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Outline

« From analytic mechanics to field theories: role of symmetries
* Symmetries in continuum mechanics

* Mathematical approach: symmetries, conservation Laws, Noether’s theorem,
the direct construction method of cons. laws

* Case of elastodynamics: examples of symmetries, cons. laws & equivalence
transformations
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Condensed form of Noether’s theorem in classical mechanics

Noether’s theorem: on the real trajectory of a dynamical system, a quantity is conserved for
each symmetry (discrete or continuous).

Measurement of observable physical quantities implies their invariance by a change of
experimental conditions: relativity principle entails conservation laws.

Non observable quantities are then not measurable (extends to quantum mechanics).

Non observable Symmetry Conservation law
Absolute origin of time Temporal translation Energy
Absolute origin of space Spatial translation Linear Momentum
Privileged direction Rotation Angular momentum

Corollary: incompatibility between different physical quantities.

Ex.: energy conservation associated with non observable nature of absolute time

formulated as classical limit when Planck constant vanishes (Heisenberg inequality):

AEAt=h >0



Lagrangian formulation in classical mechanics

Lagrangian formulation of the laws of physics trace back to about 1790.

frequently used in classical mechanics to write laws of motion from a least action
principle.

Generalization: many physical laws derived from a Lagrangian formulation
-> Allows non mechanistic vision of classical mechanics
-> Highlight symmetry properties.

Allows description of elementary phenomena (set of interacting particles) and provides
linkage with quantum mechanics thanks to Hamiltonian formalism.

Basic idea: represent a system depending on N DOF’s by a point or vector with N
generalized coordinates {qa}

Phase space: add velocities {q,,q,} (two sets of DOF’s considered independent a priori).
System characterized by Lagrangian function:  L[q,.q,,t]

-> Hamilton-Jacobi action s[qa];:j'l_[qa,qa,t]dt



Lagrangian & Hamiltonian formulation in classical mechanics (2)

Isochronal variation (at fixed time) of the action:

Ss[q“]:I{SqL et } Hfﬁ(ﬁq j}gq - {%6%

-> Euler-Lagrange equations (necessary conditions):

Voce{l,Z,..., N}, SS[qa]:0:>‘v’oce{l,2,..., N}, H—a

oL df oL
aq,

E.L. equ. invariant by adding total derivative of a function:
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Symmetries and conservation laws

Symmetries and conservation laws:

Def.: first integral = scalar quantity f(q;,q; t)=Cte

L L . _ .
Ex.: cyclic coordinate g s.t. S— =0—>p = g— =Cte by E.L. equations, since % =0

Ex.: conservation of energy for a time-independent Lagrangian:

Energy conservation results from absence of absolute origin of time: time translation

invariance leads to

oL (q;. 4.t i g +pd '
(q' b ) =0= dL = oL dq' + 8!_ dq' = B;id; + 04, :E(piqi)
ot dt (&g, dt  ag dt dt

d(L-p.
—_— ( dtp|q|):0:>dd_|::0: E::L_piqi:Cte




Construction of Lagrangian function based on symmetries

Galilean referential (class of referentials in relative motion at uniform velocity): assume

uniform time (Newtonian absolute time), homogeneous space (same properties whatever

position), isotropic space (same properties in all directions).

%:O:%: L(q,0,t)=0g’+p

E.L. equ. gives for this free particle Lagrangian (no external forces -> no potential energy):

%ZODE % :O:%E%:CEDQZCE
oq dt oq oq &g

-> Law of inertia: a free particle moves at constant velocity in any Galilean frame.

Remark: rest state nothing but a particular case of a motion at nil velocity.

. 1 .
Adopt kinetic energy of free particle: L(g,q,t) = quz

Euler equations invariant by rescaling Lagrangian by a multiplicative factor



Noether’s theorem in classical (analytic) mechanics

Conserved quantities play an important role for the analysis of dynamical systems:

* Highlight invariant properties.

* Allow to solve dynamical equ. more easily.

For isolated Newtonian systems: 10 conserved quantities due to invariance of laws of non
relativistic physics w.r. Galilean symmetry transformations:

translations in time & space, spatial rotation, proper Galilean transformations = boosts.

r'=r—vt

Poincaré group : Lie group of Minskowski space-time isometries (special relativity)

Consider point transformations of generalized coordinates in Lagrangian mechanics
canonical transformations leaving action invariant:

t—t=t(t), g—q=q(q(t),t) Non isochronal transformations
t, 3

S:=[L(q,q,t)dt—>S=S
t

Requires following law of transformation of the Lagrangian for S to be invariant:

E(a,ﬁ,f) = % L(g,q,1), % =J7 inverse of Jacobean of transformation t — t(t)



Noether’s theorem in classical (analytic) mechanics

Infinitesimal change of L under infinitesimal changes At,Aq shall satisfy:

