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Introduction

Cartan’s lesson (summary)

I Principle of least action with A =
∫ t1

t0
Ldt leads to

δA = dA(Z ) = [Θ]t1
t0
−
∫ t1

t0
(E .L.) δqdt, Θ = p dq −Hdt

(1)

I Legendre transform appears: p = ∂L
∂q̇ , H = ∂L

∂q̇ q̇ − L
I Hamilton formalism with Ω = −dΘ = dq ∧ dp︸ ︷︷ ︸

Ω̃

+H ∧ dt

XH yΩ = 0 ⇔

q̇ = ∂H
∂p

ṗ = −∂H
∂q

I Poisson formalism Ḟ = {F ,H} = Ω̃(XF ,XH)
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ṗ = −∂H
∂q
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Introduction

Moment map

Theorem (Moment map)

Let XS be (inifinitesimal) vector field of symmetry. The quantity
J = XS yΘ is conserved along the solutions of the variational
problem.

Proof
Since the Lagrangian L is invariant under XS , we also have the
invariance of the Poincaré-Cartan form

0 = LXS Θ = d (XS yΘ) + XS y dΘ.

Therefore, along the solutions (vector field XH), we have

d (XS yΘ) (XH) = −XS y dΘ(XH) = Ω(XH ,XS) = 0 = dJ(XH),

according to the variation theorem and the result follows.



Introduction

Symmetry example: conservative systems

Invariance by time translation

XS = ∂t

Computation of the moment map

J = XS yΘ = ∂t y (pdq −Hdt) = pdq(∂t)−H dt(∂t)︸ ︷︷ ︸
=1

= −H

Hamiltonian H is conserved



Introduction

A road to multisymplectic numerical methods

Figure: Sketch of a one-jet fiber-bundle J1E : the section j1φ is called the
canonical lifting or the canonical prolongation of φ to J1E . A section of
π which is the canonical extension of a section of π is called a
holonomic section. Any vector is a sum of a tangent vector to the
section j1φ and a vertical vector X = Xφ + X v .
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Preservation of the configuration space

Curved manifolds

Figure: Idea: Insure that numerical solutions stay on the configuration
space



Preservation of the configuration space

The Runge-Kutta Munthe-Kaas methods (RKMK)

RKMK are examples of Lie group methods [9, 10, 11]. They can
be used for a given initial value problem

Ẏ = A(t,Y )Y , Y (0) = Y0 ∈M (2)

Homogeneous space
Y ∈M on which a Lie group G acts → Y (t) = g(t)Y0



Preservation of the configuration space

The exponential map

Figure: The exponential map is used to guess a solution of (2) on the
form Y (t) = g(t)Y0 with g(t) = exp(ξ(t))



Preservation of the configuration space

The exponential map...

The exponential map

exp : g → G
ξ 7→ g = exp(ξ)

and its differential (tangential map)

Texp : Tg ' g → TgG
ξ̇ 7→ ġ = Texp(ξ̇)



Preservation of the configuration space

The exponential map...

Computation of the time derivative of Y (t) = g(t)Y0

Ẏ = ġY0 = ġg−1gY0 = ġg−1Y = TRg−1(ġ)Y = TRg−1

(
T exp(ξ̇)

)
Y ,

shows clearly that (2) may be written as

Ẏ = dR exp(ξ̇)Y = AY

dR exp = TRg−1 ◦ T exp is the right trivialized derivative.



Preservation of the configuration space

Lie Group structure preserving ODE

Inverting dR exp, a differential equation on the variable ξ ∈ g is
then obtained

ξ̇ = dR exp−1 (A) , ξ(0) = 0 (3)

The solution ξ(t) of this equation is then finally used to compute
Y (t) via the exponential map. Doing so ensures that the
structure of the Lie group is preserved — namely that the
solution lies on G .



Preservation of the configuration space

Lie Group structure preserving ODE....

This is a general initial value problem

ξ̇ = f (t, ξ), ξ(t0) = ξ0

if the function f is given by f = dR exp−1
ξ =

∑∞
k=0(Bk/k!) adk

ξ ,
where (Bk)k≥0 are the Bernouilli numbers. A classical RK methods
can now be used for g is a linear vector space.



