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Global Solutions: Monge

sphere and pseudosphere
An example: curvature of a surface in R3
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Monge-Ampeére structure

Definition
A Monge-Ampére structure on a 2n-dimensional manifold X is a
pair of differential form (Q,w) € Q2(X) x Q"(X) such that Q is

symplectic and w is Q-effective i.e. QANw = 0.



Main idea

» Let F:R"” — (/)R" be a vector-function and its graph is a
subspace in T*(R") = R"” & (i/)R".
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Main idea

» Let F:R"” — (/)R" be a vector-function and its graph is a
subspace in T*(R") = R"” & (i/)R".

» The tangent space to the graph at the point (x, F(x)) is the
graph of (dF)y - the differential of F at the point x.

» This graph is a Lagrangian subspace in T*(R”) ifF (dF)x is a
symmetric endomorphism . The matrix || 2 6

Vx iff the differential form >, Fidx; € /\1(]R”) is closed or,
equivalently, exact:

R L Fovr
Ox;
» The projection of the graph of Vf on (R") is given in

coordinates by V?(f) =




Correspondence: Forms -Symplectic MAO

Let M be a smooth n—dimensional manifold and w is a differential
n-form on T*M. A (symplectic) Monge-Ampere operator
A, C®°(M) — Q"(M) is the differential operator defined by

Ay (f) = (df)"(w),

where df : M — T*M is the natural section associated to f.



Examples

| - [ a.=o
dgi N dpo — dgo N\ dpa Af =0
dg1 A dp> + dgr A dpy af =0
dp1 A dpa A\ dpz — dgi A dgo A dgs Hess(f) =1

dpi1 Adga A dgs — dpa Adgr A dgs || Af — Hess(f) =0
+dps A dq1 A dgx — dp1 A dpa A dps




Hodge-Lepage-Lychagin theorem

Hodge, Lepage and Lychagin

Theorem (Hodge-Lepage-Lychagin)

» Every form w € N*(V*) can be uniquely decomposed into the
finite sum
w:wo+Tw1+T2w2—|—...,

where all w; are effective forms.



Hodge-Lepage-Lychagin theorem

Hodge, Lepage and Lychagin

Theorem (Hodge-Lepage-Lychagin)

» Every form w € N*(V*) can be uniquely decomposed into the
finite sum
w:wo+Tw1+T2w2—|—...,

where all w; are effective forms.

» If two effective k-forms vanish on the same k-dimensional
isotropic vector subspaces in (V,Q), they are proportional.



Symplectic Monge-Ampere Equations: Solutions

» A generalised solution of a MAE A, = 0 is a lagrangian
submanifold of (T*M, Q) which is an integral manifold for the
MA differential form w:

w|[_:0.



Symplectic Monge-Ampeére Equations: Solutions

» A generalised solution of a MAE A, = 0 is a lagrangian
submanifold of (T*M, Q) which is an integral manifold for the
MA differential form w:

w]L:0.

» A generalised solution (generically) locally is the graph of an
1-form df for a regular solution f.



Generalized solution

o N
TR

df

dh

Generalised solution of a MAE




Generic types of singularities for Generalized solutions of
MAE

Specific property of the graph-like Lagrangian submanifolds: their
projection on the "configuration space" R” is a diffeomorphism.
Our generalised solutions are general Lagrangian immersions and
they have Arnold's lagrangian singularities.

% Lagrangian singularities (Wave fronts,

foldings etc.) This singularities describe the formation of fronts
(Chynoweth, Porter, Sewell 1988)



Symplectic Equivalence-1

» Two SMAE A,, =0 and A, = 0 are locally equivalent iff
there is exist a local symplectomorphism
F:(T*M,Q) — (T*M,Q) such that

F*wl = W?.



Symplectic Equivalence-1

» Two SMAE A,, =0 and A, = 0 are locally equivalent iff
there is exist a local symplectomorphism
F:(T*M,Q) — (T*M,Q) such that

F*wl = W?.

» L is a generalised solution of Ag«,, =0 iff F(L) is a
generalised solution of A, = 0.



Legendre partial transformation

Legendre

2 —
7777777 P Va1g1Yq2q2 — Vq1q2 =1

*

w:dQ1/\dP2—dq2/\dP1|<¢—|@:dpl/\dpz—dql/\dqz




Legendre partial transformation-2

0] [— (ql Q27 Vi VQ2)

( —Ugy, Ugy CIZ)

Lu - (Cl17 q2, Ugy, uqz)

g2 arcsin(gpe™ M)

it N
2

Wlth b T*RZ — T*RZ' (q17CI2aP1)P2) = (qlu —pP2, P1, QZ)




Sewell-Chynoweth SG- equation

Numerical Solution of the semi-geostrophic 3D equation (Cullen,
Sewell-Chynoweth...)