M+AL:—MDAS=— tzdt@ (1)
ot dt b dt

Consider infinitesimal variation (non isochronal):

t—t(t) =t+8t(t); q—q(t)=q(t)+3q(t)

= 5S[a]=[p,59; - H8t]: 4 j: EL (59, - 4,5t )t )
EL ::ﬁ—E & Euler operator
aq;, dt{ o9,

Evaluate variation of action:

t—>t=1t(t), g—>q=q(q(t),t) = 5S[q] = j L(a,ﬁ,f)dt—IL(q,q,t)dt

t, t,
8(.) variation associated to a symmetry = A(.) more general variation
d t i .
Identify (1) and (2) —>a[p,~5qj — Hot +AFll +EL (qu —qut) =0 3
H{p;.a; t}:=pg; ~L
holds on virtual paths



Noether’s theorem in classical (analytic) mechanics

Remark: more specific case of an invariant Lagrangian leadsto AF=0

Assume now system admits Lie group of transformations depending on finite number

of parameters Au,not depending on time:

OAL(t 0Aq; (1)
GNOINWC IO
OAW; oA,

Equ. (3) becomes: {dQ ELJ( (t) qut( )]}AMFO
dt oW, " oA,

At =

with Noether’s charge:

;og;(t) L OAL(t) | oAF IR aq, (t) g OAt(t)
OALL, OApL,  OAW, dt OALL, " oA,

Qi =P

-> Noether’s th. in classical mechanics: on the path of motion, | EL’=0, thus Q, =Cte

-> Charge Q is conserved.



From discrete systems (analytic mechanics) to a field description

L=L(y,.0y,)— = ”t2 Ld*X = I Ld*X  Lagrangian of the field (time-space density)
Y
Vv X

Transition from analytical mechanics to field theory = discrete description to a continuum

Field continuous in space and time, present enverywhere.

Chain of N equidistant material points alighed along x-axis

1 N N
T, = > mv,’ - K= ZTn Kinetic energy -> dK = vandvn
n=1

n=1

A

v

do, -
EYRRARE'
dlﬁj **idt}"

12 J nooon

Increase particle number and their mutual distance, at constant density of particles

per unit length u=m/a and constant total length | =Na

T(x) = % wv(x)? = K = jO'T(x)dx
Discrete index ‘n’ replaced by continuous variable x

Differential of kinetic energy involves functional derivative :
dK
dv(x)

SK:_foldx 8K oV (X) :_f(:dx

BV ov(X) =J.OI dxuv(x)ov(x)
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From discrete systems (analytic mechanics) to a field description (2)

. dF
Def.: [U(X) +ev(x) ] = j dx?éw(x) —> oF functional derivative w.r. function u

d8 |e=0 u ou
EX.: F[g]::g(x)Ejg(x')é(x'—x)dx': SFI =8(x'-x)  Dirac
59(x’)
Euler equations:  §S= [ " dt 8S oX;(t) =0, Vox,(t)= 8S

=0
LR (1) ax;()

Euler equation relative to x

t ooy,
Variation of S:  8S= | a_d O sy dt+| Do ox. = | a7 ok sy gt
L ox; dt{ ox Pooloxg | L oxg dtl oK, ‘

t

Identify both variations -> functional derivative of action:

8s :{8L _1{$J}=o Euler equ.
Bx;(t) |ox; dt{ax,




From discrete systems (analytic mechanics) to a field description (3)
Action for a continuous system functional of the dynamical DOF Aj(;(, t)

= diL(t)=[ dt[dX [(A;A,0A,)—>85="dt[dX RISIN

BA,
t t L d &L ®S &L d &L
: 8S=| dtdL(t)=| dt|d°X \&————. A = ————=0
Euler equ. : L (t) L I {\&Aj dt\&AJ}é \&A \&A,— 0t RA
Writes using functional derivatives: &Eﬂ—ai oL : &!‘ _ ok
BA; A (0A)] ®A, oA

A, A, areindependent, but not A; and 9,A,
- VJ! i_g aL DlV aL =O
6Aj ot aA 5VXAJ-

Field equations formally identical to the discrete case using functional derivative

Hamilton equations of motion take a similar form: define momentum & Hamitonian

_ oL ] _8H ;. aH
I1, = A >H=[d°X(MA-L) — “wa AR




Noether’s theorem & conservation laws in field theory

Imposed continuous symmetries (spatial translation, temporal translation & rotation)
reflected in the form of the Lagrangian

-> conserved quantities (linear & angular momentum, energy, ...).

Similarly, require invariance of physics of the field, in terms of action integral,
w.r. same continuous transformations: leaves action integral invariant.

-> identify conserved quantities like energy, linear & angular momentum of the field.

