

SIMO & Co Shell model

Ahmed Benallal & Jean-Pierre Cordebois LMT ENS Paris Saclay/CNRS/Université Paris Saclay

COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING 72 (1989) 267–304 NORTH-HOLLAND

ON A STRESS RESULTANT GEOMETRICALLY EXACT SHELL MODEL. PART I: FORMULATION AND OPTIMAL PARAMETRIZATION

J.C. SIMO and D.D. FOX

Division of Applied Mechanics, Department of Mechanical Engineering, Stanford University, Stanford, CA, U.S.A.

> Received 2 October 1987 Revised manuscript received 7 June 1988

OUTLINE

KINEMATICS OF THE SHELL

STRESS AND STRESS COUPLES RESULTANTS

BALANCE EQUATIONS

EFFECTIVE RESULTANTS

STRAIN VARIABLES

STRESS POWER

CONSTITUTIVE RELATIONS

GEOMETRICAL ASPECTS

KINEMATIC DESCRIPTION OF THE SHELL

$$\mathscr{C} := \{ (\boldsymbol{\varphi}, \boldsymbol{t}) : \mathscr{A} \subset \mathbb{R}^2 \to \mathbb{R}^3 \times \mathbb{S}^2 \}$$

$$\mathscr{S} := \{ \mathbf{x} \in \mathbb{R}^3 \mid \mathbf{x} = \boldsymbol{\varphi} + \xi t \text{ where } (\boldsymbol{\varphi}, t) \in \mathscr{C} \text{ and } \xi \in [h^-, h^+] \}$$

 $\mathscr{B} := \{ \boldsymbol{x}_0 \in \mathbb{R}^3 \mid \boldsymbol{x}_0 = \boldsymbol{\varphi}_0 + \boldsymbol{\xi} \boldsymbol{t}_0 \text{ with } (\boldsymbol{\varphi}_0, \boldsymbol{t}_0) \in \mathscr{C} \text{ and } \boldsymbol{\xi} \in [h^-, h^+] \}$

$$\boldsymbol{x} = \boldsymbol{\Phi}(\boldsymbol{\xi}^{1}, \boldsymbol{\xi}^{2}, \boldsymbol{\xi}) := \boldsymbol{\varphi}(\boldsymbol{\xi}^{1}, \boldsymbol{\xi}^{2}) + \boldsymbol{\xi}\boldsymbol{t}(\boldsymbol{\xi}^{1}, \boldsymbol{\xi}^{2})$$
$$\boldsymbol{\Phi} : \boldsymbol{\mathscr{A}} \times [h^{-}, h^{+}] \rightarrow \mathbb{R}^{3}$$
$$\boldsymbol{\chi} : \boldsymbol{\mathscr{B}} \rightarrow \boldsymbol{\mathscr{S}}$$
$$\boldsymbol{\chi} := \boldsymbol{\Phi} \circ \boldsymbol{\Phi}_{0}^{-1}$$

KINEMATIC DESCRIPTION OF THE SHELL

TANGENT MAP - DEFORMATION GRADIENT

Configuration
$$\Phi: \mathscr{A} \times [h^{-}, h^{+}] \rightarrow \mathbb{R}^{3}$$

Tangent map
$$\nabla \Phi := \frac{\partial \Phi}{\partial \xi^{I}} \otimes E^{I} \equiv g_{I} \otimes E^{I}$$

 $(\varphi_{,\alpha} + \xi t_{,\alpha}) \otimes E^{\alpha} + t \otimes E$

 $\boldsymbol{g}_I = \partial \boldsymbol{\Phi} / \partial \boldsymbol{\xi}^*$ is the convected basis

Deformation gradient

$$\boldsymbol{F} \equiv T\boldsymbol{\chi} := \nabla \boldsymbol{\Phi} \circ (\nabla \boldsymbol{\Phi}_0)^{-1}$$

