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Monge and Ampère
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Global Solutions: Monge

sphere and pseudosphere
An example: curvature of a surface in R3
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Monge-Ampère structure

Definition
A Monge-Ampère structure on a 2n-dimensional manifold X is a
pair of differential form (Ω, ω) ∈ Ω2(X )× Ωn(X ) such that Ω is
symplectic and ω is Ω-effective i.e. Ω ∧ ω = 0.



Main idea

I Let F : Rn → (i)Rn be a vector-function and its graph is a
subspace in T ∗(Rn) = Rn ⊕ (i)Rn.

I The tangent space to the graph at the point (x ,F (x)) is the
graph of (dF )x - the differential of F at the point x .

I This graph is a Lagrangian subspace in T ∗(Rn) iff (dF )x is a
symmetric endomorphism . The matrix || ∂Fi

∂xj
|| is symmetric

∀x iff the differential form
∑

i Fidxi ∈ Λ1(Rn) is closed or,
equivalently, exact:

Fi =
∂f

∂xi
=⇒ F = ∇f .

I The projection of the graph of ∇f on (Rn)x is given in
coordinates by ∇2(f ) = det || ∂

2fi
∂x2

j
|| .
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Correspondence: Forms -Symplectic MAO

Let M be a smooth n−dimensional manifold and ω is a differential
n-form on T ∗M. A (symplectic) Monge-Ampère operator
∆ω : C∞(M)→ Ωn(M) is the differential operator defined by

∆ω(f ) = (df )∗(ω),

where df : M → T ∗M is the natural section associated to f .



Examples

ω ∆ω = 0

dq1 ∧ dp2 − dq2 ∧ dp1 ∆f = 0
dq1 ∧ dp2 + dq2 ∧ dp1 �f = 0

dp1 ∧ dp2 ∧ dp3 − dq1 ∧ dq2 ∧ dq3 Hess(f ) = 1
dp1 ∧ dq2 ∧ dq3 − dp2 ∧ dq1 ∧ dq3 ∆f − Hess(f ) = 0

+dp3 ∧ dq1 ∧ dq2 − dp1 ∧ dp2 ∧ dp3



Hodge-Lepage-Lychagin theorem

Hodge, Lepage and Lychagin

Theorem (Hodge-Lepage-Lychagin)

I Every form ω ∈ Λk(V ∗) can be uniquely decomposed into the
finite sum

ω = ω0 +>ω1 +>2ω2 + . . . ,

where all ωi are effective forms.

I If two effective k-forms vanish on the same k-dimensional
isotropic vector subspaces in (V ,Ω), they are proportional.
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Symplectic Monge-Ampère Equations: Solutions

I A generalised solution of a MAE ∆ω = 0 is a lagrangian
submanifold of (T ∗M,Ω) which is an integral manifold for the
MA differential form ω:

ω|L = 0.

I A generalised solution (generically) locally is the graph of an
1-form df for a regular solution f .
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Generalized solution
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Generalised solution of a MAE



Generic types of singularities for Generalized solutions of
MAE

Specific property of the graph-like Lagrangian submanifolds: their
projection on the "configuration space" Rn is a diffeomorphism.
Our generalised solutions are general Lagrangian immersions and
they have Arnold’s lagrangian singularities.

Lagrangian singularities (Wave fronts,
foldings etc.) This singularities describe the formation of fronts
(Chynoweth, Porter, Sewell 1988)



Symplectic Equivalence-1

I Two SMAE ∆ω1 = 0 and ∆ω2 = 0 are locally equivalent iff
there is exist a local symplectomorphism
F : (T ∗M,Ω)→ (T ∗M,Ω) such that

F ∗ω1 = ω2.

I L is a generalised solution of ∆F∗ω1 = 0 iff F (L) is a
generalised solution of ∆ω = 0.
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Legendre partial transformation

Legendre

uq1q1 + uq2q2 = 0 oo //

��

vq1q1vq2q2 − v2
q1q2

= 1

��
ω = dq1 ∧ dp2 − dq2 ∧ dp1 ω̃ = dp1 ∧ dp2 − dq1 ∧ dq2

Φ∗oo



Legendre partial transformation-2

Lu =
(
q1, q2, uq1 , uq2

) Φ //

��

Lv =
(
q̃1, q̃2, vq̃1 , vq̃2

)
=
(
q1,−uq2 , uq1 , q2

)

��

eq1 cos(q2) oo //
q2 arcsin(q2e
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+
√
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2

with Φ : T ∗R2 → T ∗R2, (q1, q2, p1, p2) 7→ (q1,−p2, p1, q2).



Sewell-Chynoweth SG- equation

Numerical Solution of the semi-geostrophic 3D equation (Cullen,
Sewell-Chynoweth...)

hessx ,y (u) +
∂2u

∂z2 = hess(u) (1)



Sewell-Chynoweth MAO form and its equivalence
I The effective form of (??):

ω = dp ∧ dq ∧ dz + dx ∧ dy ∧ dr − γdx ∧ dy ∧ dz ,

(x , y , z , p, q, r)− canonical coordinates system of T ∗R3.

