Monge-Ampère Equations: Geometry, Invariants and Applications in 3D Meteorological Models

Volodya Roubtsov,
LAREMA, UMR 6093 du CNRS; Département de
Mathématiques, Université d'Angers
Réunion du GDR - GDM
"Géométrie Différentielle et Mécanique"
Université de La Rochelle, du 4 au 7 juin 2019

June 3, 2019

Plan

Introduction

Effective forms and Monge-Ampère operators

Symplectic Transformations of MAO Solutions of symplectic MAE Classification of SMAE on \mathbb{R}^2 Classification of SMAE in 3D

From classification of SMAE to flat balanced models

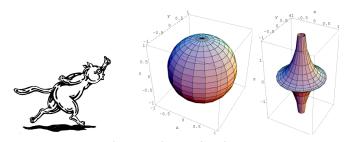
Cat Eurika:

Basic object

Monge and Ampère

$$A\frac{\partial^2 f}{\partial q_1^2} + 2B\frac{\partial^2 f}{\partial q_1 \partial q_2} + C\frac{\partial^2 f}{\partial q_2^2} + D\left(\frac{\partial^2 f}{\partial q_1^2} \cdot \frac{\partial^2 f}{\partial q_2^2} - \left(\frac{\partial f}{\partial q_1 \partial q_2}\right)^2\right) + E = 0$$

Global Solutions: Monge



sphere and pseudosphere

An example: curvature of a surface in \mathbb{R}^3

$$\frac{u_{q_1q_1} \cdot u_{q_2q_2} - u_{q_1q_2}^2}{(1 + u_{q_1}^2 + u_{q_2}^2)^2} = \mathcal{K}(u)$$

Monge-Ampère structure

Definition

A Monge-Ampère structure on a 2n-dimensional manifold X is a pair of differential form $(\Omega, \omega) \in \Omega^2(X) \times \Omega^n(X)$ such that Ω is symplectic and ω is Ω -effective i.e. $\Omega \wedge \omega = 0$.

▶ Let $F : \mathbb{R}^n \to (i)\mathbb{R}^n$ be a vector-function and its graph is a subspace in $T^*(\mathbb{R}^n) = \mathbb{R}^n \oplus (i)\mathbb{R}^n$.

- ▶ Let $F : \mathbb{R}^n \to (i)\mathbb{R}^n$ be a vector-function and its graph is a subspace in $T^*(\mathbb{R}^n) = \mathbb{R}^n \oplus (i)\mathbb{R}^n$.
- ▶ The tangent space to the graph at the point (x, F(x)) is the graph of $(dF)_x$ the differential of F at the point x.

- ▶ Let $F : \mathbb{R}^n \to (i)\mathbb{R}^n$ be a vector-function and its graph is a subspace in $T^*(\mathbb{R}^n) = \mathbb{R}^n \oplus (i)\mathbb{R}^n$.
- ▶ The tangent space to the graph at the point (x, F(x)) is the graph of $(dF)_x$ the differential of F at the point x.
- ▶ This graph is a Lagrangian subspace in $T^*(\mathbb{R}^n)$ iff $(dF)_x$ is a symmetric endomorphism . The matrix $||\frac{\partial F_i}{\partial x_j}||$ is symmetric $\forall x$ iff the differential form $\sum_i F_i dx_i \in \Lambda^1(\mathbb{R}^n)$ is closed or, equivalently, exact:

$$F_i = \frac{\partial f}{\partial x_i} \Longrightarrow F = \nabla f.$$

- ▶ Let $F : \mathbb{R}^n \to (i)\mathbb{R}^n$ be a vector-function and its graph is a subspace in $T^*(\mathbb{R}^n) = \mathbb{R}^n \oplus (i)\mathbb{R}^n$.
- ▶ The tangent space to the graph at the point (x, F(x)) is the graph of $(dF)_x$ the differential of F at the point x.
- ▶ This graph is a Lagrangian subspace in $T^*(\mathbb{R}^n)$ iff $(dF)_x$ is a symmetric endomorphism . The matrix $||\frac{\partial F_i}{\partial x_j}||$ is symmetric $\forall x$ iff the differential form $\sum_i F_i dx_i \in \Lambda^1(\mathbb{R}^n)$ is closed or, equivalently, exact:

