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1. Introduction and overview 

1.1. Overview 

Over the past two decades computational shell analysis has been, to a large extent, 
dominated by the so-called degenerated solid approach, which finds its point of departure in 
the paper of Ahmad, Irons and Ziekiewicz [3]. The works of Ramm [40], Parish [39], Hughes 
and Liu [28,29], Hughes and Carnoy 1301, Bathe and Dvorkin [13], Hallquist, Benson and 
Goudreau [27], Parks and Stanley [38], and Liu, Law, Lam and Belytschko [33], among many 
others, constitute representative examples of this methodology carried over in its full 
generality to the nonlinear regime. The thesis of Stanley [48], and the books of Bathe [12], 
Hughes 1211, and Crisfield {20], offer comprehensive overviews of the degenerated solid 
approach and related methodologies which involve some type of reduction to a resultant 
formulation. An alternative approach to the development of shell elements is found in the 
pioneering work of Argyris et al. [&lo], which makes use of the classical matrix displacement 
method with high order interpolations (5th- and ‘Ith-order polynominals) within the context of 
the author’s natural approach. 

By contrast, the present work, the first part of a series of papers, constitutes a departure 
from the aforementioned methodology. In a sense, the proposed approach represents a return 
to the origins of classical nonlinear shell theory, which has its modern point of departure in the 
pioneering work of the Cosserats 1191, subsequently rediscovered by Ericksen and Truesdell 
[21], and further elaborated upon by a number of authors; notably Green and Laws 1231, 
Green and Zerna [25], or Cohen and DaSilva [18]. We refer to [35] for a compehensive review 
including many references to the classical literature and historical overviews, to [4,5] for a 
careful analysis the mathematical foundations of classical shell theory, and to [44] for a 
discussion of the underlying Hamiltonian structure. 

Although the hypothesis underlying the degenerated solid approach and classical shell 
theory are essentially the same, the reduction to resultant form is typically carried out 
nume~~ally in the former, and analytically in the latter. conceptually, this appears to be the 
only essential difference between the two approaches. A point frequently made concerning the 
degenerated approach is that it avoids the mathematical complexities associated with classical 
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exp,[6] = cos]]ti]]t + ~ 
sin]]811 e 

ll~ll ’ 
(2.21) 

where 6 E T,S2. 

PROOF. By Corollary 2.2, 8 := t X 6 is such that e E T,S:. Consequently, A := exp[e] is in 
S:. By Proposition 2.1, this defines a unique t’ E S2 through the relation t’ = At. Thus set 

t’ = exp[i]t =: exp,[ti] . (2.22) 

By Rodrigues’ formula (2.8b), since 0 * t = 6 * t = 0, we have 

exp,[ti] = cos]]8]] t + ~ 
si4Pll () x t 
ll@ll * 

(2.23) 

The result then follows by noting that ]I 011 = ]]&]I along with ti = 0 x t. Cl 

REMARK 2.5. In particular, Proposition 2.4 may be used to parameterize the unit sphere as 
follows. Choose {E,}I=,,2,, such that E, = E defines the north Dole. We then have the 
following characterization of exp,: T,S2+ S2, 

0 ET,S2 H exp,[ti] := COSII~IIE 

for E ES2, 1 

sinll @II (g E s2 

+lloll ’ 
(2.24) 

c2 n where 0 = E X 6 = O’E, + O”E, with & ET,,,. - 

The geometric notions in this section are key to the development of a well-conditioned 
singularity-free parametrization of the director field t E S2 and its associated orthogonal 
transformation A. We shall address these issues in Part II of this work where computational 
aspects are examined in detail. 

3. Kinematic description of the shell 

In this section we consider the basic kinematic results underlying the shell model. 

3.1. The basic kinematic assumption. Configurations 

To state precisely the basic kinematic assumption, we define the set %’ (a differentiable 
manifold) as 

% := {(q, t): d c lR2d lR3 x S’} . (34 

Here, & C R2 is an open set with smooth boundary aa, compact closure L$, and points 
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denoted by 5 E SL We set 

g = tlEl + t*E, , ([l, (‘) E R* . (3.2) 

The basic kinematic assumption is that of an inextensible one-director Cosserut surface. 

Accordingly, any configuration of the shell is described by a pair (9, t) E %‘, where: 
(i) The map 9: ~4 --, [w3 defines the position of the mid-surface of the shell. 

(ii) The map t: &+ S* defines a unit vector field at each point of the surface, referred to 
as the director (or fiber) field. 

One is then led to the following kinematic hypothesis. 

BASIC ASSUMPTION. Any configuration of the shell Y C R3 is assumed to be defined as 

Y:={xE[W3]X=~+& where (q,t)E% and ~E[!z-,h’]}. (3.3) 

In particular, the reference configuration is exactly described as* 

9 := {x0 E Iw3 1 x,, = q,, + &, with (q,,, to) E %’ and 5 E [h-, h’]} . P-4) 

Here, [h-, h+] C R, with h’ > h- and h = h’ - h- is the thickness of the shell. Cl 
We shall often use the notation 

x = @(,l, 5*, t> := 10(5’, t’) + ml, 5’). 