2

0“u
hess, , (u) + 552 = hess(u) (1)



Sewell-Chynoweth MAO form and its equivalence

» The effective form of (?7):
w=dpANdgANdz+dxANdy Ndr—vydxAdyAdz,

(x,y,2,p,q,r)— canonical coordinates system of T*R3.
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Sewell-Chynoweth MAO form and its equivalence

» The effective form of (?7):
w=dpANdgANdz+dxANdy Ndr—vydxAdyAdz,

(x,y,2,p,q,r)— canonical coordinates system of T*R3.

» This form is a sum of two decomposable 3-forms:
w=dpAdqAdz+dxAdyA(dr —~dz).

» ¢*(w) = dp Adg A dr— dx A dy A dz where ¢ is the
symplectomorphism

o(x,y,2,p,q,r) = (x,y,r,p,q,yr — z).
» The equation (??) is symplectically equivalent to the equation

hess(u) = 1. (2)



An exact solution of the SG 3D equation

(b+4¢3)3de

Vxy+yz+zx
fw%ﬂZ/

a

is a regular solution of (?7). Therefore,

L= {(xy: (x+y)as (v + 2)a, (2 + )1 (x + y)a - 2)}
is a generalised solution of (?7) with
1 b
= 5(
(xy +yz + 2x)

[N

+4)3.

@ 3
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Hoskins geostrophic coordinate transformation

» The SG equations are used like a good approximation to the
Boussinesq primitive equations when the rate of the flow
momentum is smaller than the Coriolis force, or in other
words, when the Rossby number Ro << 1.



Hoskins geostrophic coordinate transformation

» The SG equations are used like a good approximation to the
Boussinesq primitive equations when the rate of the flow
momentum is smaller than the Coriolis force, or in other
words, when the Rossby number Ro << 1.

» B. Hoskins (1975) had proposed a remarkable coordinate
transformation ( a passage to geostrophic coordinates in x — y
directions such that the geostrophic velocity and potential
temperature may be represented in terms of one function both
in the transformed coordinates as in physical ones






Hoskins geostrophic 3D equation

> Let ® := ¢ + 5(u2 + v2) then VO = V¢ and



Hoskins geostrophic 3D equation

> Llet o=+ %(uﬁ + ng) then V& = V¢ and
» if the potential vorticity is uniform (gg = %Nz) then one
have in the interior of the fluid for any time T =t
1
2

L

1
(Pxx + Pyy) — ﬁ(q’qu’yv — O%y) + e

®z7=1. (3)



Hoskins geostrophic 3D equation

> let d =9+ 5 (u +v)thenV¢ V¢ and

» if the potential vorticity is uniform (gg = %Nz) then one
have in the interior of the fluid for any time T =t

1 1
72(Pxx + Pyy) — Z(ExxPyy — O%y) + N2 —®zz=1. (3)

» Here (and in what follows) f is the Coriolis parameter taking
as a constant and N is the Brunt - Visald frequency:

a8
N=,-==
oy’

for the uniform potential vorticity g, and the constant
potential temperature 6.



Hoskins geostrophic MA effective form

» This is a 3D Monge-Ampére equation with the effective form

w= f(dp/\dy/\dz+dx/\qudz)+ dx/\dy/\dr—

f4dp/\dq/\dz—dx/\dy/\dz



Hoskins geostrophic MA effective form

» This is a 3D Monge-Ampére equation with the effective form

w= (dp/\dy/\dz+dxAdq/\dz)+ dx/\dy/\dr—

f
f4dp/\dq/\dz—dx/\dy/\dz
» This form is the sum of two decomposable forms:
1
w= dex/\dy/\dr—(dx—f—dp) (dy — fzd)/\dz



Hoskins geostrophic MA effective form : equivalence

» Consider the symplectomorphism

F(x,y,2,p,q,r) = (p,q, 2, —x + f?p, —y + f2q,r).  (4)



Hoskins geostrophic MA effective form : equivalence
» Consider the symplectomorphism

F(x,y,z,p.q,r) = (p,q,z, —x + f2p,—y + f2q,r).

pi=—x+1fp, %:=p
ji=-y+fq j:=q
Fi=r Z:=z

with = Q, provides the following effective form:



Hoskins geostrophic MA effective form : equivalence
» Consider the symplectomorphism

F(x,y,z,p.q,r) = (p,q,z, —x + f2p,—y + f2q,r).

pi=—x+1fp, %:=p
§:=-y+fq y:=gq
Fi=r Z:=z

with = Q, provides the following effective form:

| 4
1 1

(4)



Hoskins geostrophic MA effective form : equivalence

» Consider the symplectomorphism

F(x,y,z,p.q,r) = (p,q,z, —x + f2p,—y + f2q,r).

with = Q, provides the following effective form:
1
4
» The Hoskins SG (?7?) is equivalent to the (?7):

1
@:mdﬁ/\df]/\dF— dX ANdy N dzZ.