$$F_i = \frac{\partial f}{\partial x_i} \Longrightarrow F = \nabla f.$$

▶ The projection of the graph of ∇f on $(\mathbb{R}^n)_x$ is given in coordinates by $\nabla^2(f) = \det ||\frac{\partial^2 f_i}{\partial x_i^2}||$.

Correspondence: Forms -Symplectic MAO

Let M be a smooth n-dimensional manifold and ω is a differential n-form on T^*M . A (symplectic) Monge-Ampère operator $\Delta_{\omega}: C^{\infty}(M) \to \Omega^n(M)$ is the differential operator defined by

$$\Delta_{\omega}(f) = (df)^*(\omega),$$

where $df: M \to T^*M$ is the natural section associated to f.

Examples

ω	${f \Delta}_{\omega}=0$
$dq_1 \wedge dp_2 - dq_2 \wedge dp_1$	$\Delta f = 0$
$dq_1 \wedge dp_2 + dq_2 \wedge dp_1$	$\Box f = 0$
$\boxed{ dp_1 \wedge dp_2 \wedge dp_3 - dq_1 \wedge dq_2 \wedge dq_3 }$	Hess(f) = 1
$dp_1 \wedge dq_2 \wedge dq_3 - dp_2 \wedge dq_1 \wedge dq_3$	$\Delta f - Hess(f) = 0$
$+dp_3 \wedge dq_1 \wedge dq_2 - dp_1 \wedge dp_2 \wedge dp_3$	

Hodge-Lepage-Lychagin theorem

Hodge, Lepage and Lychagin

Theorem (Hodge-Lepage-Lychagin)

▶ Every form $\omega \in \Lambda^k(V^*)$ can be uniquely decomposed into the finite sum

$$\omega = \omega_0 + \top \omega_1 + \top^2 \omega_2 + \dots,$$

where all ω_i are effective forms.

Hodge-Lepage-Lychagin theorem

Hodge, Lepage and Lychagin

Theorem (Hodge-Lepage-Lychagin)

▶ Every form $\omega \in \Lambda^k(V^*)$ can be uniquely decomposed into the finite sum

$$\omega = \omega_0 + \top \omega_1 + \top^2 \omega_2 + \dots,$$

where all ω_i are effective forms.

▶ If two effective k-forms vanish on the same k-dimensional isotropic vector subspaces in (V, Ω) , they are proportional.

Symplectic Monge-Ampère Equations: Solutions

▶ A generalised solution of a MAE $\Delta_{\omega} = 0$ is a lagrangian submanifold of (T^*M, Ω) which is an integral manifold for the MA differential form ω :

$$\omega|_L=0.$$

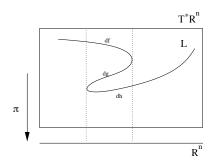
Symplectic Monge-Ampère Equations: Solutions

▶ A generalised solution of a MAE $\Delta_{\omega} = 0$ is a lagrangian submanifold of (T^*M, Ω) which is an integral manifold for the MA differential form ω :

$$\omega|_L=0.$$

▶ A generalised solution (generically) locally is the graph of an 1-form *df* for a regular solution *f*.

Generalized solution



Generalised solution of a MAE

Generic types of singularities for Generalized solutions of MAE

Specific property of the graph-like Lagrangian submanifolds: their projection on the "configuration space" \mathbb{R}^n is a diffeomorphism. Our generalised solutions are general Lagrangian immersions and they have Arnold's lagrangian singularities.