It follows that @: L& X [h-, h’]+ R”. A deformation of the shell, then, is a mapping 

W) 

An illustration of the basic kinematics of the shell model is contained in Fig. 6. 

3.2. The tangent map at a configuration. Deformation gradient 

Given a configuration @: & X [h-, h+]* R3 the tangent map is the Frechet derivative, 
denoted by V@. Relative to {E,},=,,,,, one has (with t3 = 6) 

V@:=$ @E’=g,@EE’. (3.7) 

One refers to g, = ~@/a(’ as the convected basis. By the chain rule, the deformation gradient 

associated with a deformation x: 93 + Y is 

F = T,y := V@o(V@J’ . (3.8) 

An explicit expression for V@ is contained in the following. 

*This parameterization is often termed normal coordinate chart; i.e. see [3O]. 
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PROPOSITION 3.1. Th.e tangent mq V@ associated with Qs: A? x [h-, II+]-+ Iw3 is given by 

(3.9) 

(3.10) 

PROP, From (3.5) and (3.7) onr: has immediately 

V~=fvJ,,+rt,,)~E”~t~PE. (3.11) 

Since by Proposition 2-5. we have 1= MC, where 6, = E3 =E, substitution of (3.10) into (3.31) 
yields the result. q 

R~~~AR~~ 3.ii?. (1) In the assumpt~u~ of “smaff strains” anst large rotations one has VQ, = A., 
i.e. an ~rth~g~na~ tra~sf~rmat~u~_ Such an assumption wit1 not be made here. 

(2) In addition to the convected basis {gI}l=1_2,3 

basis {g’L,,~J 
(where g3 = t) one defines the recipracorl 

by the standard relation gr - gJ = tii- Thus 
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(where g3 = t) one defines the recipracorl 

by the standard relation gr - gJ = tii- Thus 



SOME NOTATIONS

Convected basis

276 J.C. Sirno, D. D. Fox, Stress resultant geometrically exact shell model. Part I 

denoted by 5 E SL We set 
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W) 
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(3) We shall use the following notation: 

j : = de@‘@] , j. : = de@@,,] , J = j/j0 , (3.13) 

where J := det[F] is the Jacobian of the deformation gradient which is given by (3.8). 
(4) Observe that while g, = t, g3 is given by 

g3 = ; g, x g, . (3.14) 

Thus, llttl = Ikll = 1, andj=[glxg2]*g3, but llg’l1+1- q 

3.3. Reference frames on the mid-surface 

In addition to the fixed inertial frame {E,},,,,,,,, we define two reference frames on the 
mid-surface that play an important role in the subsequent developments. 

(i) Surface convected frame. Denote by {a,}I=1,2,3 the surface convected frame defined as 
a, =g,(5_0. Note that {a,},= 1,2 span the tangent space to the mid-surface. It follows from 
(3.5) and (3.7) that 

a, = pa and a3 = g, =: t . (3.15) 

The metric tensor (first fundamental form) on the reference surface is then 

where WL1,2,3 denotes the dual surface convected basis defined by the standard relation 
a, l a’ = Si. 

(ii) Director orthogonal frame. Denote by (t,},=l,,,, the director orthogonal frame defined 
through the orthogonal transformation A: & C Iw2--, Si as 

t, = AE, , t,= AE,=t. (3.17) 

Note that (t,},=, 2 3 is the o~tho~~rrna~ basis which, by virtue of (3.9), is the “closest” to 
~%L1,2,3’ In addition, {tr , 2,) span T,S2, the tangent space normal to t, since t * t, = 0. 

REMARK 3.3. Our definition of the orthogonal basis {tl}I_,,2,3 is intrinsic, and is motivated 
by expression (3.9) for V@. This definition bypasses ad-hoc constructions often made in the 
computational literature; see [31, Ch. 61. Cl 

These frames are illustrated in Fig. 7. Finally, we recall that the element of mid-surface area 
is given by the differential (two-form) 

d& := a, x a2 dtl dt2. (3.18a) 
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where x = @( 5 ‘, r*, 6). Finally, one defines the across-the-thickness stress resultunt, denoted 
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I 
h- 

ug"j dt = f ,,y+ Pgtj, dt , 
I 

(43 

the second of which follows by recalling the relation P = JaF-‘, where F =V@[WO]-’ is the 
deformation gradient and J : = det F = j/jO, and noting that 

juVW_’ = jOPV@” . (4.8) 

(2) Similarly, noting that (X - 9) = [t, for the stress couple tnn we have the alternative 
expressions in terms of the Piola-Kirchhoff stress 

1 
m”=tx 7 

I 
f 
h: &rgci’ d& = t  x  r, l ”+  

j  h- 
@‘g G jo  d S . @*9) 

(3) In terms of the Piola-Kirchhoff stress, the across-the-thickness resultant can be written 

1 1 h+ 
‘= y 

I j h- 
ag3j d[ = ) 

f 

h+ 

h- 
&j, dS . (4.10) 
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a, = pa and a3 = g, =: t . (3.15) 

The metric tensor (first fundamental form) on the reference surface is then 

where WL1,2,3 denotes the dual surface convected basis defined by the standard relation 
a, l a’ = Si. 

