve passing through that point and tangent to that direction,
 - curves of the family are among unparameterized geodesics for some linear connection on *N*.

Double fibration

Has anyone seen such a fibration before?

Chern in 1940 considered geomery of ODEs y''' = F(x, y, y', y'') up to contact transformations of variables.

Chern in 1940 considered geomery of ODEs y''' = F(x, y, y', y'') up to contact transformations of variables.

- A third order ODE that has both of the above point invariants vanishing is y''' = 0 corresponding to F = 0.
- But there are others. E.g. $y''' = \frac{3y'y''^2}{1+y'^2}$
- What is this equation? Well...
- This is an equation whose every solution, considered as a graph in the plane (*x*, *y*), is a circle.
- Actually, the transformation of variables $(x, y, \alpha, \beta) \rightarrow (x, y, y' = \operatorname{tg} \alpha, y'' = -\ell^{-1} \operatorname{tg} \beta \operatorname{sec}^3 \alpha)$ transforms car's Engel distribution with car's split to the rank 2 distribution on the jet space, whose split is given by the vectors tangent to trajectories of the total differential of the ODE $y''' = \frac{3y'y''^2}{1+y'^2}$ on one side, and the vectors tangent to the natural fibers in the space of the second jets related to the first jets.

- A third order ODE that has both of the above point invariants vanishing is y^{'''} = 0 corresponding to F = 0.
- But there are others. E.g. $y''' = \frac{3y'y''^2}{1+y'^2}$
- What is this equation? Well...
- This is an equation whose every solution, considered as a graph in the plane (*x*, *y*), is a circle.
- Actually, the transformation of variables $(x, y, \alpha, \beta) \rightarrow (x, y, y' = \operatorname{tg} \alpha, y'' = -\ell^{-1} \operatorname{tg} \beta \operatorname{sec}^3 \alpha)$ transforms car's Engel distribution with car's split to the rank 2 distribution on the jet space, whose split is given by the vectors tangent to trajectories of the total differential of the ODE $y''' = \frac{3y'y''^2}{1+y'^2}$ on one side, and the vectors tangent to the natural fibers in the space of the second jets related to the first jets.

- A third order ODE that has both of the above point invariants vanishing is y^{'''} = 0 corresponding to F = 0.
- But there are others. E.g. $y''' = \frac{3y'y'''}{1+y''^2}$
- What is this equation? Well...
- This is an equation whose every solution, considered as a graph in the plane (*x*, *y*), is a circle.
- Actually, the transformation of variables $(x, y, \alpha, \beta) \rightarrow (x, y, y' = \operatorname{tg} \alpha, y'' = -\ell^{-1} \operatorname{tg} \beta \operatorname{sec}^3 \alpha)$ transforms car's Engel distribution with car's split to the rank 2 distribution on the jet space, whose split is given by the vectors tangent to trajectories of the total differential of the ODE $y''' = \frac{3y'y''^2}{1+y'^2}$ on one side, and the vectors tangent to the natural fibers in the space of the second jets related to the first jets.

- A third order ODE that has both of the above point invariants vanishing is y^{'''} = 0 corresponding to F = 0.
- But there are others. E.g. $y''' = \frac{3y'y''^2}{1+y'^2}$
- What is this equation? Well...
- This is an equation whose every solution, considered as a graph in the plane (*x*, *y*), is a circle.
- Actually, the transformation of variables $(x, y, \alpha, \beta) \rightarrow (x, y, y' = \operatorname{tg} \alpha, y'' = -\ell^{-1} \operatorname{tg} \beta \operatorname{sec}^3 \alpha)$ transforms car's Engel distribution with car's split to the rank 2 distribution on the jet space, whose split is given by the vectors tangent to trajectories of the total differential of the ODE $y''' = \frac{3y'y''^2}{1+y'^2}$ on one side, and the vectors tangent to the natural fibers in the space of the second jets related to the first jets.