Lagrangian singularities (Wave fronts,

foldings etc.) This singularities describe the formation of fronts (Chynoweth, Porter, Sewell 1988)

Symplectic Equivalence-1

► Two SMAE $\Delta_{\omega_1} = 0$ and $\Delta_{\omega_2} = 0$ are locally equivalent iff there is exist a local symplectomorphism $F: (T^*M, \Omega) \to (T^*M, \Omega)$ such that

$$F^*\omega_1=\omega_2.$$

Symplectic Equivalence-1

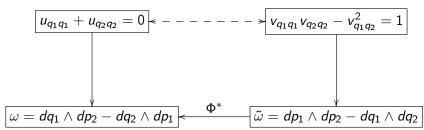
▶ Two SMAE $\Delta_{\omega_1} = 0$ and $\Delta_{\omega_2} = 0$ are locally equivalent iff there is exist a local symplectomorphism $F: (T^*M, \Omega) \to (T^*M, \Omega)$ such that

$$F^*\omega_1=\omega_2.$$

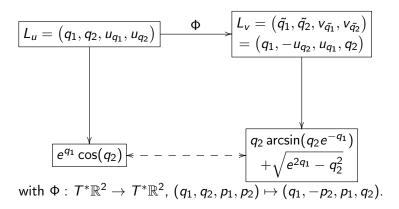
▶ *L* is a generalised solution of $\Delta_{F^*\omega_1} = 0$ iff F(L) is a generalised solution of $\Delta_{\omega} = 0$.

Legendre partial transformation

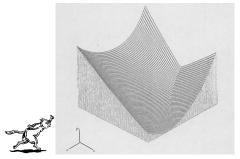
Legendre



Legendre partial transformation-2



Sewell-Chynoweth SG- equation



Numerical Solution of the semi-geostrophic 3D equation (Cullen, Sewell-Chynoweth...)

$$hess_{x,y}(u) + \frac{\partial^2 u}{\partial z^2} = hess(u)$$
 (1)

► The effective form of (??):

$$\omega = dp \wedge dq \wedge dz + dx \wedge dy \wedge dr - \gamma dx \wedge dy \wedge dz,$$

$$(x, y, z, p, q, r) - \text{ canonical coordinates system of } T^*\mathbb{R}^3.$$

► The effective form of (??):

$$\omega = dp \wedge dq \wedge dz + dx \wedge dy \wedge dr - \gamma dx \wedge dy \wedge dz,$$

(x, y, z, p, q, r) – canonical coordinates system of $T^*\mathbb{R}^3$.

▶ This form is a sum of two decomposable 3-forms:

$$\omega = dp \wedge dq \wedge dz + dx \wedge dy \wedge (dr - \gamma dz).$$

► The effective form of (??):

$$\omega = dp \wedge dq \wedge dz + dx \wedge dy \wedge dr - \gamma dx \wedge dy \wedge dz,$$

(x, y, z, p, q, r) – canonical coordinates system of $T^*\mathbb{R}^3$.

▶ This form is a sum of two decomposable 3-forms:

$$\omega = dp \wedge dq \wedge dz + dx \wedge dy \wedge (dr - \gamma dz).$$

• $\phi^*(\omega) = dp \wedge dq \wedge dr - dx \wedge dy \wedge dz$ where ϕ is the symplectomorphism

$$\phi(x,y,z,p,q,r)=(x,y,r,p,q,\gamma r-z).$$

► The effective form of (??):

$$\omega = dp \wedge dq \wedge dz + dx \wedge dy \wedge dr - \gamma dx \wedge dy \wedge dz,$$

(x, y, z, p, q, r) – canonical coordinates system of $T^*\mathbb{R}^3$.