(ii) Director orthogonal frame. Denote by (t,},=l,,,, the director orthogonal frame defined 
through the orthogonal transformation A: & C Iw2--, Si as 

t, = AE, , t,= AE,=t. (3.17) 

Note that (t,},=, 2 3 is the o~tho~~rrna~ basis which, by virtue of (3.9), is the “closest” to 
~%L1,2,3’ In addition, {tr , 2,) span T,S2, the tangent space normal to t, since t * t, = 0. 

REMARK 3.3. Our definition of the orthogonal basis {tl}I_,,2,3 is intrinsic, and is motivated 
by expression (3.9) for V@. This definition bypasses ad-hoc constructions often made in the 
computational literature; see [31, Ch. 61. Cl 

These frames are illustrated in Fig. 7. Finally, we recall that the element of mid-surface area 
is given by the differential (two-form) 

d& := a, x a2 dtl dt2. (3.18a) 
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Fig. 7. Reference frames on the mid-surface. 

We use the notation 

Ai := I/% x %*ll 9 i:= Ila, x a,11 and j:= i/,&, (3.18b) 

to designate the mid-surface Jacobians in 3 and Y, and the relative mid-surface Jacobian, 
respectively. 

3.4. Resultant linear, angular, and director momentum 

We conclude this section with a derivation of the expressions for resultant linear, angular, 
and director momentum. 

A motion is a curve of configurations; that is, a mapping alp,: & x [h-, h+] x [w, + [w3. 
Associated with a motion, we have the mapping t t-+ ((9, t,) E %, which defines the motion of 
the mid-surface and the director. 

3.4.1. Angular velocity of the director field 
By Proposition 2.1, there is a unique A,: & X R, -+ Si such that t, = _4,E. Time differentia- 

tion yields 
. f 1 
t, = A,E = AMWAY = D t I f (3.19) 

where 
I@t = A:& and I+, := &I: (3.20) 

are skew-symmetric tensors. Observe that G;,A, E T,,Si and I$( E T,S& whereas i E T,S* since 
t, - i, = 0. Consequently 

i, = w, x t, = A,[W, x E], (3.21a) 
with 

w; t, =0 and W;E =O. (3.21b) 

One refers to w, and Vv, as the spatial and rotated velocity of the director field, respectively. 
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Since mZ - t, = 0, by Corollary 2.2, there is a ~~~~~e +, E T,S* such that tit = rr* x t,; in fact 

- . 
Gt := Tr, x t, = zpw* x t, = zptt . (3.29) 

#f is referred to as the resultant director momentum. 

4. Stress resultants and stress couples. Local balance laws 

In this section we define stress resultants and stress couple resultants from the three- 
dimensional theory and develop the balance laws in terms of these resultants. 

Given a rnot~o~ xl: $32 x IR, -+ Y, where x, = @! 0 @P,, we denote by ft the symmetric 
Cauchy stress tensor in Y, and by P the nonsymmetric (first) Piola-Kirchhoff stress tensor 
relative to 5% and Y. 

4.1, Definitions for the three-dimensional theory 

Consider sections in the current configuration 

Y” := {Xf R3 1 x = @(5”=const,} , Q = 

The (one-form) field normal to Y’ is given by 

Y C iR3 defined as 

1,2. (4.1) 

dY* := j[V@]-‘E’ 65’ d,$ = jg’ dt2 dr , (4.2) 

and the analogous expression 
coordinate length 5’ is 

R’ := 

holds for dY2. Consequently, the force acting on .Yi per unit of 

Similarly, the torque acting on Y1 per unit of coordinate length 5’ is 

y-l:= (x - 40) x u $ = lh: (x - 4p) x ug’j dt . (4.4) 

We define the stress resultant n”, and the stress couple ma, by normalizing R* and T” with the 
surface Jacobian i= [/al x a2 11. Accordingly, we set 

1 
I 

h+ 

n * := = 

j h- 
4j de , 

1 ma := - 
I f ::(X-yl)xMjdL 

(4Sa) 

(4Sb) 

J.C. Simo, D.D. Fox, Stress resultant geometrically exact shell model. Part I 281 

Since mZ - t, = 0, by Corollary 2.2, there is a ~~~~~e +, E T,S* such that tit = rr* x t,; in fact 

- . 
Gt := Tr, x t, = zpw* x t, = zptt . (3.29) 

#f is referred to as the resultant director momentum. 

4. Stress resultants and stress couples. Local balance laws 

In this section we define stress resultants and stress couple resultants from the three- 
dimensional theory and develop the balance laws in terms of these resultants. 

Given a rnot~o~ xl: $32 x IR, -+ Y, where x, = @! 0 @P,, we denote by ft the symmetric 
Cauchy stress tensor in Y, and by P the nonsymmetric (first) Piola-Kirchhoff stress tensor 
relative to 5% and Y. 