Infinitesimal transformations (change of referential & variation of the field):

Restrict here presentation to scalar fields

Variation compares fields at two different points (‘nonlocal’ variation)

X, — X; +8X,
W(X) > y'(X') =y (X)+dy(X)



Noether’s theorem & conservation laws in field theory (2)

Def.: proper variation of the field (local variation) difference of the field at the same point

oy (X
Taylor series expansion: y'(X)=y'(X)+ “é)(( )zsxi
_ owu(X o(dy )(X)
— \p'(X')zw(X)+6\p+%8Xi+ ( )2 8X; =y (X)+dy (X)
< oy (X)
—> Oy =0y —————=0X,
W =oy X i

Invariance of action integral under change of referential
leads to:

0=358l= ”:2 L(w+S\|/,8iw+gaiw)d4X'—”:z L (y,0,y)d*X
v v

/
/

involves proper variations of the field & /

its first order spatial derivatives 0 %



Noether’s theorem & conservation laws in field theory (3)

Expand Jacobean & Lagrangian density: J=1+40,0X +O(8Xi) i=1...3, space - i=4: time

oL <
(o)

_ _ oL —
L(\y+8\|/,8i\|f +86i\|1) = L(w,@i\p)+£.8\|/ +

Account for relations:

R R oL = oL < oL <
00,y = 0,0y, 0; |0y ) =0 oy |—0; 0
W =00y 3(0w) .( \If) '(ﬁ(ﬁi\v) WJ (o) v Green formula

— 3l= ij: Zai {;[LSH - a(aaiL\p) ajw}@xj - 8(‘2:]) .aw}dztx =0

More compact writing using quadrivergence or d’Alembertien:

0f. =0« of =0,
oL

oL
f = Lo, — oy PX. 0 T;0X, 0
=Tt P sy ST o

j

Conservation of force-like quadrivector highlights energy-momentum tensor

oL Conserved for a purely horizontal variation (field is fixed)

0.
o(o,v) v Similar to Eshelby tensor in context of configurational mechanics

Ty =Lo;~




Noether’s theorem & conservation laws in field theory (4)

Integrate previous conservation law in infinite 3D-volume;
isolate spatial and time-like force components leads to:

f=(f.f,). of _0sdivi+ Teooo jdivde+3jf4dV=o
ot v dty,

First integral vanishes (Green’s formula over infinite volume) -> it remains

F=[fdv=] {ZT4j5xj+ oL .Bw}dV=Cte
A VAR

0(3,y)

Traduces Noether’s theorem: any invariance of physics by a continuous transformation
leads to the conservation of a physical quantity.

Remark: generalization of Noether’s theorem in quantum domain by including non
continuous transformations, discrete symmetries (e.g. inversions).

Postulate of 4-space homogeneity -> invariance under spatio-temporal translation:

X—>X'=X+a=8X;=a; — Yy, \V'(x'):\v(x):gw:o

— P= IT4,-dV=Cte conservation of 4-momentum
V3

— > ofi=0->>0T,=0
i j




Noether’s theorem & conservation laws in field theory (5)

oL VydV

Def,:3—m0mentum P = I T dv_ j a(ng)au\VdV—)ﬁ:_ I a(8 \V)
VoV, 4 V,_V, 4

oL
0(0,v)

Role similar to momentum in analytical mechanics.

derivative w.r. time (similar to analytic mech.)

involving field function H(X):=

Def.: momentum of a field 3-vector built from the volumetric density

p(X) =TT (X)Vy(X) > P == [ TI(X)Vy(X)dV

V,_V;

0=

Def.: energy of the field is remaining time-like component

P=Wi= [ Tdv= [ {-L+T1(X)d,y}dV
V. V.

V,_V,

-> Energy density H=TI(X)d,y—-L

Role similar to Hamiltonian in classical mechanics.



Noether’s theorem & conservation laws in field theory (6)

Kinetic moment of a field, vector L and spin of a field: last vector does not depend on the
choice of an origin of space -> intrinsic property. To be defined later on.

Contrary to this: total moment of the field, vector J, conserved quantity depending upon
selected origin of space, vanishing for a central field.

For a scalar field, spin is nil -> only one component of the field (# components = 2N+1).