I This form is a sum of two decomposable 3-forms:

ω = dp ∧ dq ∧ dz + dx ∧ dy ∧ (dr − γdz).

I φ∗(ω) = dp ∧ dq ∧ dr − dx ∧ dy ∧ dz where φ is the
symplectomorphism

φ(x , y , z , p, q, r) = (x , y , r , p, q, γr − z).

I The equation (??) is symplectically equivalent to the equation

hess(u) = 1. (2)



Sewell-Chynoweth MAO form and its equivalence
I The effective form of (??):

ω = dp ∧ dq ∧ dz + dx ∧ dy ∧ dr − γdx ∧ dy ∧ dz ,

(x , y , z , p, q, r)− canonical coordinates system of T ∗R3.
I This form is a sum of two decomposable 3-forms:

ω = dp ∧ dq ∧ dz + dx ∧ dy ∧ (dr − γdz).

I φ∗(ω) = dp ∧ dq ∧ dr − dx ∧ dy ∧ dz where φ is the
symplectomorphism

φ(x , y , z , p, q, r) = (x , y , r , p, q, γr − z).

I The equation (??) is symplectically equivalent to the equation

hess(u) = 1. (2)



Sewell-Chynoweth MAO form and its equivalence
I The effective form of (??):

ω = dp ∧ dq ∧ dz + dx ∧ dy ∧ dr − γdx ∧ dy ∧ dz ,

(x , y , z , p, q, r)− canonical coordinates system of T ∗R3.
I This form is a sum of two decomposable 3-forms:

ω = dp ∧ dq ∧ dz + dx ∧ dy ∧ (dr − γdz).

I φ∗(ω) = dp ∧ dq ∧ dr − dx ∧ dy ∧ dz where φ is the
symplectomorphism

φ(x , y , z , p, q, r) = (x , y , r , p, q, γr − z).

I The equation (??) is symplectically equivalent to the equation

hess(u) = 1. (2)



Sewell-Chynoweth MAO form and its equivalence
I The effective form of (??):

ω = dp ∧ dq ∧ dz + dx ∧ dy ∧ dr − γdx ∧ dy ∧ dz ,

(x , y , z , p, q, r)− canonical coordinates system of T ∗R3.
I This form is a sum of two decomposable 3-forms:

ω = dp ∧ dq ∧ dz + dx ∧ dy ∧ (dr − γdz).

I φ∗(ω) = dp ∧ dq ∧ dr − dx ∧ dy ∧ dz where φ is the
symplectomorphism

φ(x , y , z , p, q, r) = (x , y , r , p, q, γr − z).

I The equation (??) is symplectically equivalent to the equation

hess(u) = 1. (2)



An exact solution of the SG 3D equation

f (x , y , z) =

∫ √xy+yz+zx

a
(b + 4ξ3)1/3dξ

is a regular solution of (??). Therefore,

L =
{

(x , y , (x + y)α, (y + z)α, (z + x)α, γ(x + y)α− z)
}

is a generalised solution of (??) with

α =
1
2

(
b

(xy + yz + zx)
3
2

+ 4)
1
3 .



Hoskins geostrophic coordinate transformation

I The SG equations are used like a good approximation to the
Boussinesq primitive equations when the rate of the flow
momentum is smaller than the Coriolis force, or in other
words, when the Rossby number Ro << 1.

I B. Hoskins (1975) had proposed a remarkable coordinate
transformation ( a passage to geostrophic coordinates in x − y
directions such that the geostrophic velocity and potential
temperature may be represented in terms of one function both
in the transformed coordinates as in physical ones
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
X := x +

vg
f = x + 1

f 2
∂φ
∂x

Y := y − ug
f = y + 1

f 2
∂φ
∂y

Z := z ; T := t.



Hoskins geostrophic 3D equation

I Let Φ := φ+ 1
2(u2

g + v2
g ) then ∇Φ = ∇φ and

I if the potential vorticity is uniform (qg = f θ0
g N2) then one

have in the interior of the fluid for any time T = t

1
f 2 (ΦXX + ΦYY )− 1

f 4 (ΦXXΦYY − Φ2
XY ) +

1
N2 ΦZZ = 1. (3)

I Here (and in what follows) f is the Coriolis parameter taking
as a constant and N is the Brunt - Väisälä frequency:

N =

√
qgg

f θ0
,

for the uniform potential vorticity qg and the constant
potential temperature θ0.
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Hoskins geostrophic MA effective form

I This is a 3D Monge-Ampére equation with the effective form

ω =
1
f 2 (dp ∧ dy ∧ dz + dx ∧ dq ∧ dz) +

1
N2 dx ∧ dy ∧ dr−

− 1
f 4 dp ∧ dq ∧ dz − dx ∧ dy ∧ dz .