4.1, Definitions for the three-dimensional theory 

Consider sections in the current configuration 

Y” := {Xf R3 1 x = @(5”=const,} , Q = 

The (one-form) field normal to Y’ is given by 

Y C iR3 defined as 

1,2. (4.1) 

dY* := j[V@]-‘E’ 65’ d,$ = jg’ dt2 dr , (4.2) 

and the analogous expression 
coordinate length 5’ is 

R’ := 

holds for dY2. Consequently, the force acting on .Yi per unit of 

Similarly, the torque acting on Y1 per unit of coordinate length 5’ is 

y-l:= (x - 40) x u $ = lh: (x - 4p) x ug’j dt . (4.4) 

We define the stress resultant n”, and the stress couple ma, by normalizing R* and T” with the 
surface Jacobian i= [/al x a2 11. Accordingly, we set 

1 
I 

h+ 

n * := = 

j h- 
4j de , 

1 ma := - 
I f ::(X-yl)xMjdL 

(4Sa) 

(4Sb) 

J.C. Simo, D.D. Fox, Stress resultant geometrically exact shell model. Part I 281 

Since mZ - t, = 0, by Corollary 2.2, there is a ~~~~~e +, E T,S* such that tit = rr* x t,; in fact 

- . 
Gt := Tr, x t, = zpw* x t, = zptt . (3.29) 

#f is referred to as the resultant director momentum. 

4. Stress resultants and stress couples. Local balance laws 

In this section we define stress resultants and stress couple resultants from the three- 
dimensional theory and develop the balance laws in terms of these resultants. 

Given a rnot~o~ xl: $32 x IR, -+ Y, where x, = @! 0 @P,, we denote by ft the symmetric 
Cauchy stress tensor in Y, and by P the nonsymmetric (first) Piola-Kirchhoff stress tensor 
relative to 5% and Y. 

4.1, Definitions for the three-dimensional theory 

Consider sections in the current configuration 

Y” := {Xf R3 1 x = @(5”=const,} , Q = 

The (one-form) field normal to Y’ is given by 

Y C iR3 defined as 

1,2. (4.1) 

dY* := j[V@]-‘E’ 65’ d,$ = jg’ dt2 dr , (4.2) 

and the analogous expression 
coordinate length 5’ is 

R’ := 

holds for dY2. Consequently, the force acting on .Yi per unit of 

Similarly, the torque acting on Y1 per unit of coordinate length 5’ is 

y-l:= (x - 40) x u $ = lh: (x - 4p) x ug’j dt . (4.4) 

We define the stress resultant n”, and the stress couple ma, by normalizing R* and T” with the 
surface Jacobian i= [/al x a2 11. Accordingly, we set 

1 
I 

h+ 

n * := = 

j h- 
4j de , 

1 ma := - 
I f ::(X-yl)xMjdL 

(4Sa) 

(4Sb) 

J.C. Simo, D.D. Fox, Stress resultant geometrically exact shell model. Part I 281 

Since mZ - t, = 0, by Corollary 2.2, there is a ~~~~~e +, E T,S* such that tit = rr* x t,; in fact 

- . 
Gt := Tr, x t, = zpw* x t, = zptt . (3.29) 

#f is referred to as the resultant director momentum. 

4. Stress resultants and stress couples. Local balance laws 

In this section we define stress resultants and stress couple resultants from the three- 
dimensional theory and develop the balance laws in terms of these resultants. 

Given a rnot~o~ xl: $32 x IR, -+ Y, where x, = @! 0 @P,, we denote by ft the symmetric 
Cauchy stress tensor in Y, and by P the nonsymmetric (first) Piola-Kirchhoff stress tensor 
relative to 5% and Y. 

4.1, Definitions for the three-dimensional theory 

Consider sections in the current configuration 

Y” := {Xf R3 1 x = @(5”=const,} , Q = 
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coordinate length 5’ is 
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holds for dY2. Consequently, the force acting on .Yi per unit of 

Similarly, the torque acting on Y1 per unit of coordinate length 5’ is 
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where x = @( 5 ‘, r*, 6). Finally, one defines the across-the-thickness stress resultunt, denoted 
by 1, by the expression 

(4.6) 

where y = (g, x g2) / 11 g, x g, 11 = ( jg3) / II g, x g, II is the (one-form) normal to the “laminae” 
surface. 

REMARKS 4.1. (1) For the stress resultant n” we have the equivalent expressions 

1 
.I- 

h+ 

na= y 

I 
h- 

ug"j dt = f ,,y+ Pgtj, dt , 
I 

(43 

the second of which follows by recalling the relation P = JaF-‘, where F =V@[WO]-’ is the 
deformation gradient and J : = det F = j/jO, and noting that 

juVW_’ = jOPV@” . (4.8) 

(2) Similarly, noting that (X - 9) = [t, for the stress couple tnn we have the alternative 
expressions in terms of the Piola-Kirchhoff stress 

1 
m”=tx 7 

I 
f 
h: &rgci’ d& = t  x  r, l ”+  

j  h- 
@‘g G jo  d S . @*9) 

(3) In terms of the Piola-Kirchhoff stress, the across-the-thickness resultant can be written 