N> (ggg)?
hess(u) = = f6500)2

by the symplectomorphism (?7).



Table 1. Effective forms with constant coefficients in 2D

A,=0] w | pf(w) |
Af =0 | dgi A dpa — dgx A dp: 1
Of =0 | dg1 A dpz + dgz2 A dp1 -1
gzg =0 dgy N dpo 0




Invariants for effective 3-forms

» To each effective 3-form w € Q3(R®), we assign the following
geometric invariants:



Invariants for effective 3-forms

» To each effective 3-form w € Q3(R®), we assign the following
geometric invariants:

» the Lychagin-R. metric defined by

(exw) A (Lyw) AQ
Q3 ’

gw(Xv Y) =



Invariants for effective 3-forms

» To each effective 3-form w € Q3(R®), we assign the following
geometric invariants:

» the Lychagin-R. metric defined by

(X, v) = x) /\g(;syw) re

» the Hitchin tensor defined by

8w = Q(Aw'7 ')7



Invariants for effective 3-forms

v

To each effective 3-form w € Q3(R®), we assign the following
geometric invariants:

v

the Lychagin-R. metric defined by

(exw) A (Lyw) AQ

gw(Xa Y) = Q3 )
» the Hitchin tensor defined by
8w = Q(Aw'7 ')7

v

The Hitchin pfaffian defined by

1
pf(w) = 6trA3J.



’ \ A,=0 \w \s(qw) \pf(w]
1 vhess(f) =1 —dq1 AdgoNdgz+v-dpi AdpaAdps | (3,3) | 12
2| Af —vhess(f) = 0| dp1 A dgo A dgs — dpa A dgy A dgs | (0,6) | —v?
+dp3Adqi ANdgx—v-dpi Adp2 Ndp3

3|10F +v hess(f) =0|dp1 Adga A dgs + dp> A dg1 A dgs (4, 2) —1?
+dps\dg1A\dq2+v-dp1 Adp2Adp3

4 Af =0 dp1 A dga A dgs — dpa Adgi Adgz+ | (0, 3) 0
dps A dg1 A dga

5 Of=0 dp1 Adga Adgz+dpa Adgi Adgz+ | (2,1) 0
dps A dg1 N dgo

6 Aq27q3f =0 dps A dgi A dgy — dpy A dgi A dgs (0, 1) 0

7 Dq27q3f =0 dp3 A\ dgi A\ dgo + dpa A\ dgi A dgs (1, 0) 0

8 gqg =0 dp1 A dgo A das (0,00 o

9 0 (0,0 ©

Table: Classification of effective 3-formes in dimension 6



HyperKaler triple of MAE

The conservation law (the Ertel’s theorem) of the potential vorticity
obtains (using the Hamiltonian representation of the system):

(13-

d
a(l + ¢q1q1 + d)qzqz + det HESSQZ) ) = 0’

This equation is a part of the HyperKahler triple of MAEs (R. and
Roulstone 1997, 2001):

wy = [1+ a(p11 + p22) + (2% — ) (pr1p22 — pH)dq1] A dqo
wy = [2CP12 + ac(p11p22 — P%z)] dg1 A dqz )
wg = —cf2



2D balanced model MAE

» The general family of (elliptic) MAE with constant coefficients
carries all flat balanced models:

1+ ¢giqn + a0Pgaqo + (32 - CQ) det Hess ¢ = Cc/f7 (6)

Among them are:
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2D balanced model MAE

v

The general family of (elliptic) MAE with constant coefficients
carries all flat balanced models:

1+ ¢giqn + a0Pgaqo + (32 - CQ) det Hess ¢ = Cc/f7 (6)

Among them are:

The semi-geostrophic model(a = 1, ¢ = 0 with ¢€/f positive);
The L1 Salmon dynamics with a = ¢ = 1;

The /3 dynamics of Mclntyre - Roulstone for a=1,¢c = /3
and ¢C¢/f < 3/2;

Our classification theorem in 2D gives a classification of all
"almost-balanced" (0 < ¢ < v/3) models with a uniform
potential vorticity.



The subjects which | had no time to describe:

» Symmetries, conservation laws and Noether theorem for MAO
and MAE

» Self-similar solutions, shock waves and Hugoniot-Rankin
conditions

» Variational MAE, divergent MAE and Euler-Lagrange operators

» Jacobi 2D non-linear 1st order systems and Genralised
Complex Geometry of Hitchin

» Generalised Calabi-Yau 3D structures
» Linearisation of Dritchell-Viudez coupled MAE in 2D and 3D

» Many-many other interesting things...
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Thank you for your attention!