SOME NOTATIONS

Convected basis	$\boldsymbol{g}_I = \partial \boldsymbol{\Phi} / \partial \boldsymbol{\xi}^I$	with $g_3 \equiv t$
Reciprocal basis	$\{g^{I}\}_{I=1,2,3}$	$\boldsymbol{g}_{I} \cdot \boldsymbol{g}^{J} = \boldsymbol{\delta}_{I}^{J}$
	$\boldsymbol{g}_I = \nabla \boldsymbol{\Phi} \boldsymbol{E}_I$ and	$g^{I} = \nabla \Phi^{-t} E^{I}$
Surface convected frame	$\{a_I\}_{I=1,2,3}$	$\boldsymbol{a}_{\alpha} = \boldsymbol{\varphi}_{,\alpha}$ and $\boldsymbol{a}_{3} = \boldsymbol{g}_{3} = \boldsymbol{t}$
Metric tensor	$a=\alpha_{\alpha\beta}a^{\alpha}\otimes a^{\beta},$	$a_{\alpha\beta} = \varphi_{,\alpha} \cdot \varphi_{,\beta}$
	$\{a^{l}\}_{l=1,2,3}$ d	lual basis
Jacobians	$j:=\det[\nabla \boldsymbol{\Phi}],$	$j_0:=\det[\nabla \boldsymbol{\Phi}_0],$
	$J := \det F = j/j_0$	•
	$\overline{j}_0 := \ \boldsymbol{a}_{01} \times \boldsymbol{a}_{02}\ $,	$\bar{j} := \ \boldsymbol{a}_1 \times \boldsymbol{a}_2\ $

STRESS AND COUPLE STRESS RESULTANTS

Given a motion
$$\chi_t: \mathscr{B} \times \mathbb{R}_+ \to \mathscr{G}$$
 $\chi_t = \Phi_t \circ \Phi_0^-$
 $\mathscr{G}^{\alpha} := \{ \mathbf{x} \in \mathbb{R}^3 \mid \mathbf{x} = \Phi \mid_{\xi^{\alpha} = \text{const.}} \}, \quad \alpha = 1, 2$
 $d\mathscr{G}^1 := j [\nabla \Phi]^{-t} \mathbf{E}^1 d\xi^2 d\xi = j \mathbf{g}^1 d\xi^2 d\xi$

$$\boldsymbol{R}^{1} := \int_{h^{-}}^{h^{+}} \boldsymbol{\sigma} \, \frac{\mathrm{d}\mathscr{S}^{1}}{\mathrm{d}\xi^{2}} = \int_{h^{-}}^{h^{+}} \boldsymbol{\sigma} \boldsymbol{g}^{1} j \, \mathrm{d}\xi \qquad \qquad \boldsymbol{n}^{\alpha} := \frac{1}{\overline{j}} \int_{h^{-}}^{h^{+}} \boldsymbol{\sigma} \boldsymbol{g}^{\alpha} j \, \mathrm{d}\xi$$

$$T^{1} := \int_{h^{-}}^{h^{+}} (\boldsymbol{x} - \boldsymbol{\varphi}) \times \boldsymbol{\sigma} \, \frac{\mathrm{d}\mathcal{S}^{1}}{\mathrm{d}\xi^{2}} = \int_{h^{-}}^{h^{+}} (\boldsymbol{x} - \boldsymbol{\varphi}) \times \boldsymbol{\sigma} \boldsymbol{g}^{1} j \, \mathrm{d}\xi \qquad \boldsymbol{m}^{\alpha} := \frac{1}{\bar{j}} \int_{h^{-}}^{h^{+}} (\boldsymbol{x} - \boldsymbol{\varphi}) \times \boldsymbol{\sigma} \boldsymbol{g}^{\alpha} j \, \mathrm{d}\xi$$

$$\boldsymbol{l} = \frac{1}{\bar{j}} \int_{h^{-}}^{h^{+}} \boldsymbol{\sigma} \boldsymbol{g}^{3} j \,\mathrm{d}\boldsymbol{\xi}$$