1 1 h+ 
‘= y 

I j h- 
ag3j d[ = ) 

f 

h+ 

h- 
&j, dS . (4.10) 

(4) Observe that ma * t = 0. Hence, there is no component of the stress couple along the 
director t. This is at variance with some formulations of shell theory employing the rotation 
vector, as in [32]. AIternatively, one may define the director stress couple, &“, according to 
the expression 

It should be noted that ~6” * t # 0. However, because of the constraint t E S”, the component of 
&* along t does not enter explicitly in the subsequent developments. In fact, this component 
could be eliminated completely by defining ti” := hi” - (6” l t)t, so that iii” * t = 0, and (4.11) 
would be of the form ma = t X ii”. Cl 
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Fig. 2.2. Convected (mid-surface) basis, stress resultants, resultant stress couples, and through-the-thickness stress 
resultant. 

The local form (or strong form) of the equilibrium equations in terms of the stress and stress 
couple resultants in (2.5) can be written 

1 + t i  0,  l ( f t~a) ,  a l + n ]  0. (2.6) 
j ( i ' ° ) ' "  = i • 

A detailed derivation of these equations and the definition of the applied loads ~i and Jfi is 
given in Part I. Equations (2.6) are the resultant balance of linear momentum and balance of 
director momentum (equivalent to balance of couples around the mid-surface), respectively. 
The balance of angular momentum equation (equivalent to o' = tr t in the three-dimensional 
theory) is written as 

n ° x ¢p.,, + ~ "  x d,o + I x d = 0 .  (2 .7 )  

Equations (2.6) and (2.7) along with a suitable set of constitutive equations form a complete 
system of field equations governing the present shell model. The external loading terms i and 
~fi are defined in Appendix A of Part I and will be elaborated on further in Section 3.3. 

2.3. Effective stress resultants; balance o f  angular momentum 

The balance of angular momentum equation, as given by (2.7), can be satisfied a priori by 
expressing the balance laws in terms of modified (effective) stress resultants as follows. Define 
the effective stress resultant tensor ~ by the expression 

~ : -  n ° ~ ~oa + l O d - d a  0 ~ . (2.8a) 

Using standard vector product identities, it can be easily shown that symmetry of ~ is 
equivalent to (2.7); namely, the following equivalence holds: 

~ '  ~ ' t  Balance of angular momentum ¢:~ n - n . (2.8b) 
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Remarks:

1)  Resultants can be also expressed in term of the first Piola Kirchhoff stress

2) We have through the kinematic assumption 
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and there is no component of the stress couple resultant along the director 



BALANCE EQUATIONS

Equilibrium is written solely in terms of the resultants quantities
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Starting with the momentum balance equations of the three-dimensional theory, it can be 
shown (see Appendix A) that the resultant local form of the momentum balance equations 
take the following form: 

(4.12a) 

(4.12b) 

where $ and n”i are the applied resultant force and applied resultant coupler per unit length as 
defined in Appendix A. We note that 

m”.t=O and m*f=O. (4.13) 

Equations (4.12) are in the form considered by several authors; see Green and Zerna [25, 
pp+ 379-3801 or Libai and Simmonds 1321. These authors, however, immediately proceed to 
derive component equations relative to the Gauss frame {a,, a2, t} leading, inevitably, to the 
explicit appearance of the Christoffel symbols associated with the Riemannian connection of 
the mid-surface. In this regard, see also ]35], We show below that the direct use of the vector 
equations (4.12) is ali that is needed in the weak formulation of the equations. The 
Riemannian connection of the mid-surface does not enter ~~~Zicitly in the formulation. 

The balance of angular momentum of the three-dimensional theory is expressed by the 
symmetry of the Cauchy stress tensor, CT = a: In what follows, this balance law is interpreted 
as a restriction balance of angular momentum places on the admissible form of the constitutive 
equations for the resultants 1~&, ma (or equivalently m”), and 1. 

Expressing q in components relative to the convected basis g, we have o = crzJg, $r g,. The 
symmetry condition CI = 0’ implies g, X gJarJ = g, X rrg’ = 0. Integration of the latter relation 
over [h-, h’] C R and use of the expressions g, = 8, + St,, and g, = t yields 

k* 

crg”jd[ + E,, x @g”jd& + tx h_ crg”jdt==O. 
f 

(4.14) 

Introducing definitions (4.5a), (4.6) and (4.11), (4.14) reduces to 

q&3~Xnn+t,*X~iia+tX1=0. (4.15) 

Equation (4.15) is the restriction that balance of angular momentum places on the admissible 
form of the constitutive equations. 

0
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Balance equations can be further reduced using the symmetry of the Cauchy stress
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where x = @( 5 ‘, r*, 6). Finally, one defines the across-the-thickness stress resultunt, denoted 
by 1, by the expression 

(4.6) 

where y = (g, x g2) / 11 g, x g, 11 = ( jg3) / II g, x g, II is the (one-form) normal to the “laminae” 
surface. 