Preservation of the configuration space

Example: RKMK method of order 4

The RKMK4, based on the order 4 classical RK4 method, is
obtained by truncation of the sum up to the term of order q = 2,
yielding

ξ̇ := f (t, ξ) = A(t, Y )− 1
2 adξ (A(t, Y )) + 1

12 ad2
ξ (A(t, Y ))

Classical RK4 method given by the Butcher table
0 k1 = f (tn, 0)
1/2 1/2 k2 = f (tn + h/2, h

2k1)
1/2 0 1/2 k3 = f (tn + h/2, h

2k2)
1 0 0 1 k4 = f (tn + h, h k3)

1/6 2/6 2/6 1/6
leads to the numerical algorithm

ξ̃ = h
6 (k1 + 2 k2 + 2 k3 + k4) , Yn+1 = exp

(
ξ̃
)
Yn.



Preservation of the configuration space

Free rigid body dynamics

For the free rigid body, the Lie group G = SO(3) acts transitively
on the homogeneous spaceM = S2. Equation (2) yields in this
case

π̇ = −

 0 π3
I3 −π2

I2
−π3

I3 0 π1
I1

π2
I2 −π1

I1 0

π, π(0) = π0 (4)

with π = (π1, π2, π3)T and I = diag(I1, I2, I3) is the inertia tensor.



Preservation of the configuration space

Free rigid body dynamics...

π1

π2

π3

π1

π2

π3

Figure: Angular momentum. RKMK4 methods (left) compared to a
variational integrator of order 1 (right) for time step h = 0.9,
π0 =

(
cos(π/3) 0 sin(π/3)

)T , I = diag(2/3, 1, 2).



Preservation of the configuration space

Relative energy error
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Figure: Relative energy error for h = 0.9.The RKMK4 method generates
numerical errors that result over the long term in energy dissipation. For
variational integrator the energy is not exactly preserved but remains in a
bounded interval.
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Variational integrators

Lagrangian Discrete Lagrangian

E-L equations Discrete E-L equations

Discretization

Discretization
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Variational integrators

Covariant variational methods, Lie groups

Consider a reduced Lagrangian `, for each interval [ti , ti+1], the
discrete action is a sum of approximated integral
`d (ξi ) ≈

∫ ti+1
ti

`(ξ) d t given by

Sd (gd ) =
N−1∑
i=0

`d (ξi ).



Variational integrators

Local diffeomorphism

A local diffeomorphism τ : g→ G is used to move from point gi to
gi+1 = giτ(h ξi ) (5)

according to a velocity vector ξi given in the Lie-algebra TGe ≡ g.
Inverting the formula for a time step h, we obtain
ξi := 1

hτ
−1(g−1

i gi+1).



Variational integrators

Variational calculus

Since the variation δSd (gd ) =
∑N−1

i=0

〈
∂`d
∂ξ (ξi ), δξi

〉
, to apply the

Hamilton principle δξi has to be computed. Knowing

δ
(
g−1

i gi+1
)

= δg−1
i gi+1 + g−1

i δgi+1 = − g−1
i δgi︸ ︷︷ ︸
δζi

g−1
i gi+1︸ ︷︷ ︸
τ(hξi )

+ g−1
i gi+1︸ ︷︷ ︸
τ(hξi )

g−1
i+1δgi+1︸ ︷︷ ︸
δζi+1

=
(
−δζi + τ(hξi ) δζi+1 τ

−1(hξi )
)
τ(hξi ) =

(
−δζi + Adτ(hξi ) δζi+1

)
τ(hξi ),

we obtain, δξi = 1
h d τ−1

τ(hξi )

[(
−δζi + Adτ(hξi ) δζi+1

)
τ(hξi )

]
Hence the right trivialized differential dR τ−1 : g→ g defined by
dR τ−1

ξ := Tτ(ξ)τ
−1 ◦ TRτ(ξ) is introduced, to write

δξi = 1
h dR τ−1

hξi

(
−δζi + Adτ(hξi ) δζi+1

)
, δζi = g−1

i δgi



Variational integrators

Variational calculus...