STRESS AND COUPLE STRESS RESULTANTS

Remarks:

1) Resultants can be also expressed in term of the first Piola Kirchhoff stress

$$\boldsymbol{n}^{\alpha} = \frac{1}{\overline{j}} \int_{h^{-}}^{h^{+}} \boldsymbol{\sigma} \boldsymbol{g}^{\alpha} j \, \mathrm{d} \boldsymbol{\xi} = \frac{1}{\overline{j}} \int_{h^{-}}^{h^{+}} \boldsymbol{P} \boldsymbol{g}_{0}^{\alpha} j_{0} \, \mathrm{d} \boldsymbol{\xi}$$

2) We have through the kinematic assumption $(x - \varphi) = \xi t$

$$\boldsymbol{m}^{\alpha} = \boldsymbol{t} \times \frac{1}{\bar{j}} \int_{h^{-}}^{h^{+}} \boldsymbol{\xi} \boldsymbol{\sigma} \boldsymbol{g}^{\alpha} \boldsymbol{j} \, \mathrm{d} \boldsymbol{\xi} \equiv \boldsymbol{t} \times \frac{1}{\bar{j}} \int_{h^{-}}^{h^{+}} \boldsymbol{\xi} \boldsymbol{P} \boldsymbol{g}_{0}^{\alpha} \boldsymbol{j}_{0} \, \mathrm{d} \boldsymbol{\xi}$$

3) We therefore have

$$\boldsymbol{m}^{\boldsymbol{\alpha}} \cdot \boldsymbol{t} = 0$$

and there is no component of the stress couple resultant along the director

BALANCE EQUATIONS

Equilibrium is written solely in terms of the resultants quantities

$$\frac{1}{\bar{j}} (\bar{j} n^{\alpha})_{,\alpha} + \bar{n} = 0$$

$$\frac{1}{\bar{j}} (\bar{j} m^{\alpha})_{,\alpha} + \varphi_{,\alpha} \times n^{\alpha} + \bar{m} = 0$$

where \bar{n} and \bar{m} are the applied stress resultant and the applied stress couple resultant

Remark: These relations are all it is needed for the formulation of the boundary value problem or its weak formulation, allowing to avoid the introduction of Christoffel symbols

BALANCE EQUATIONS

Balance equations can be further reduced using the symmetry of the Cauchy stress

$$\varphi_{,\alpha} \times n^{\alpha} + t_{,\alpha} \times \tilde{m}^{\alpha} + t \times l = 0$$

$$m^{\alpha} = t \times \tilde{m}^{\alpha}$$

which leads

$$\frac{1}{\bar{j}} (\bar{j} n^{\alpha})_{,\alpha} + \bar{n} = 0$$
$$\frac{1}{\bar{j}} (\bar{j} \tilde{m}^{\alpha})_{,\alpha} - \bar{l} + \tilde{\bar{m}} = 0$$

where $\tilde{\bar{m}} = \bar{m} \times t$ and

$$\bar{l} = l + \bar{\lambda}t$$

EFFECTIVE RESULTANTS

$$t_{,\alpha} = \lambda^{\mu}_{\alpha} \varphi_{,\mu} + \lambda^{3}_{\alpha} t$$
$$n^{\alpha} = n^{\beta \alpha} \varphi_{,\beta} + q^{\alpha} t$$

$$\tilde{\boldsymbol{m}}^{\alpha} = \tilde{\boldsymbol{m}}^{\beta\alpha}\boldsymbol{\varphi}_{,\beta} + \tilde{\boldsymbol{m}}^{3\alpha}\boldsymbol{t}$$

$$\tilde{n}^{\alpha\beta} = n^{\beta\alpha} - \lambda^{\beta}_{\mu}\tilde{m}^{\alpha\mu}$$