- A third order ODE that has both of the above point invariants vanishing is y^{'''} = 0 corresponding to F = 0.
- But there are others. E.g. $y''' = \frac{3y'y''^2}{1+y'^2}$
- What is this equation? Well...
- This is an equation whose every solution, considered as a graph in the plane (*x*, *y*), is a circle.
- Actually, the transformation of variables $(x, y, \alpha, \beta) \rightarrow (x, y, y' = \operatorname{tg} \alpha, y'' = -\ell^{-1} \operatorname{tg} \beta \operatorname{sec}^3 \alpha)$ transforms car's Engel distribution with car's split to the rank 2 distribution on the jet space, whose split is given by the vectors tangent to trajectories of the total differential of the ODE $y''' = \frac{3y'y''^2}{1+y'^2}$ on one side, and the vectors tangent to the natural fibers in the space of the second jets related to the first jets.

- A third order ODE that has both of the above point invariants vanishing is y^{'''} = 0 corresponding to F = 0.
- But there are others. E.g. $y''' = \frac{3y'y''^2}{1+y'^2}$
- What is this equation? Well...
- This is an equation whose every solution, considered as a graph in the plane (*x*, *y*), is a circle.
- Actually, the transformation of variables $(x, y, \alpha, \beta) \rightarrow (x, y, y' = \operatorname{tg} \alpha, y'' = -\ell^{-1} \operatorname{tg} \beta \operatorname{sec}^3 \alpha)$ transforms car's Engel distribution with car's split to the rank 2 distribution on the jet space, whose split is given by the vectors tangent to trajectories of the total differential of the ODE $y''' = \frac{3y'y''^2}{1+y'^2}$ on one side, and the vectors tangent to the natural fibers in the space of the second jets related to the first jets.

- A third order ODE that has both of the above point invariants vanishing is y^{'''} = 0 corresponding to F = 0.
- But there are others. E.g. $y''' = \frac{3y'y''^2}{1+y'^2}$
- What is this equation? Well...
- This is an equation whose every solution, considered as a graph in the plane (x, y), is a circle.
- Actually, the transformation of variables $(x, y, \alpha, \beta) \rightarrow (x, y, y' = \operatorname{tg} \alpha, y'' = -\ell^{-1} \operatorname{tg} \beta \operatorname{sec}^3 \alpha)$ transforms car's Engel distribution with car's split to the rank 2 distribution on the jet space, whose split is given by the vectors tangent to trajectories of the total differential of the ODE $y''' = \frac{3y'y''^2}{1+y'^2}$ on one side, and the vectors tangent to the natural fibers in the space of the second jets related to the first jets.

- A third order ODE that has both of the above point invariants vanishing is y^{'''} = 0 corresponding to F = 0.
- But there are others. E.g. $y''' = \frac{3y'y''^2}{1+y'^2}$
- What is this equation? Well...
- This is an equation whose every solution, considered as a graph in the plane (x, y), is a circle.
- Actually, the transformation of variables $(x, y, \alpha, \beta) \rightarrow (x, y, y' = tg \alpha, y'' = -\ell^{-1} tg \beta \sec^3 \alpha)$ transforms car's Engel distribution with car's split to the rank 2 distribution on the jet space, whose split is given by the vectors tangent to trajectories of the total differential of the ODE $y''' = \frac{3y'y''^2}{1+y'^2}$ on one side, and the vectors tangent to the natural fibers in the space of the second jets related to the first jets.

- A third order ODE that has both of the above point invariants vanishing is y^{'''} = 0 corresponding to F = 0.
- But there are others. E.g. $y''' = \frac{3y'y''^2}{1+y'^2}$
- What is this equation? Well...
- This is an equation whose every solution, considered as a graph in the plane (x, y), is a circle.
- Actually, the transformation of variables $(x, y, \alpha, \beta) \rightarrow (x, y, y' = tg \alpha, y'' = -\ell^{-1} tg \beta \sec^3 \alpha)$ transforms car's Engel distribution with car's split to the rank 2 distribution on the jet space, whose split is given by the vectors tangent to trajectories of the total differential of the ODE $y''' = \frac{3y'y''^2}{1+y'^2}$ on one side, and the vectors tangent to the natural fibers in the space of the second jets related to the first jets.