▶ This form is a sum of two decomposable 3-forms:

$$\omega = dp \wedge dq \wedge dz + dx \wedge dy \wedge (dr - \gamma dz).$$

• $\phi^*(\omega) = dp \wedge dq \wedge dr - dx \wedge dy \wedge dz$ where ϕ is the symplectomorphism

$$\phi(x, y, z, p, q, r) = (x, y, r, p, q, \gamma r - z).$$

▶ The equation (??) is symplectically equivalent to the equation

$$hess(u) = 1. (2)$$

An exact solution of the SG 3D equation

$$f(x,y,z) = \int_{a}^{\sqrt{xy+yz+zx}} (b+4\xi^3)^{1/3} d\xi$$

is a regular solution of (??). Therefore,

$$L = \left\{ (x, y, (x+y)\alpha, (y+z)\alpha, (z+x)\alpha, \gamma(x+y)\alpha - z) \right\}$$

is a generalised solution of (??) with

$$\alpha = \frac{1}{2} \left(\frac{b}{(xy + yz + zx)^{\frac{3}{2}}} + 4 \right)^{\frac{1}{3}}.$$

Hoskins geostrophic coordinate transformation

▶ The SG equations are used like a good approximation to the Boussinesq primitive equations when the rate of the flow momentum is smaller than the Coriolis force, or in other words, when the Rossby number $\mathrm{Ro} << 1$.

Hoskins geostrophic coordinate transformation

- ▶ The SG equations are used like a good approximation to the Boussinesq primitive equations when the rate of the flow momentum is smaller than the Coriolis force, or in other words, when the Rossby number $\mathrm{Ro} << 1$.
- ▶ B. Hoskins (1975) had proposed a remarkable coordinate transformation (a passage to geostrophic coordinates in *x* − *y* directions such that the geostrophic velocity and potential temperature may be represented in terms of one function both in the transformed coordinates as in physical ones

$$\begin{cases} X := x + \frac{v_g}{f} = x + \frac{1}{f^2} \frac{\partial \phi}{\partial x} \\ Y := y - \frac{u_g}{f} = y + \frac{1}{f^2} \frac{\partial \phi}{\partial y} \\ Z := z; \quad T := t. \end{cases}$$

Hoskins geostrophic 3D equation

Let
$$\Phi := \phi + \frac{1}{2}(u_g^2 + v_g^2)$$
 then $\nabla \Phi = \nabla \phi$ and

Hoskins geostrophic 3D equation

- Let $\Phi:=\phi+\frac{1}{2}(u_g^2+v_g^2)$ then $\nabla\Phi=\nabla\phi$ and
- if the potential vorticity is uniform $(q_g = \frac{f\theta_0}{g}N^2)$ then one have in the interior of the fluid for any time T = t

$$\frac{1}{f^2}(\Phi_{XX} + \Phi_{YY}) - \frac{1}{f^4}(\Phi_{XX}\Phi_{YY} - \Phi_{XY}^2) + \frac{1}{N^2}\Phi_{ZZ} = 1.$$
 (3)

Hoskins geostrophic 3D equation

- Let $\Phi := \phi + \frac{1}{2}(u_g^2 + v_g^2)$ then $\nabla \Phi = \nabla \phi$ and
- if the potential vorticity is uniform $(q_g = \frac{f\theta_0}{g}N^2)$ then one have in the interior of the fluid for any time T = t

$$\frac{1}{f^2}(\Phi_{XX}+\Phi_{YY})-\frac{1}{f^4}(\Phi_{XX}\Phi_{YY}-\Phi_{XY}^2)+\frac{1}{N^2}\Phi_{ZZ}=1.~~(3)$$

► Here (and in what follows) f is the Coriolis parameter taking as a constant and N is the Brunt - Väisälä frequency:

$$N = \sqrt{\frac{q_g g}{f \theta_0}},$$

for the uniform potential vorticity q_g and the constant potential temperature θ_0 .