Complex field -> Lagrangian invariant under a gauge transformation

\|] _) \|]l — ei(x\lj
Approximate this finite transformation by y'=(1+io)y = Sy =iay, Sy =—iay’

oL oL «
Noether’s th. leads to force f, = Oy + —.Oy
o) " (o)
. oL . oL
Associated current density: Ji = AT .
(o) o(ow")

-> Conservation of field charge: Q:= I i, (X)dV = j{H(X).W(X)—w*(X).H*(X)}dV



Noether’s theorem & conservation laws in field theory (7)
Conservation of total moment of the field (sum of angular moment and spin)

-> transformation by infinitesimal rotation around axis x; > = ”}//
X' =X, cose— X, sine = X, —eX, = 8X, =—eX, Y LT
X', =X;sing+X,cose = X, +eX; = 8X, =X, e i /:
X'y =X, =8X,=0 i
X1

O _l O ( = ‘L
Thus dy=I;=/1 0 0| infinitesimal rotation generator X
0 0 0 1

* Isotropic space, get conserved quantity:
J L) 1w(X) + Ty8X, + T,18X, +T,,8X, }dV = Cte
Vs

— j TI(X) 1y (X)dV — j {TI(X).(X,8,y — X,0, )} dV = Cte

Vs Vs

(X0, —X,0,y) third component of vector product FXV—\V

—  Conserved quantity '[IdV+IH Ly (X)dV T:=(T1 [F Ts)

Def.: L= erIOdV angular moment ofthe fleld with p:=-TLVy

General case: invariance by rotation leads to conservation of total moment, sum
of angular moment and spin  $= [ TI(X)Ty(X)dv
A



Hamiltonian structure in dynamical elasticity

Lagrangian in hyperelasticity: L:=K[u]-E[u]

u displacement, u::Z—ltJ velocity

K[u]: I pu*dV kinetic energy, E[ul: j (Vu)V internal energy

Stationnarity condition: 6L::ij.SUdV+J‘DiV(
\%

of the form o,L.du+0,L.du=0

\Y

oW (Vu)
ovu

= T].SudV =0

o,L,0,L co-vectors: 8,L: 81 j d,L.3udV, a,L: 3u— [8,L.5udV = [ DivT.5udV
\Y% \Y4

On current trajectories, dU = —— L dtj(—— u) oudv =0, vt,t,,du

:jtzdtj _9Y Sy —asu ldv =0
4 v dt

d(9,L)
dt

Since pu=0,L — -

Su-o,Lsu=0 (a)

Usenext o,L:8u=0,L:8u— (a): —%(auL)—éuL:O

Variational form of equ. of motion:

j(—pu +DivT).8udV =0, Véu

\Y

(b)



Hamiltonian structure in dynamical elasticity (2)

Define Hamiltonian | H[u,p:=pu]= L[u,u]+'[pu.UdV

\%

0l0o
— Rewrite (b) by setting Z:(p y uj; Grad :=[ uj
=p

> (b)J.(—p'L] +DivT).8udV =0, Véu rewrites Z—i =0.GradH(z), ©:
\%

[l
VR
|l o
o—
N

z . : L
Means that Z—t Is tangent to the iso-Hamitonian surfaces H = Cte

— Get Hamilton dynamical equations: du _ oH , dp _ _oH
dt oJp dt oq

Corollary: time evolution of any function f =f(z):

ar_ Gradfz.g—i = Gradf..GradH (z) = {f ,H}| Poissons bracket

dt




Comparison with Hamiltonian formulation in classical mechanics

Hamiltonian formulation in new set of coordinates {q,.p,}

oL : :
pa ::H_) H[qoc’pa’t] = paqa_L[qa’qa’t]

-> Jacobi action:  S[d,]=[{p,q, —L}dt

L%}

-> Euler-Lagrange equations: Va e{l,2,..., N}, dp, =i
dt aq,
: : . . : . oH | oH
Dynamical equations in terms of the Hamiltonian: Vae{l,Z,...,N}, P =-— : =

“T oq, q“_ap

o

Interest of Hamilton formalism: get first integrals of motion using Poisson’s bracket:

[ g] of | og
8p 5(1 aqoc op,,
) ) ) ) df of
-> time derivative of a function pm =E+[H,f]

If fdoes not explicitly depend on time, get first integral of motion: | [H,f]=0

Specific cases: [pa,qﬁ] = 6043; [qa,qﬁ] =0= [pa, pg}




Historical vignette in field theory
Expression of the Lagrangian incorporating symmetries reflects laws of physics.

Two categories of symmetries:

* External symmetries acting on space-time coordinates of the scene of events;

* Internal symmetries (= gauge symmetries) acting on internal parameters (potentials,
charges, wave function).

Both external and internal symmetries leave invariant laws of physics.

Concept common to special & general relativity: absence of absolute referential.

In special relativity: class of equivalent referentials defined by Poincaré group of
transformations -> global symmetries.

In RG: postulated equivalence between gravitation field and inertial frame valid only locally
(the orientation of the gravitation field varies from point to point) -> RG is a local theory.

-> Key idea of Weyl’s gauge theory (1919): first historical attempt to extend idea of
gravitation field described by connection giving relative orientation of frames in space-time.

Invariance of equ. (or action integral if any) by an internal symmetry = gauge invariance.