- A third order ODE that has both of the above point invariants vanishing is y^{'''} = 0 corresponding to F = 0.
- But there are others. E.g. $y''' = \frac{3y'y''^2}{1+y'^2}$
- What is this equation? Well...
- This is an equation whose every solution, considered as a graph in the plane (x, y), is a circle.
- Actually, the transformation of variables $(x, y, \alpha, \beta) \rightarrow (x, y, y' = tg \alpha, y'' = -\ell^{-1} tg \beta \sec^3 \alpha)$ transforms car's Engel distribution with car's split to the rank 2 distribution on the jet space, whose split is given by the vectors tangent to trajectories of the total differential of the ODE $y''' = \frac{3y'y''^2}{1+y'^2}$ on one side, and the vectors tangent to the natural fibers in the space of the second jets related to the first jets.

- A third order ODE that has both of the above point invariants vanishing is y^{'''} = 0 corresponding to F = 0.
- But there are others. E.g. $y''' = \frac{3y'y''^2}{1+y'^2}$
- What is this equation? Well...
- This is an equation whose every solution, considered as a graph in the plane (x, y), is a circle.
- Actually, the transformation of variables $(x, y, \alpha, \beta) \rightarrow (x, y, y' = \operatorname{tg} \alpha, y'' = -\ell^{-1} \operatorname{tg} \beta \operatorname{sec}^3 \alpha)$ transforms car's Engel distribution with car's split to the rank 2 distribution on the jet space, whose split is given by the vectors tangent to trajectories of the total differential of the ODE $y''' = \frac{3y'y''^2}{1+y'^2}$ on one side, and the vectors tangent to the natural fibers in the space of the second jets related to the first jets.

- Sophus Lie considered vector space ℝ⁴ equipped with a nondegenerate 2-form and the Lagrangian vector subspaces in ℝ⁴.
- The space of all such subspaces Q is 3-dimensional, and there is an invertible map between the space Q³ of all points and lines and circles in the plane (x, y) and the Lie space Q.
- Lie established that the nonlinear condition of two circles *kissing each other* in *Q*³ is, via this map, a linear condition on the coresponding two Lagrangian planes in *Q* to *intersect along a line*.
- this leads to...

- Sophus Lie considered vector space ℝ⁴ equipped with a nondegenerate 2-form and the Lagrangian vector subspaces in ℝ⁴.
- The space of all such subspaces Q is 3-dimensional, and there is an invertible map between the space Q³ of all points and lines and circles in the plane (x, y) and the Lie space Q.
- Lie established that the nonlinear condition of two circles *kissing each other* in *Q*³ is, via this map, a linear condition on the coresponding two Lagrangian planes in *Q* to *intersect along a line*.
- this leads to...

- Sophus Lie considered vector space ℝ⁴ equipped with a nondegenerate 2-form and the Lagrangian vector subspaces in ℝ⁴.
- The space of all such subspaces Q is 3-dimensional, and there is an invertible map between the space Q³ of all points and lines and circles in the plane (x, y) and the Lie space Q.
- Lie established that the nonlinear condition of two circles *kissing each other* in *Q*³ is, via this map, a linear condition on the coresponding two Lagrangian planes in *Q* to *intersect along a line*.
- this leads to...

- Sophus Lie considered vector space ℝ⁴ equipped with a nondegenerate 2-form and the Lagrangian vector subspaces in ℝ⁴.
- The space of all such subspaces Q is 3-dimensional, and there is an invertible map between the space Q³ of all points and lines and circles in the plane (x, y) and the Lie space Q.
- Lie established that the nonlinear condition of two circles kissing each other in Q³ is, via this map, a linear condition on the coresponding two Lagrangian planes in Q to intersect along a line.
- this leads to...

- Sophus Lie considered vector space ℝ⁴ equipped with a nondegenerate 2-form and the Lagrangian vector subspaces in ℝ⁴.
- The space of all such subspaces Q is 3-dimensional, and there is an invertible map between the space Q³ of all points and lines and circles in the plane (x, y) and the Lie space Q.
- Lie established that the nonlinear condition of two circles kissing each other in Q³ is, via this map, a linear condition on the coresponding two Lagrangian planes in Q to intersect along a line.
- this leads to...