Using the definition of the adjoint 〈π,Aξ〉 = 〈A∗π, ξ〉 where π ∈ g∗

and ξ ∈ g, the variation of the action functional now reads

δSd (gd ) =
N−1∑
i=0

〈1
h
(

dR τ−1
hξi

)∗ ∂`d
∂ξ

(ξi ),Adτ(hξi ) δζi+1 − δζi

〉
.

Introducting the momentum µi associated to ξi via the formula

µi :=
(

dR τ−1
hξi

)∗ ∂`d
∂ξ

(ξi ) (6)

and changing the indexes in the sum (discrete integration by part),
we finally get, by the independence of δζi for all
i ∈ {1, . . . ,N − 1}, the discrete Euler-Poincaré equations

µi − Ad∗τ(hξi−1) µi−1 = 0. (7)



Variational integrators

Numerical algorithm

Algorithm 1: General implementation of the covariant variational
method.
Data: g0, ξ0
g1 = g0τ (hξ0) , µ0 = h

(
dR τ−1

hξ0

)∗ ∂`d
∂ξ (ξ0)

for i = 1 to N − 1 do
Compute µi = Ad∗τ(hξi−1) µi−1, (eq. (7))
Solve

(
dR τ−1

hξi

)∗ ∂`d
∂ξ (ξi )− hµi = 0 to find ξi , (eq. (6))

Update gi+1 = giτ (hξi ), (eq. (5))
end
This implicit algorithm (eq. (6)) is solved using a numerical solver
such as a Newton method.



Methods based on generating functions

A road to multisymplectic numerical methods

Figure: Sketch of a one-jet fiber-bundle J1E : the section j1φ is called the
canonical lifting or the canonical prolongation of φ to J1E . A section of
π which is the canonical extension of a section of π is called a
holonomic section. Any vector is a sum of a tangent vector to the
section j1φ and a vertical vector X = Xφ + X v .



Methods based on generating functions

Methods based on generating functions

Main idea
I A numerical method can be viewed as a canonical

transformation at each time step
I It generates a structure preserving method since canonical

transformations preserve the (pre)-symplectic 2-form ω

I Generating functions are used to construct canonical
transformations

I Each approximation a generating function gives rise to a
numerical method (to a certain order)



Methods based on generating functions

Canonical transformations

Figure: A canonical transformation is a map (t, q, p) 7→ (t,Q,P) between
coordinates of extended phase space considered as a manifold M.
Independent variables (q,P) are used to construct the second kind of
generating function G(t, q,P).



Methods based on generating functions

The Poincaré-Cartan form

The Poincaré-Cartan form θ is a differential 1-form on M for which
H(t, q, p) is a Hamiltonian function. The (pre)-symplectic form ωθ
is obtained by differentiation

θ = pdq − Hdt 7→ ωθ = −dθ

The coordinates (t,Q,P) can be considered as giving another
chart on M associated to the 1-form Θ and 2-form ΩΘ with a
corresponding Hamiltonian function K (t,Q,P)

Θ = PdQ − Kdt 7→ ΩΘ = −dΘ



Methods based on generating functions

Generating function of the second kind

As it is well-know, it is possible to find four1 generating functions
depending of all mixes of old and new variables: (q,Q), (q,P),
(p,Q), or (p,P). It appears that the second kind (q,P) of
generating function is easily used to generate an infinitesimal
transformation closed to the identity. And in turn, defines, by
construction, a structure preserving numerical method. The mixed
coordinates system (t, q,P) may be related to the previous ones
through two mappings h and f : such that

h : (t, q,P) 7→ p(t, q,P) and f : (t, q,P) 7→ Q(t, q,P)

1at least 4, since other possibilities exist



Methods based on generating functions

Invariance of the symplectic map

Figure: If each of the (pre-)symplectic forms ωθ = −dθ and ΩΘ = −dΘ
are invariantly associated to one another, their pull-back should agree



Methods based on generating functions

Invariance of the symplectic map...