Effective membrane and effective shear Stress resultants

 $\tilde{q}^{\alpha} := q^{\alpha} - \lambda_{\mu}^{3} \tilde{m}^{\alpha \mu} \equiv q^{\alpha} + \lambda_{\mu}^{\beta} \gamma_{\beta} \tilde{m}^{\alpha \mu}$

KINEMATIC VARIABLES

$$a_{\alpha\beta} := \varphi_{,\alpha} \cdot \varphi_{,\beta}$$
, $a_{0\alpha\beta} = \varphi_{0,\alpha} \cdot \varphi_{0,\beta}$

$$\gamma_{\alpha} := \boldsymbol{\varphi}_{,\alpha} \cdot \boldsymbol{t} , \qquad \gamma_{0\alpha} = \boldsymbol{\varphi}_{0,\alpha} \cdot \boldsymbol{t}_{0} ,$$

 $\kappa_{\alpha\beta} := \varphi_{,\alpha} \cdot t_{,\beta} , \qquad \kappa_{0\alpha\beta} = \varphi_{0,\alpha} \cdot t_{0,\beta} .$

$$\boldsymbol{\varepsilon} := \frac{1}{2} (\boldsymbol{a}_{\alpha\beta} - \boldsymbol{a}_{0\alpha\beta}) \boldsymbol{a}^{\alpha} \otimes \boldsymbol{a}^{\beta}$$
$$\boldsymbol{\delta} := (\gamma_{\alpha} - \gamma_{0\alpha}) \boldsymbol{a}^{\alpha} ,$$
$$\boldsymbol{\rho} := (\kappa_{\alpha\beta} - \kappa_{0\alpha\beta}) \boldsymbol{a}^{\alpha} \otimes \boldsymbol{a}^{\beta} .$$

membrane

tranverse shear

bending

STRESS POWER

$$\mathcal{W} := \int_{\mathscr{B}} \boldsymbol{P} : \dot{\boldsymbol{F}} \, \mathrm{d} \, \mathcal{V} = \int_{\bar{\mathscr{A}}} \left[\boldsymbol{n}^{\alpha} \cdot \dot{\boldsymbol{\varphi}}_{,\alpha} + \boldsymbol{\tilde{m}}^{\alpha} \cdot \boldsymbol{\dot{t}}_{,\alpha} + \boldsymbol{l} \cdot \boldsymbol{\dot{t}} \right] \, \bar{j} \, \mathrm{d} \boldsymbol{\xi}^{1} \, \mathrm{d} \boldsymbol{\xi}^{2}$$

$$\mathcal{W} := \int_{\mathcal{B}} \boldsymbol{P} : \dot{\boldsymbol{F}} \, \mathrm{d}\, \mathcal{V} = \int_{\bar{\mathcal{A}}} \left[\tilde{n}^{\beta\alpha} \frac{1}{2} \dot{a}_{\beta\alpha} + \tilde{q}^{\alpha} \dot{\gamma}_{\alpha} + \tilde{m}^{\beta\alpha} \dot{\kappa}_{\beta\alpha} \right] \mathrm{d}\mu$$

CONSTITUTIVE RELATIONS

Hyperelasticy: Stored energy function + Standard arguments +...

Plasticity: Strain partition Yield surface Flow rule Hardening rules

EXTENSIBLE DIRECTOR THEORY Multiplicative decomposition of the director field

 $x = \hat{\Phi}(\xi^{1}, \xi^{2}, \xi) := \varphi(\xi^{1}, \xi^{2}) + \xi d(\xi^{1}, \xi^{2})$

 $d(\xi^{1}, \xi^{2}) = \lambda(\xi^{1}, \xi^{2})t(\xi^{1}, \xi^{2})$

GEOMETRICAL ASPECTS

Basic idea:

The nonlinear response of the shell in bending is intimately related to the rotation of the director field

From a geometric point of view, it is convenient to view the rotation of the director field as the motion of a point in the unit sphere

Use of the links between the unit sphere and the rotation group