Hoskins geostrophic MA effective form

► This is a 3D Monge-Ampére equation with the effective form

$$\omega = \frac{1}{f^2} (dp \wedge dy \wedge dz + dx \wedge dq \wedge dz) + \frac{1}{N^2} dx \wedge dy \wedge dr -$$
$$-\frac{1}{f^4} dp \wedge dq \wedge dz - dx \wedge dy \wedge dz.$$

Hoskins geostrophic MA effective form

▶ This is a 3D Monge-Ampére equation with the effective form

$$\omega = rac{1}{f^2} (dp \wedge dy \wedge dz + dx \wedge dq \wedge dz) + rac{1}{N^2} dx \wedge dy \wedge dr - \ -rac{1}{f^4} dp \wedge dq \wedge dz - dx \wedge dy \wedge dz.$$

► This form is the sum of two decomposable forms:

$$\omega = rac{1}{N^2} dx \wedge dy \wedge dr - \left(dx - rac{1}{f^2} dp
ight) \wedge \left(dy - rac{1}{f^2} dq
ight) \wedge dz.$$

Hoskins geostrophic MA effective form: equivalence

Consider the symplectomorphism

$$F(x, y, z, p, q, r) = (p, q, z, -x + f^{2}p, -y + f^{2}q, r).$$
 (4)

Hoskins geostrophic MA effective form : equivalence

Consider the symplectomorphism

$$F(x, y, z, p, q, r) = (p, q, z, -x + f^{2}p, -y + f^{2}q, r).$$
 (4)

▶ The new canonical coordinate system $(\tilde{x}, \tilde{y}, \tilde{z}, \tilde{p}, \tilde{q}, \tilde{r})$

$$\begin{cases} \tilde{p} := -x + f^2 p; & \tilde{x} := p; \\ \tilde{q} := -y + f^2 q; & \tilde{y} := q; \\ \tilde{r} := r; & \tilde{z} := z \end{cases}$$

with $\tilde{\Omega} = \Omega$, provides the following effective form:

Hoskins geostrophic MA effective form : equivalence

Consider the symplectomorphism

$$F(x, y, z, p, q, r) = (p, q, z, -x + f^{2}p, -y + f^{2}q, r).$$
 (4)

▶ The new canonical coordinate system $(\tilde{x}, \tilde{y}, \tilde{z}, \tilde{p}, \tilde{q}, \tilde{r})$

$$\begin{cases} \tilde{p} := -x + f^2 p; & \tilde{x} := p; \\ \tilde{q} := -y + f^2 q; & \tilde{y} := q; \\ \tilde{r} := r; & \tilde{z} := z \end{cases}$$

with $\tilde{\Omega} = \Omega$, provides the following effective form:

$$\tilde{\omega} = rac{1}{N^2} d ilde{p} \wedge d ilde{q} \wedge d ilde{r} - rac{1}{f^4} d ilde{x} \wedge d ilde{y} \wedge d ilde{z}.$$

Hoskins geostrophic MA effective form: equivalence

Consider the symplectomorphism

$$F(x, y, z, p, q, r) = (p, q, z, -x + f^{2}p, -y + f^{2}q, r).$$
 (4)

▶ The new canonical coordinate system $(\tilde{x}, \tilde{y}, \tilde{z}, \tilde{p}, \tilde{q}, \tilde{r})$

$$\begin{cases} \tilde{p} := -x + f^2 p; & \tilde{x} := p; \\ \tilde{q} := -y + f^2 q; & \tilde{y} := q; \\ \tilde{r} := r; & \tilde{z} := z \end{cases}$$

with $\tilde{\Omega} = \Omega$, provides the following effective form:

$$ilde{\omega} = rac{1}{N^2} d ilde{p} \wedge d ilde{q} \wedge d ilde{r} - rac{1}{f^4} d ilde{x} \wedge d ilde{y} \wedge d ilde{z}.$$

▶ The Hoskins SG (??) is equivalent to the (??):

hess
$$(u) = \frac{N^2}{f^4} = \frac{(q_g g)^2}{f^6(\theta_0)^2}$$
 (5)

by the symplectomorphism (??).