 Lagrangian 2-dim
vactor subspace in IR4
with INCLAENCE
of two places intersecting /
along a sine Circles in the plane WHA INCIDENCE of two arder being tangent

• Let $V = (\mathbb{R}^4, \omega)$ be equipped with a nondegenerate 2-form ω . Let *M* be a space of all pairs (L, S) such that *L* is a 1-dim vector subspace in *V* and *S* is a Lagrangian 2-dim vector subspace in *V*, and such that $L \in S$,

 $M = \{ (L, S) \mid L \in S \}.$

- The manifold *M* is 4-dimensional and, using two natural projections (*L*, *S*) → *S* and (*L*, *S*) → *L*, one can associate two 3-dimensional manifolds *Q* and *P* with *M*.
- This construction is naturally Sp(2, ℝ) = SO(2, 3) symmetric, and this gives the Lie's fibration, isomorphic to car's fibration:

Let V = (ℝ⁴, ω) be equipped with a nondegenerate 2-form ω. Let M be a space of all pairs (L, S) such that L is a 1-dim vector subspace in V and S is a Lagrangian 2-dim vector subspace in V, and such that L ∈ S,

 $M = \{ (\boldsymbol{L}, \boldsymbol{S}) \mid \boldsymbol{L} \in \boldsymbol{S} \}.$

- The manifold *M* is 4-dimensional and, using two natural projections (*L*, *S*) → *S* and (*L*, *S*) → *L*, one can associate two 3-dimensional manifolds *Q* and *P* with *M*.
- This construction is naturally Sp(2, ℝ) = SO(2, 3) symmetric, and this gives the Lie's fibration, isomorphic to car's fibration:

Let V = (ℝ⁴, ω) be equipped with a nondegenerate 2-form ω. Let M be a space of all pairs (L, S) such that L is a 1-dim vector subspace in V and S is a Lagrangian 2-dim vector subspace in V, and such that L ∈ S,

$$M = \{ (\boldsymbol{L}, \boldsymbol{S}) \mid \boldsymbol{L} \in \boldsymbol{S} \}.$$

- The manifold *M* is 4-dimensional and, using two natural projections (*L*, *S*) → *S* and (*L*, *S*) → *L*, one can associate two 3-dimensional manifolds *Q* and *P* with *M*.
- This construction is naturally Sp(2, ℝ) = SO(2, 3) symmetric, and this gives the Lie's fibration, isomorphic to car's fibration:

Let V = (ℝ⁴, ω) be equipped with a nondegenerate 2-form ω. Let M be a space of all pairs (L, S) such that L is a 1-dim vector subspace in V and S is a Lagrangian 2-dim vector subspace in V, and such that L ∈ S,

$$M = \{ (\boldsymbol{L}, \boldsymbol{S}) \mid \boldsymbol{L} \in \boldsymbol{S} \}.$$

- The manifold *M* is 4-dimensional and, using two natural projections (*L*, *S*) → *S* and (*L*, *S*) → *L*, one can associate two 3-dimensional manifolds *Q* and *P* with *M*.
- This construction is naturally Sp(2, ℝ) = SO(2, 3) symmetric, and this gives the Lie's fibration, isomorphic to car's fibration:

Let V = (ℝ⁴, ω) be equipped with a nondegenerate 2-form ω. Let M be a space of all pairs (L, S) such that L is a 1-dim vector subspace in V and S is a Lagrangian 2-dim vector subspace in V, and such that L ∈ S,

$$M = \{ (\boldsymbol{L}, \boldsymbol{S}) \mid \boldsymbol{L} \in \boldsymbol{S} \}.$$

- The manifold *M* is 4-dimensional and, using two natural projections (*L*, *S*) → *S* and (*L*, *S*) → *L*, one can associate two 3-dimensional manifolds *Q* and *P* with *M*.
- This construction is naturally Sp(2, ℝ) = SO(2, 3) symmetric, and this gives the Lie's fibration, isomorphic to car's fibration:

Lie's correspondence

Car and parabolics in SO(2,3)

・ロト・日本・日本・日本・日本・日本

45/50
Car's fibration and three flat parabolic geometries

M = Span (X5, X6, X7, X8, X9, X10, X4) M2= Span (X5, X6, X7, X8, X9, X10, X3) SO(2,3)/P12 50(23)/R2 = P?

Geometry of a car

Geometry of spacetime

PENROSE

Geometry of a skate blade

NAME ? e

Rolling balls and flying saucers