REMARKS 4.1. (1) For the stress resultant n” we have the equivalent expressions 

1 
.I- 

h+ 

na= y 

I 
h- 

ug"j dt = f ,,y+ Pgtj, dt , 
I 

(43 

the second of which follows by recalling the relation P = JaF-‘, where F =V@[WO]-’ is the 
deformation gradient and J : = det F = j/jO, and noting that 

juVW_’ = jOPV@” . (4.8) 

(2) Similarly, noting that (X - 9) = [t, for the stress couple tnn we have the alternative 
expressions in terms of the Piola-Kirchhoff stress 

1 
m”=tx 7 

I 
f 
h: &rgci’ d& = t  x  r, l ”+  

j  h- 
@‘g G jo  d S . @*9) 

(3) In terms of the Piola-Kirchhoff stress, the across-the-thickness resultant can be written 

1 1 h+ 
‘= y 

I j h- 
ag3j d[ = ) 

f 

h+ 

h- 
&j, dS . (4.10) 

(4) Observe that ma * t = 0. Hence, there is no component of the stress couple along the 
director t. This is at variance with some formulations of shell theory employing the rotation 
vector, as in [32]. AIternatively, one may define the director stress couple, &“, according to 
the expression 

It should be noted that ~6” * t # 0. However, because of the constraint t E S”, the component of 
&* along t does not enter explicitly in the subsequent developments. In fact, this component 
could be eliminated completely by defining ti” := hi” - (6” l t)t, so that iii” * t = 0, and (4.11) 
would be of the form ma = t X ii”. Cl 

which leads
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4.3.2. Alternative form of the momentum equations 
With the help of (4.15), the angular momentum equation (4.12b) can be recast in the 

following form. From (4.11) we have 

1 Tu 

7 (P ),a = t,, x rn”+tx ;ci;;l”,,, * 
Recalling that W = t x i, substitution of (4.15) and (4.16) into (4.12b) yields 

t x 1 (jIGi”),, [ i 
-1+&Q =o, 1 

(4.16) 

(4.17) 

where g is the applied director couple per unit length which satisfies 

&t=o * ;ni=mxt. (4.18) 

Consequently, we obtain the equivalent system of resultant local momentum balance equa- 
tions 

(4.19) 

where I= 1 -t ht, and A: ,YY+ IR is an undetermined director “pressure,” whose significance is 
analogous to the hydrostatic pressure in incompressible elasticity. Further elaboration on the 
significance of tis given below. 

4.4. Further reduction. The across-the-thickness stress resultant 

By making use of the constraint condition [I tll = 1, we derive an explicit expression for the 
across-the-thickness stress resultant and obtain a further reduction of the constitutive restric- 
tion (4.15). These expressions play a fundamental role in the variational formulation of the 
momentum equations considered in Section 6. 

4.4.1. Further reduction of the co~titutive restriction 
We now consider component expressions relative to the surface convected basis. We start 

the development by setting 

t ,4 = A~$o, + /iit. (4.20) 

Using the constraint condition /It11 = 1, A, 3 is determined in terms of A: from the condition 
t * t,, = 0 as 

A; = -A&, . t= -hEy, . (4.21) 

Next, we resolve the resultants nff and G” into components along (p,,, t} as 
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na = n@+$ + q”t , rii” = #=+$ + 6i3*t. (4.22) 

Restriction (4.15) then becomes 

(n@” - hP,yii”“)$Q x p,, + t X [Z - (q” + A;???‘” - h:6?‘)$2J = 0. 

By taking the dot product of (4.23) with t we obtain 

j;rag(nPa - A,PSa’) = 0, 

(4.23) 

(4.24) 

where e,@ is the surface alternator tensor. Consequently, we define the ~y~~e~~~c resultant 

$” := lZPa _ APea’ E n”“@ 
@ (4.25) 

In addition, from (4.23) and (4.25) one obtains the explicit expression for 2 

I = At + (q= + A;&“’ - h:Yii”‘)+~+ . (4.26) 

Introducing the definition 

expression (4.26) now becomes 

1= At + TV,, + A;rii3'+, . (4.28) 

We shall refer to iP” and T as the effective membrane and effective shear stress resultants. The 
significance of these definitions will become apparent in the following section. 

5. Local (elastic) constitutive equations 

In this section, we derive properly invariant elastic constitutive equations for the effective 
stress resultants n”‘” and 4”“’ and for the resultant stress couple iii”. To this end, we first obtain 
appropriate conjugate strain measures by reducing the general expression for the stress power 
of the three-dimensional theory by means of the basic kinematic assumption (3.5). 

5.1. Reduced stress power. Conjugate strain measures 

The main result to be exploited in the formulation of constitutive equations is contained in 
the following. 

PROP~S~~~~~ 5.1. By making use of the basic kinematic ~sumption (3.5)) the stress power 

of the three-dimensional theory is expressed in the form 
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where dp = id,$l dt2 is the current surface area measure, P is the first Piola-Kirchhoff stress 

tensor, and F is the deformation gradient given by (3.8). 