Table 1. Effective forms with constant coefficients in 2D

$\Delta_{\omega}=0$	ω	$pf(\omega)$	
$\Delta f = 0$	$dq_1 \wedge dp_2 - dq_2 \wedge dp_1$	1	
$\Box f = 0$	$dq_1 \wedge dp_2 + dq_2 \wedge dp_1$	-1	
$\frac{\partial^2 f}{\partial q_1^2} = 0$	$dq_1 \wedge dp_2$	0	

▶ To each effective 3-form $\omega \in \Omega^3_{\varepsilon}(\mathbb{R}^6)$, we assign the following geometric invariants:

- ▶ To each effective 3-form $\omega \in \Omega^3_{\varepsilon}(\mathbb{R}^6)$, we assign the following geometric invariants:
- ▶ the Lychagin-R. metric defined by

$$g_{\omega}(X,Y) = \frac{(\iota_X \omega) \wedge (\iota_Y \omega) \wedge \Omega}{\Omega^3},$$

- ▶ To each effective 3-form $\omega \in \Omega^3_{\varepsilon}(\mathbb{R}^6)$, we assign the following geometric invariants:
- the Lychagin-R. metric defined by

$$g_{\omega}(X,Y) = \frac{(\iota_X \omega) \wedge (\iota_Y \omega) \wedge \Omega}{\Omega^3},$$

the Hitchin tensor defined by

$$g_{\omega} = \Omega(A_{\omega} \cdot, \cdot),$$

- ▶ To each effective 3-form $\omega \in \Omega^3_{\varepsilon}(\mathbb{R}^6)$, we assign the following geometric invariants:
- ▶ the Lychagin-R. metric defined by

$$g_{\omega}(X,Y) = \frac{(\iota_X \omega) \wedge (\iota_Y \omega) \wedge \Omega}{\Omega^3},$$

the Hitchin tensor defined by

$$g_{\omega} = \Omega(A_{\omega} \cdot, \cdot),$$

► The Hitchin pfaffian defined by

$$pf(\omega) = \frac{1}{6}trA_{\omega}^2.$$

	${f \Delta}_{\omega}=0$	ω	$arepsilon(oldsymbol{q}_\omega)$	$pf(\omega)$
1	u hess $(f)=1$	$-dq_1 \wedge dq_2 \wedge dq_3 + \nu \cdot dp_1 \wedge dp_2 \wedge dp_3$	(3,3)	ν^2
2	$\Delta f - \nu \operatorname{hess}(f) = 0$	$dp_1 \wedge dq_2 \wedge dq_3 - dp_2 \wedge dq_1 \wedge dq_3$	(0,6)	$-\nu^2$
		$+dp_3\wedge dq_1\wedge dq_2-\nu\cdot dp_1\wedge dp_2\wedge dp_3$		
3	$\Box f + \nu \operatorname{hess}(f) = 0$	$dp_1 \wedge dq_2 \wedge dq_3 + dp_2 \wedge dq_1 \wedge dq_3$	(4,2)	$-\nu^2$
		$+dp_3\wedge dq_1\wedge dq_2+\nu\cdot dp_1\wedge dp_2\wedge dp_3$		
4	$\Delta f = 0$	$dp_1 \wedge dq_2 \wedge dq_3 - dp_2 \wedge dq_1 \wedge dq_3 +$	(0,3)	0
		$dp_3 \wedge dq_1 \wedge dq_2$		
5	$\Box f = 0$	$dp_1 \wedge dq_2 \wedge dq_3 + dp_2 \wedge dq_1 \wedge dq_3 +$	(2,1)	0
		$dp_3 \wedge dq_1 \wedge dq_2$		
6	$\Delta_{q_2,q_3}f=0$	$dp_3 \wedge dq_1 \wedge dq_2 - dp_2 \wedge dq_1 \wedge dq_3$	(0,1)	0
7	$\square_{q_2,q_3}f=0$	$dp_3 \wedge dq_1 \wedge dq_2 + dp_2 \wedge dq_1 \wedge dq_3$	(1,0)	0
8	$\frac{\partial^2 f}{\partial q_1^2} = 0$	$dp_1 \wedge dq_2 \wedge dq_3$	(0,0)	0
9		0	(0,0)	0