Since the operator (d ) and ( ∗) commute, that means
d(h∗θ) = d(f ∗Θ). Consequently, h∗θ and f ∗Θ differ from a closed
form

dS(t, q,P) = h∗θ − f ∗Θ = h∗ (pdq − Hdt)− f ∗ (PdQ − KdT )

Introducing2 G = (f ∗QP) + S, one computes

∂G
∂t dt + ∂G

∂q dq + ∂G
∂P dP = h∗ (pdq − Hdt)− f ∗ (QdP − Kdt)

2f ∗(PdQ) = f ∗d(QP) − f ∗QdP



Methods based on generating functions

Hamilton-Jacobi equation

(
f ∗K − h∗H − ∂G

∂t

)
dt−

(
f ∗Q − ∂G

∂P

)
dP+

(
h∗p − ∂G

∂q

)
dq = 0

i.e. 
K (t,Q(t, q,P),P) = H(t, q, p(t, q,P)) + ∂G

∂t
Q(t, q,P) = ∂G

∂P
p(t, q,P) = ∂G

∂q



Methods based on generating functions

Hamilton-Jacobi equation

Tacking K ≡ 0 yields the so-called Hamilton-Jacobi equation

H(t, q, ∂G
∂q ) + ∂G

∂t = 0. (8)

Any solution G(t, q,P) generates a canonical transformation ψ
that transforms the Hamiltonian vector fields XH to equilibrium:
ψ∗XH = XK=0 = 0.{

f ∗Q = Q(t, q,P) = ∂G
∂P

h∗p = p(t, q,P) = ∂G
∂q

(9)



Methods based on generating functions

Integrable system

Figure: The canonical transformation ψ transforms the Hamiltonian
vector fields XH to equilibrium: ψ∗XH = XK=0 = 0.The integral cuves of
XK are represented by straight lines in the image space. The vector field
has been "integrated" by the transformation



Methods based on generating functions

Example: the identity transformation

The choice of the second kind of generating function is convenient
to easily generate the identity (canonical) transformation.
Choosing G = qP in (9b) and (9c) reads{

Q(t, q,P) = ∂G
∂P = q

p(t, q,P) = ∂G
∂q = P

with H = ∂G
∂t = 0 eq. (8)



Methods based on generating functions

Infinitesimal transformation

So, a canonical (infinitesimal) transformation is obtained by
plugging the ansatz

G(t, q,P) = qP+
∞∑

m=1

tm

m!Gm(q,P) = qP+tG1(q,P)+ t2

2 G2(q,P)+. . .

(10)
into the Hamilton-Jacobi equation (8). Equating coefficients

G1 = −H(q,P), G2 = −∂H
∂p

∂G1
∂q , G3 = −∂H

∂p
∂G2
∂q −

∂2H
∂p2

∂G1
∂q . . .



Methods based on generating functions

Structure preserving numerical method

A numerical method of the order k is obtained by truncating the
serie (10) to a certain order k (see also [?]). The remaining
variables (p,Q) are computed using the generating function G
in (9b) and (9c): Q = ∂G

∂P and p = ∂G
∂q . Putting (q, p) in the

left-hand size, the numerical algorithm is finally{
q = Q −

∑k
m=1

tm

m!
∂Gm
∂P (q,P)

p = P +
∑k

m=1
tm

m!
∂Gm
∂q (q,P)

As it can be seen, the first step may be implicit for the variable q.
But when it is solved, the second step is explicit for p.



Methods based on generating functions

The symplectic Euler method

The symplectic Euler method is an example of such methods of
order 1 with G1 = −H(q,P).{

q = Q + t ∂H
∂P (q,P)

p = P − t ∂H
∂q (q,P)



Methods based on generating functions

Backward analysis question

G chosen, what is the approximative hamiltonian system that is
exactly solved by the numerical methods?

Initial Hamiltonian system H Exact solution S

Approximative Hamiltonian H̃ = −∂G
∂t

Numerical solution S̃

H̃(t, q,P +
k∑

m=1

tm

m!
∂Gm
∂q ) = −∂G

∂t = −
k∑

m=1

tm−1

(m − 1)!Gm(q,P)



Methods based on generating functions

Poincaré-Cartan form for Lie reducion

Following the same approach as the preceding section, the
Hamilton-Jacobi theory is reduced from T ∗G to g∗, the dual Lie
algebra. Let (t, q0, π0) be coordinate functions in some chart of
extended phase space considered as a manifold M = R× G × g∗.
The 1-form Poincaré-Cartan is

θ = π0λq0 − Hdt

where λq0(v) = (Lq−1
0

)∗(v) is the Maurer-Cartan form.
The coordinates (t, q1, π1) the 1-form is Θ = π1λq1 − Kdt with
λq1(v) = (Lq−1

1
)∗(v).