PROOF. Using (3.8), along with Proposition 3.1, time differentiation yields 

ti = [V ‘@]V@,’ ) 

We can now write 

P : iTi = PV@,‘E* l (+,, 

Thus the stress power relation is 

+ &t,,) f PV@,‘E3 l t . 

expressed 

rh+ i-h+ 1 

(5.2) 

(5.3) 

The result (5.1) then follows by recalling definitions (4.7), (4.10), and (4.11) of the stress and 
stress couple resultants in terms of the Piola-Kirchhoff stress tensor. III 

An alternative form of the stress-power relation (5.1) is obtained by introducing the 
effective stress resultants (4.25) and (4.27). This result is summarized in Corollary 5.2. First, 
we make the following definitions. 

Define the following spatial tensors: 

cr”:= q”naa ) 

m _ := rFiP”ap @a, 

Define kinematic variables 

(5-5) 

as follows: 

a0np = 4P0,a l 4c’,,, ’ (5.6a) 

YOa = Y)o,a l to 7 (5.6b) 

KO,, = vo,a l to,p * (5.6c) 

The corresponding relative strain measures are defined relative to the dual spatial surface basis 
as 
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& := $(a,, - @,,p)ua @taP , 

With this notation at hand, we present the following corollary to Proposition 5.1. 

COROLLARY 5.2. The stress power of the three-dimensional theory may be expressed in the 

equivalent form 

(5.8a) 

= 3[n”: L++L,S+fi: L,,p]d/+ I (Mb) 

where L, represents the convected time derivative. 

PROOF. First, we use the component expressions (4.22) to rewrite (5.1) as 

From (5.6~) and the constraint ]]t]] = 1, 

%a = d,p * t,a + Q,p l t,, 7 

tot,, =o * t*i,, = -i*t,, . 
(5.10) 

Recalling the expression (4.20) for t,a in components and the expression (4.28) for 1, we 
substitute (5.10) into (5.9) to find that terms involving yii3n cancel, to Ieave 

Result (5.8a) follows immediately from the symmetry of the effective membrane stress 
resultant (4.25), the de~nition of the effective shear stress resultant (4.27), and time 
differentiation of ‘y, . Result (5.8b) follows from the definition of the convected time derivative 
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tensor, and F is the deformation gradient given by (3.8). 

PROOF. Using (3.8), along with Proposition 3.1, time differentiation yields 
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We can now write 
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Thus the stress power relation is 
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expressed 
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The result (5.1) then follows by recalling definitions (4.7), (4.10), and (4.11) of the stress and 
stress couple resultants in terms of the Piola-Kirchhoff stress tensor. III 

An alternative form of the stress-power relation (5.1) is obtained by introducing the 
effective stress resultants (4.25) and (4.27). This result is summarized in Corollary 5.2. First, 
we make the following definitions. 

Define the following spatial tensors: 
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Define kinematic variables 

(5-5) 

as follows: 
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YOa = Y)o,a l to 7 (5.6b) 
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The corresponding relative strain measures are defined relative to the dual spatial surface basis 
as 
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CONSTITUTIVE RELATIONS

Hyperelasticy: Stored energy function + Standard arguments +… 

Plasticity:  Strain partition 
                    Yield surface 
                    Flow rule 
                    Hardening rules



100 J.C. Simo et al., On a stress resultant geometrically exact shell model. Part IV  

i ~ = (~,~) t ~ s2 
:~-\ ~ I.--~-----.\ 

(diredctor) ~ ~(l~,) I x )  ch.g., 

R 3 / ~  R+ 
Fig. 3.1 Multiplicative decomposition of the director field into stretching and inextensible parts. 

redefined as follows. The membrane, bending and transverse shear strains are defined in terms 
of the inextensible part of the director field exactly as in Part I and Part III. On the other 
hand, the stretching of the director field is defined in terms of logarithmic stretch according to 
the following expressions: 

tt = In A, (logarithmic stretch) 

tto = A.o/A ffi ~,o (logarithmic stretch gradient). 
(3.3) 

The relevant strain measures using the reparameterization (multiplicative decomposition of 
the director field) are 

e~# - ½ (,,,= .,,,0 - ,,0.o • ,,o.0), 
po# = ,,,o. t,# - ~,a  "t o,#, 
~o = ~o,o . t -  ~ o , .  . to  , 

Xo = (In A).o - (In Zo),a = ln(A/Zo),a, 
X ffi In A - In A o ffi In(A/Ao) 

(membrane) 

(bending) 

(transverse shear) 

(logarithmic stretch gradient) 

(logarithmic stretch). 

(3.4) 

The relationship between the preceding strain measures and those defined by (2.18) can be 
immediately established from the relation 

d.= = ~[t,=t + t.=], 

which follows from the multiplicative decomposition (3.1). 

(3.5) 

EXTENSIBLE DIRECTOR THEORY 
Multiplicative decomposition of the director field
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- G ~ t ( 8 # )  = O.  ( 2 . 1 7 )  

In this expression, we have used the standard convention of writing 8(-) to denote both a 
variation and the directional derivative of any of the strain measures (.) in the direction of the 
variation 8 0  = (8~o, 8d). 