Extension: Noether’s theorem in classical and quantum physics

Non observable

Symmetry

Conservation law

Absolute spatial position

Space translation

Linear momentum

Absolute time

Time translation

Energy

Absolute spatial direction

Rotation

Angular momentum

Absolute velocity

Lorentz Transformation

Generators of Lorentz group

their antiparticles

Difference between identical | Permutation of identical | Fermi-Dirac or Bose-Einstein
particles particles statistics

Absolute right or left Inversion X — —X Parity

Absolute sign of the charge Particles transformed into | Charge conjugation

Absolute phase of a charge

Change of phase

Electrical charge, generators

mixtures of charged leptons
and neutrinos

its neutrino

matter field in U(l)

Difference between coherent | Change of color Color generator, belong to
mixtures of colored quarks group SU(g)

Difference between coherent | Transformation of a lepton in | Weak isospin generators,

belong to group SU (2)




Noether’s theorem in quantum physics: case of QED

Adopt system of units in which c=1.

Dirac equation satisfied by a fermion (spin is %2): linearized relativistic energy
E=pv-L L:_m(l—vz) ——— E=pv+(1—v’)m

Admits existence of a Hamiltonian of the same form: H =a.p+m

(a,B) matrices

Eigenvalue problem for linearized Hamiltonian: Hy=Ey — (a.p +Bm)w =Ey
Correspondence principle: € —inG/, p,—-i aaxi

10,y = ((l-p + Bm)\lf Dirac equ., becomes: i(ao + akak)w —mPy =0

i@ﬁy“ + m@ =0 Adjoint Dirac equ.

| O
0 -l

*

QZWW’O:(\V; ARTA W:)( j:(w; Ve Vs _WA'*)

=y iyt =2

0__IO I(_0 o
Y_B_(o —J’ "l 0



Noether’s theorem in quantum physics: case of QED (2)

Lagrangian constructed based on both the Dirac equation and its adjoint

L =iyy"0, v —myy =iy &y —myny =—$(i&—m)w =—Q(i&+m)w

Get (easily) conservation law of electric current; 0, (ej“ (X)) =0
i () =w(x)y*w(x)  density of charges

Can be deduced from a global gauge invariance of the Lagrangian:

i (X) > (x) = exp(—iAT ij)‘l’j (¥)
Make 1st order Taylor expansion: W' (X)—=y;(x) =8y, (x)=—iAT ;y,(x)

-> variation of oL oL ~ oL B o | A
e i) oo o e e

. . . oL .
-> Conservation law of electric 4-current: oL=0=27, {—Imﬂj%}o:@pj“ =0
n




Noether’s theorem in quantum physics: case of QED (3)

Stronger condition of local gauge invariance: let group parameter depend on coordinates
wi (%) = ' (x) = exp(-1gA (X) T ) w; (x)

Modifies the Lagrangian to  L'=L+qyy"yd A =L+gj"0,A

Introduce covariant derivative: DM = au + iqAH
Field A, called compensating field or a gauge field

Gauge field responsible for interactions between fermions and electromagnetic field

Lagrangian invariant under previous local Lie group transformation when
replacing partial derivatives by covariant derivatives:

Le =L-qi*A, =y (iR -m)y > L. '=L,
™ =7"D,

Lagrangian of QEM writes L, =L.+L, =L, _%FWFW

Q

No kinetic term, thus vehicule of electromagnetic interactions (Photon) is masless!



Interest

« Many solution techniques for exact solution of ODE’s & PDE'’s directly connected
to symmetry properties: superposition principles, integral transforms, separated
solutions, reduction of order, Green’s function, travelling wave solutions.

* Invariance properties of governing equations important: conservation laws.

» Lie point symmetry framework provide systematic ways to study invariance
properties of DEs w.r. continuous & discrete symmetry groups.

* Ex.: travelling wave solution validated by invariance under space-time
translations.

xX'( XL, X% t) =w/(z,X?), z=X'—st, i=1,2

« For variational PDE systems: equivalence of local conservation laws &
variational symmetries via Noether’s theorem.



Consider a general DE system

R°[u] =R’ (x.w.0u,...,0u) =0, o=1,....N

with variables x = (x*,....x"), u = (u*,...,u™).

A one-parameter Lie group of point transformations

x* = f(x,u;a) = x + al(x, u) + O(a°),
u* = g(x,u;a) = u+ an(x, u) + 0(a*)

(with the parameter a) is a point symmetry of R?[u] if the equation is the same in new

*

variables x™, u*.

Example 2: scaling

The scaling:
x*=ax, t'=a’t, v =oau (a€R)

also leaves the KdV equation invariant:

* * * *
Ut + Ulx + Upxx = 0 = Ups + U Ups + Uy onyon .




A symmetry (in 1D case)

x* = f(x,u;a) = x + al(x, u) + O(a?),
u* = g(x,u;a) = u+ an(x,u) + 0(a%).

maps a solution u(x) into u™(x™), changing both x and u.