Table: Classification of effective 3-formes in dimension 6

HyperKäler triple of MAE

The conservation law (the Ertel's theorem) of the potential vorticity obtains (using the Hamiltonian representation of the system):

$$\frac{d}{dt}\left(\frac{\partial(q_1,q_2)}{\partial(a,b)}\right) =$$

$$\frac{d}{dt}(1+\phi_{q_1q_1}+\phi_{q_2q_2}+\det\operatorname{Hess}\phi\)=0,$$

This equation is a part of the HyperKähler triple of MAEs (R. and Roulstone 1997, 2001):

$$\begin{cases} \omega_{I} = \left[1 + a(p_{11} + p_{22}) + (a^{2} - c^{2})(p_{11}p_{22} - p_{12}^{2})dq_{1}\right] \wedge dq_{2} &, \\ \omega_{J} = \left[2cp_{12} + ac(p_{11}p_{22} - p_{12}^{2})\right]dq_{1} \wedge dq_{2} &, \\ \omega_{K} = -c\Omega &, \end{cases}$$

► The general family of (elliptic) MAE with constant coefficients carries all flat balanced models:

$$1 + \phi_{q_1q_1} + a\phi_{q_2q_2} + (a^2 - c^2) \det \operatorname{Hess} \phi = \zeta^{\mathbf{C}}/f,$$
 (6)

Among them are:

► The general family of (elliptic) MAE with constant coefficients carries all flat balanced models:

$$1 + \phi_{q_1q_1} + a\phi_{q_2q_2} + (a^2 - c^2) \det \operatorname{Hess} \phi = \zeta^{\mathbf{C}}/f,$$
 (6)

Among them are:

▶ The semi-geostrophic model(a = 1, c = 0 with $\zeta^{\mathbf{C}}/f$ positive);

► The general family of (elliptic) MAE with constant coefficients carries all flat balanced models:

$$1 + \phi_{q_1q_1} + a\phi_{q_2q_2} + (a^2 - c^2) \det \operatorname{Hess} \phi = \zeta^{\mathbf{C}}/f,$$
 (6)

Among them are:

- ▶ The semi-geostrophic model(a = 1, c = 0 with $\zeta^{\mathbf{C}}/f$ positive);
- ▶ The L_1 Salmon dynamics with a = c = 1;

► The general family of (elliptic) MAE with constant coefficients carries all flat balanced models:

$$1 + \phi_{q_1q_1} + a\phi_{q_2q_2} + (a^2 - c^2) \det \operatorname{Hess} \phi = \zeta^{\mathbf{C}}/f, \quad (6)$$

Among them are:

- ▶ The semi-geostrophic model(a = 1, c = 0 with $\zeta^{\mathbf{C}}/f$ positive);
- ▶ The L_1 Salmon dynamics with a = c = 1;
- ► The $\sqrt{3}$ dynamics of McIntyre Roulstone for $a=1, c=\sqrt{3}$ and $\zeta^{\mathbf{C}}/f < 3/2$;

Our classification theorem in 2D gives a classification of all "almost-balanced" ($0 < c < \sqrt{3}$) models with a uniform potential vorticity.

The subjects which I had no time to describe:

- Symmetries, conservation laws and Noether theorem for MAO and MAE
- Self-similar solutions, shock waves and Hugoniot-Rankin conditions
- ► Variational MAE, divergent MAE and Euler-Lagrange operators
- Jacobi 2D non-linear 1st order systems and Genralised Complex Geometry of Hitchin
- Generalised Calabi-Yau 3D structures
- Linearisation of Dritchell-Viudez coupled MAE in 2D and 3D
- Many-many other interesting things...

Bibliography:

Cambridge University Press,2007

Thank you for your attention!