From a numerical analysis standpoint, the appeal of the formulation described so far lies in 
the simple structure taken by the space of variations. In contrast with the inextensible model 
employed in Part III, the removal of the inextensibility assumption on the director field (i.e. 
I[dH # 1) leads to director variations which are no longer constrained to be tangent to the unit 
sphere ( i . e .d .  8d ~ 0). This leads to the simple update procedure discussed in Section 4.4 
which treats the director as an arbitrary vector in R 3 and utilizes the linear structure of this 
space. Unfortunately, as demonstrated numerically in Section 5, this formulation results in 
severe numerical ill-conditioning in the thin-shell limit. An alternative kinematic description 
that circumvents this difficulty is considered next. 

3. Reparametri~flon: mulfiplicative decomposition 

By direct inspection of expressions (2.16) we conclude that the thickness stretch is coupled 
with both the bending and the shear measures. Therefore, deformations which produce large 
thickness changes can also result in large changes in the bending and shear strain measures Pa0 
and 8°. To circumvent these undesirable features, we introduce a multiplicative decomposition 
of the director field into a magnitude parameter and a unit vector. As shown in Section 4, the 
resulting formulation only requires a straightforward modification of the inextensible formula- 
tion considered in Part III, and leads to a model which is well-conditioned in the thin-shell 
limit. 

3.1. Multiplicative decomposition of the director field 
We separate the stretching part of the director field from the inextensional part by setting 

d(~:l, ~:2)= a(~l, ~:2)t(~:~ ' ~2), with [it(~, ~:2)H = 1 and a ( f  ~, ~:2)>0. (3.1) 

According to this multiplicative decomposition, we view the deformation of the director field 
as being composed of two parts: a rotation of the director field in the unit sphere given by the 
inextensional part t:  ~ - - ,  S 2, followed by a stretching along t given by A" ~ - ,  R+; see Fig. 
3.1. Equivalently, in place of the abstract configuration space (2.4a), we consider a configura- 
tion space now defined as 

---~ {qJI ~ =(~0, t, a ) :  ,.9~-"> R 3 X S 2 x ~+ [ [" [~,1 x ~,2] > 0 ~  . (3.2) 

In terms of these alternative configuration variables, the relevant strain measures are 
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within this framework. However, as alluded to before, despite its conceptual appeal, this 
formulation suffers from ill-conditioning in the thin-shell limit and, in its present form, can 
only be used for thick shell analysis. In Section 5 several numerical examples are presented 
which demonstrate the behavior of the present formulation and its finite element implementa- 
tion both in the thin shell and in the incompressible limits. Illustrative examples are also 
presented for finite deformations. Conclusions are drawn in Section 6. 

. 

2. Governing equations accounting for thickness stretch 

In this section, we summarize the basic kinematic description of nonlinear shell theory 
incorporating thickness stretch and outline the exact balance equations formulated in terms of 
stress resultants and stress couples. We close this section with the statement of the weak form 
of the equilibrium equations. Once more we emphasize that these balance equ~2ions are cast 
in a vector format which does not explicitly involve covariant derivatives associated with the 
Riemannian connection on the mid-surface (compare e.g. with [6]). A reparametrization of 
these equations that avoids numerical ill-conditioning in the thin-shell (inextensible director) 
limit is introduced in Section 3. 

2.1. Kinematic description of the shell 
Points in the shell are parametrized by a system of coordinates (~:t, ~2, ~ ) E  ~ × ,~, where 

~3 = f E $ is the through.the-thickness coordinate; ~t and J = [h_, h+] are fixed regions in R 2 
and R, respectively. Any placement 3" C R 3 of the shell in Euclidean space is then defined by a 
mapping • : ~ x ~--,  R s as 

3" : -  { x e R 3 l x - -  ~(/2t, be2, b e) for(/jt,/22, @)Ea~ × a } .  (2.1) 

The basic kinematic hypothesis underlying shell theory concerns the form of the mapping 
~ (~  t, ~2, ~e). According to the standard single extensible director assumption, one assumes 
that an arbitrary point x in any placement of the shell 3' can be identified as 

x= *(e' ,  e):= , ' ) +  f2). (2.2) 

Here, ~o : ~ t - ,  R 3 defines the mid-surface of the shell in 3", and d:  ~ - ,  R 3 the director field 
(or thickness fiber). However, in contrast with our developments in Part III, we no longer 
assume that d(~Z, ~:2) is of unit length. Instead, we only require that 

: =  lid( > o for ( ~ ', @2) E a~. (2.3) 

In what follows, we shall refer to A: ~ t - ,  R+ defined by (2.3) as the thickness stretch; see Fig. 
2.1. The abstract configuration space ~ associated with the kinematic assumption (2.2) is 
therefore given by 

rg = {~ = (~o, d) : ~t--* R a x R31 d. [,p.z × ~o,] >0}. (2.4a) 



The nonlinear response of the shell in bending is intimately related to the rotation of the 
director field

From a geometric point of view, it is convenient to view the rotation of the director field 
as the motion of a point in the unit sphere

GEOMETRICAL ASPECTS

Basic idea:

Use of the links between the unit sphere and the rotation group