U
(x, u™™)

>

¥

In the evolutionary form, the same curve mapping does not change x:

X** =x. u*™* =u+al[u]+ 0(a%).

([u] = n(x, u) - g—zs(x, u).




Nonlinear DEs

@ Numerical solutions: resource/time consuming; lack generality.

@ Solution methods for linear DEs do not work.

@ Symmetry analysis: a general systematic framework leading to useful results.

Symmetries for ODEs

@ Reduction of order / complete integration.

@ All known methods of solution of specific classes of ODEs follow from symmetries!

o

@ Exact symmetry-invariant (e.g., self-similar) solutions.

Transformations: solutions = new solutions.

Mappings relating classes of equations; linearizations.

®

Symmetry-preserving numerical methods.

@ Lie point symmetries and other types are computed systematically for any DE.

Literature widely available.

@ Symbolic software packages available.

A popular approach to analyze complicated DEs arising in applied science:

o fluid and solid mechanics,
o rocket science,

@ meteorology,

o biological applications, ...




Variables:

2

o Independent: x = (x',x?,....x") or (t,x*, x%....).

e Dependent: u = (uv'(x), t*(x), .... ut"(x)) or (u(x). v(x),...).

Partial derivatives:
i

: du
@ Notation: e = i.{m = uf;.

@ All first-order partial derivatives: du.

o All p™-order partial derivatives: 9u.

»

Differential functions:

o A differential equation is an algebraic equation on components of x,u.du,....

J

e A differential function is an expression that may involve independent and dependent
variables, and derivatives of dependent variables to some order.

Flu] = F(x.u.,0u,...,0u).




The total derivative of a differential function

@ A basic chain rule.

o Example: u=u(x,y), glu] = g(x.y.u,uyx), then

o
Diglu] = 580y, u, )
1%} 1, 1%}
_ _g L 9%, 4 —guxx-
du Auy

Conservation laws

H k

@ A local conservation law: a divergence expression equal to zero

D;V'[u] = div ¥'[u] = 0.

@ For equations involving time evolution:

D. ©[u] + divx ¥[u] = 0.
@ O[u]: conserved density.

@ W[u]: flux vector.

Global conserved quantity (integral of motion)

th@d\/:o, if W[u] - dS = 0.
Vv av




@ Given: a local CL for a time-dependent system,

D¢ ©[u] + divx ¥[u] = 0.

@ Integrate in the spatial domain:

/Dr@d\/—l—/(divx T) dV = /D:@deL
v v vV

aVv

@ When the total flux vanishes,

W[u] - dS = 0,
av

one has

d
2 /V@[u] dV =0,

i.e., a global conserved quantity (an integral of motion):

R = / © dV = const.
Vv

W . dS

0.



@ Small oscillations of a string (transverse) or a rod (longitudinal) < 1D wave
equation:

un:C2uxx. C2:T/p

@ Independent variables: x, t; dependent: u(x, t).

Conservation of momentum:

@ Local conservation law: D¢(pus) — Dx(Tux) = 0;

@ Global conserved quantity: total momentum

t d
M:/O pue dx = const, EM:O

for Neumann homogeneous problems with u (0. t) = uy(L,t) = 0.

Conservation of energy:

@ Local conservation law:

2
D: (pgr + T;") — Dy(Tueuy) = 0;

@ Global conserved quantity: total energy

2
E= / (put ) dx = const,

for both Neumann and Dirichlet homogeneous problems.

A\




Extremum principles and conservation laws in hyperelasticity

Hyperelastic means local energy exists -> Strain energy function dictates constitutive law

OW (X, F)

W=W(X,F)=T:= nominal stress

X lagrangian coordinate, F transformation gradient: F:=V,x(X,1)

— action integral  S[u]=[L(X,u"”

Q
X={X;i=1.4}={X =t X,=X,X,=Y,X, =2}
Q=VxI (I time interval) - dQ =dVdt =dX,dX,dX,dX,

Structure of Lagrangian:

L=K-W(F,X)
K::%pO(X)XZ, W(F,X)=W/(F,X)+®(X)

K kinetic energy
W(F,X) strain energy density
®(X) load potential / f,(X)=-V,®(X) body force vector



Extremum principles and conservation laws in hyperelasticity (2)

Evaluate variation of the action under a Lie group of transformations:

- OXj ou
Xi=X;+p— +0(n)=X,+p&+o(p), Uk =U, +p—s +o(u)=u,+pn,+0o(n)

M ‘p:O M ‘HZO

(¢mi) horizontal & vertical components of infinitesimal generator of the group

—> | 3S= uj(@—u'(—D 8it,J(¢k_gjuk’j)dQ+H5[2(Lgi+ gukj)ail— } d(6Q)

ki

oL oL .
—-D, Euler operator, —&.u, .) characteristic
(auk auk’iJ p ((I)k E.;J k,j)