I This form is the sum of two decomposable forms:

ω =
1
N2 dx ∧ dy ∧ dr − (dx − 1

f 2 dp) ∧ (dy − 1
f 2 dq) ∧ dz .
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Hoskins geostrophic MA effective form : equivalence
I Consider the symplectomorphism

F (x , y , z , p, q, r) = (p, q, z ,−x + f 2p,−y + f 2q, r). (4)

I The new canonical coordinate system (x̃ , ỹ , z̃ , p̃, q̃, r̃)
p̃ := −x + f 2p; x̃ := p;

q̃ := −y + f 2q; ỹ := q;

r̃ := r ; z̃ := z

with Ω̃ = Ω, provides the following effective form:
I

ω̃ =
1
N2 dp̃ ∧ dq̃ ∧ dr̃ − 1

f 4 dx̃ ∧ dỹ ∧ dz̃ .

I The Hoskins SG (??) is equivalent to the (??):

hess(u) =
N2

f 4 =
(qgg)2

f 6(θ0)2 (5)

by the symplectomorphism (??).
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p̃ := −x + f 2p; x̃ := p;

q̃ := −y + f 2q; ỹ := q;
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Table 1. Effective forms with constant coefficients in 2D

∆ω = 0 ω pf (ω)

∆f = 0 dq1 ∧ dp2 − dq2 ∧ dp1 1
�f = 0 dq1 ∧ dp2 + dq2 ∧ dp1 −1
∂2f
∂q2

1
= 0 dq1 ∧ dp2 0



Invariants for effective 3-forms

I To each effective 3-form ω ∈ Ω3
ε(R6), we assign the following

geometric invariants:

I the Lychagin-R. metric defined by

gω(X ,Y ) =
(ιXω) ∧ (ιYω) ∧ Ω

Ω3 ,

I the Hitchin tensor defined by

gω = Ω(Aω·, ·),

I The Hitchin pfaffian defined by

pf (ω) =
1
6
trA2

ω.
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∆ω = 0 ω ε(qω) pf (ω)

1 ν hess(f ) = 1 −dq1∧dq2∧dq3+ν ·dp1∧dp2∧dp3 (3, 3) ν2

2 ∆f − ν hess(f ) = 0 dp1 ∧ dq2 ∧ dq3 − dp2 ∧ dq1 ∧ dq3 (0, 6) −ν2

+dp3∧dq1∧dq2−ν ·dp1∧dp2∧dp3

3 �f + ν hess(f ) = 0 dp1 ∧ dq2 ∧ dq3 + dp2 ∧ dq1 ∧ dq3 (4, 2) −ν2

+dp3∧dq1∧dq2+ν ·dp1∧dp2∧dp3

4 ∆f = 0 dp1∧dq2∧dq3−dp2∧dq1∧dq3 +
dp3 ∧ dq1 ∧ dq2

(0, 3) 0

5 �f = 0 dp1∧dq2∧dq3 +dp2∧dq1∧dq3 +
dp3 ∧ dq1 ∧ dq2

(2, 1) 0

6 ∆q2,q3f = 0 dp3 ∧ dq1 ∧ dq2 − dp2 ∧ dq1 ∧ dq3 (0, 1) 0
7 �q2,q3f = 0 dp3 ∧ dq1 ∧ dq2 + dp2 ∧ dq1 ∧ dq3 (1, 0) 0
8 ∂2f

∂q2
1

= 0 dp1 ∧ dq2 ∧ dq3 (0, 0) 0

9 0 (0, 0) 0

Table: Classification of effective 3-formes in dimension 6



HyperKäler triple of MAE

The conservation law (the Ertel’s theorem) of the potential vorticity
obtains (using the Hamiltonian representation of the system):

d

dt

(
∂(q1, q2)

∂(a, b)

)
=

d

dt
(1 + φq1q1 + φq2q2 + detHessφ ) = 0,

This equation is a part of the HyperKähler triple of MAEs (R. and
Roulstone 1997, 2001):
ωI =

[
1 + a(p11 + p22) + (a2 − c2)(p11p22 − p2

12)dq1
]
∧ dq2 ,

ωJ =
[
2cp12 + ac(p11p22 − p2

12)
]
dq1 ∧ dq2 ,

ωK = −cΩ



2D balanced model MAE

I The general family of (elliptic) MAE with constant coefficients
carries all flat balanced models:

1 + φq1q1 + aφq2q2 + (a2 − c2) detHessφ = ζC/f , (6)

Among them are:

I The semi-geostrophic model(a = 1, c = 0 with ζC/f positive);
I The L1 Salmon dynamics with a = c = 1;
I The

√
3 dynamics of McIntyre - Roulstone for a = 1, c =

√
3

and ζC/f < 3/2;
Our classification theorem in 2D gives a classification of all
"almost-balanced"(0 < c <

√
3) models with a uniform

potential vorticity.
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2D balanced model MAE
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1 + φq1q1 + aφq2q2 + (a2 − c2) detHessφ = ζC/f , (6)

Among them are:
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√
3) models with a uniform
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The subjects which I had no time to describe:

I Symmetries, conservation laws and Noether theorem for MAO
and MAE

I Self-similar solutions, shock waves and Hugoniot-Rankin
conditions

I Variational MAE, divergent MAE and Euler-Lagrange operators
I Jacobi 2D non-linear 1st order systems and Genralised

Complex Geometry of Hitchin
I Generalised Calabi-Yau 3D structures
I Linearisation of Dritchell-Viudez coupled MAE in 2D and 3D
I Many-many other interesting things...
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