Methods based on generating functions

Lie-Poisson Hamilton-Jacobi integrators

Figure: The mixed coordinates system (t, q0, q1) may be related to the
previous ones through two mappings h : (t, q0, q1) 7→ π0(t, q0, q1) and
f (t, q0, q1) 7→ π1(t, q0, q1).



Methods based on generating functions

The generating function of the first kind

For the left invariant system, the Hamiltonian function is left
invariant. It is then natural to seek for left invariant generating
functions St(q0, q1) = St(qq0, qq1), ∀q ∈ G . Choosing q = q−1

0 we
can construct a left invariant function S̄t given by

St(q0, q1) = St(e, q−1
0 q1) = St(e, g) = S̄t(g), g = q−1

0 q1.

The invariance of the (pre-)symplectic forms ωθ = −dθ and
ΩΘ = −dΘ gives now rise to a function S̄t(g) such that

dS̄t = f ∗Θ− h∗θ = f ∗ (πλq1 − Kdt)− h∗ (π0λq0 − Hdt) (11)



So computing dS̄t = ∂S̄t
∂t dt + ∂S̄t

∂g dg , it appears that dg must also
be computed in term of λq0 and λq,

dg = d(q−1
0 q1) = dq−1

0 q1 + q−1
0 dq1

= − q−1
0 dq0︸ ︷︷ ︸
λq0

q−1
0 q1︸ ︷︷ ︸

g

+ q−1
0 q1︸ ︷︷ ︸

g

q−1
1 dq1︸ ︷︷ ︸
λq1

= −λq0g + gλq1 = −(Rg )∗λq0 + (Lg )∗λq1 .



So, comparing the expression
dS̄t = ∂S̄t

∂t dt − ∂S̄t
∂g (Rg )∗λq0 + ∂S̄t

∂g (Lg )∗λq1 with (11), one obtains
h∗H = f ∗K + ∂S̄t

∂t
f ∗π1 = (Lg )∗ ∂S̄t

∂g
h∗π0 = (Rg )∗ ∂S̄t

∂g

7→


H(t, π0(t, g)) = K (t, π1(t, g)) + ∂S̄t

∂t
π1(t, g) = (Lg )∗ ∂S̄t

∂g
π0(t, g) = (Rg )∗ ∂S̄t

∂g
(12)



For H ≡ 0, this yields the Lie-Poisson Hamilton-Jacobi equation

K
(
t, (Lg )∗∂S̄t

∂g

)
+ ∂S̄t

∂t = 0, g = q−1
0 q1 (13)

So equation (12c)

π0(t, g) = (Rg )∗∂S̄t
∂g (14)

plugged into equation (12b) gives

π1(t, g) = Ad∗gπ0(t, g) (15)

Lie-Poisson integrator is obtained by approximately solving the
Lie-Poisson Hamilton-Jacobi equation (13) and then using (14)
and (15) to generate the algorithm. This last equation (15)
manifestly preserves the co-adjoint orbit
Oπ0 = {π ∈ g∗|π = Ad∗gπ0,∀g ∈ G}. .



As in the classical case, one can generate algorithms of arbitrary
accuracy by approximating the generative function by an ansatz
such as the one given by (10), i.e

S̄t(g) = S0(g)+
∞∑

m=1

tm

m!Sm(g) = S0 +tS1(g)+ t2

2 S2(g)+ . . . (16)

Li [?] propose to reformulate the above theory of a generating
function on TG∗ by the exponential mapping in terms of algebra
variable. For g ∈ G , choose ξ ∈ g so that g = exp ξ. He use
Channel and Scovel’s [?] results for which S0 = (ξ, ξ)/2).



Conclusion

Perspectives

In our case, our perspective is to relate the Lie-Poisson
Hamilton-Jacobi algorithm to the Euler-Poincaré algorithm
developed in section 3 based on the Cayley map. In particular,
since equations (15) and (7) are the same in both algorithm, it will
be instructive to compare the approximation of the Lie-Poisson
Hamilton-Jacobi equation (13) to the relationship between µ and ξ
given by equation (6).
Thank you...



Conclusion
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