(&6)=p(dx,8u)—8S = J. E,(L)du,dQ+ pJ. n,du,d(6Q2) for a purely vertical variation
Q

ukl
Corollary: stationnarity condition of the action implies
E.(L)=0 Euler equation of S

oL
ou,;

n. =0 for non fixed boundary conditions (Eiu‘aQ #0)



Extremum principles and conservation laws in hyperelasticity (3)

Compact writing:

L,o=i,do+d(iym) |'magic' Cartan formula

— Noether's theorem:
under condition L,» =0 (variational symmetry = invariance of S under G)

and i,do=0 (Euler equ. are satisfied):

Conservation law: d(iyo)=0< Div{LE,,i + (4 — & );—Lj =0
| uk,i
Case of a purely horizontal variation (fields are fixed):
8S.¢ = | Zn.oXd(0Q)
oQ
oL oL
. =L%;—u, ., ——<«<>X=LI-F .— Eshelby stress / energy-momentum tensor
] ] 1] 6uk,i F

Important role in field theories

¥.n driving force for domain variation



Interpretation of Eshelby stress: 1D bar example

Bar length L submited to tensile force F at x=L —» F

Linear elastic material modulus E0

_ u (X) = FX/E0 displacement solution

Potential energy: V[U]=IW(X,U(X))dx—F.u(L)
0 1 1_(FY 1F
. 2
Strain energy density W(X,u(x))z—Eou (X) =— 0(—} =
2 2 E, 2 E,
2 2
Viewed as a function of L V(L)zEF—L— F. FL z—lﬂ
2 E, E,)] 2E,
1 N2 oV . . -
Eshelby stress 2=W-o0¢ =3 Eu'(X) = L expressing domain variation

— Viewpoint of structural optimization

40



Further symmetries & associated conservation laws

oL
ou,;

1. Translation invariance of the Lagrangian: u—~u+c= Di[ ]z 0, Euler equ.

More generally, L invariant under Euclidean group (material frame-indifference :

observer in rigid body motion) uR.u+c, ReSO(3), ceR’

2. Rotation invariance of L -> conservation of angular momentum (in actual configuration):

oL oL

—_ uq -
8qui aupi

L(X,R.VU)=L(X,Vu), VR—)D{up ]:o, p,q=1.3

3. Isotropic materials: rotation w.r. reference configuration!

q ] o

LOCTQ)=LOGY), vQ> D 3¢t -xu) |-, v 55
a=1

: o . O | 0

associated to infinitesimal generators X" — — X' —

oX! oX




JM,L integrals associated to material configurational forces

1. J, integral: gradient of the Lagrangian function Y
L =—-W in statics, no body forces ﬁ‘m
Wr‘ﬁrx s
VLz—DiW:d—W:—(a—Wj -T, U,
dX' X' oo
oW (Vu %%;%
T:= W(Vu) “
ovu [Li et al., Engng Fracture Mech., (2017), 171, 76-84]
T . - aW . - .
LetX:=WI-F'.T, satisfy DivX+R=0, R:=— o material configurational force
expl

Integrate configurational stress around closed contour enclosing the crack tip, thus

J=J = <I>e1.2.nd8 includes material inhomogenity s.t. W =W (F,X,,X,)
I

J,=¢e, ZndS
r

1
L, = jek,m (X\bgy +Uyo,y )N S, M= j{bijxi +20; (2- a)ui}nde, a=2 (2D) ora=3 (3D)
r r

derived from Noether’s theorem from variational principle of elastostatics

using rotations and similarity invariance; extend to large strains



JM,L integrals associated to material configurational forces

2) M-integral: build Lagrangian momentum LX

oW

— Div(LX)=—(WX;). = —mW—(—j X—=VFEX.T, m=DivX =2 or 3in dimension 2, 3 resp.
expl

Configurational stress M .= WX.l - T.Vu.X

R:= (G—Wj X configurational force
ax expl

—>DivI\/I+R=O—>M:=<JSM.ndS
T
oW

3) L-integral: identity -V, (WX)_ =—emij(WXj)_ =—€.; {(yj X! +Tk|uk,,ixj}
! expl

e Levi-Civita permutation tensor
Configurational stress (second order tensor): L :=e: (WX QI+TOU-F'.T® X)

Configurational force (vector): R :=-e: (2—\;\/) ® X
expl

—DivL+R =0
L. -integral L,:= <'f> L,n,dS
r



@ Constants of motion.

@ Integration.

Applications to '

Rates of change of physical variables; constants of motion.

Differential constraints (divergence-free or irrotational fields, etc.).

Analysis: existence, uniqueness, stability.

An infinite number of conservation laws may indicate integrability / linearization.
Finite element/finite volume numerical methods may require conserved forms.
Weak form of DEs for finite element numerical methods.

Special numerical methods, conservation law-preserving methods (symplectic
integrators, etc.).

Numerical method testing.




Definition

A trivial local conservation law: a zero divergence expression that “does not carry a
physical meaning" .

A trivial CL, Type 1:

@ Density and all fluxes vanish on all solutions of the given PDE system.

@ Example: consider a wave equation on u(x,t): uUg = Ux. |he conservation law
Dt(u(utt — Uxx)) =7 Dx(zx(uxtt — Uxxx)) =0

is a trivial conservation law of the first type.

A trivial CL, Type 2:

@ The conservation law vanishes as a differential identity.

o Example: for the wave equation on u(x, t): Ux = U,

D¢(uxx) — Dx(uxe) =0

is a trivial conservation law of the second type.

A




Two conservation laws D;®'[u] = 0 and D;W'[u] = 0 are equivalent if
Di(®'[u] — W'[u]) = 0 is a trivial conservation law. An equivalence class of conservation
laws consists of all conservation laws equivalent to some given nontrivial conservation law.

A set of ¢ conservation laws {D,-d)b-) [u] = 0}/_; is linearly dependent if there exists a set

of constants {aU)}le, not all zero, such that the linear combination
Di(a¥ ;) [u]) =0

is a trivial conservation law. In this case, up to equivalence, one of the conservation laws
in the set can be expressed as a linear combination of the others.

@ In practice, one is interested in finding linearly independent sets of (nontrivial)
conservation laws of a given PDE system.



Flux Computation Problem

Suppose for a given PDE system, a set of CL multipliers has been found, and one has

Ao[u]R7[u] = D;®'[u] = 0.

e How does one compute {®'[u]}?

Some methods |[cf. Wolf (2002), Cheviakov (2010)):

@ Direct
@ Homotopy 1 [Bluman & Anco (2002)]
e Homotopy 2 [Hereman et al (2005)]

@ Scaling (when a specific scaling symmetry is present) [Anco (2003)]




Action integral

J[U]:/f:(xU ouU,....0"U) dx.

Principle of extremal action

Variation of U: U(x) — U(x) +0U(x); 0U(x) = ev(x); 5U(){)‘3Q =0

Variation of action: §J = J[U 4+ ev] — J[U] = [, (6£) dx = o(e).

Variation of the Lagrangian

0L = L(x,U+ev,dU +£dv,...,0"U + 0*v) — L(x,U,dU,...,0*U)

oc[u] ,  oc[u] OL[U]
i (W toup W T g e ) T O)
J

J1Jk
by parts

e(v7 Eue (L[U])) + div(...) + O(c?)

Euler-Lagrange equations, Euler operators:

oL[U oL[uU
Bo(cfo]) = 244,020 <o
Ji-Jk




Example 1: Harmonic oscillator, U = x = x(t)

L= %mi{z — %kx2, E.L = —m(X + w’x) =0, w? = k/m.

Example 2: Wave equation for U = u(x, t)
1 - 1

L= —pu’ — —TUXE_, EuL = —p(uee — czuxx) =0, 2 = T /p.

2 2

@ A number of physical non-dissipative systems have a variational formulation.
@ The vast majority of PDE systems do not have a variational formulation.

@ A PDE system follows from a variational principle (as it stands) < the linearization
operator is self-adjoint (symmetric).

@ # equations = # unknowns.
e For a single PDE, only even-order derivatives.

e The system has to be written in a “right” way!

e No systematic way to tell if a given system has a variational formulation.



Definition

A DE system R[u] = 0 is variational if its equations are Euler-Lagrange equations for
some variational principle:

R[U] = Ew (L[U]), o=1,....m.

@ Example

Wave equation for U = u(x, t)

1 1
L=K-P Epuﬁ— ETUXQ
d d d
Eu=——D¢— — D,
du tc:a'ut dux

E.L = —p(us — ¢’y ) = 0, A=T/p



PDE linearization

e Given PDE or system: R[u] = 0.
d

@ Linearized system (Fréchet derivative): L[u]v(x) = —

= L:UR[U +ev] =0.

@ Adjoint Linearized system:

w(x) - (L[u] v(x)) ijg”ts(L* [u] w(x)) - v(x) + (divergence).

Self-adjointness

@ Given system R[u] = 0 is self-adjoint if

L[u]v(x) = L™ [u] v(x).

Homotopy Formula for a Lagrangian:

1
L :/ u - R[Au] dA.
0




Example 1: Wave equation for u(x, t)

Rlu] = ust — ey = 0;

Linearization (already linear!)
Llu] v(x,t) = vt — € v = 0;
Adjoint linearization operator:
w(x.t) L{u] v(x, t) = w(vae—cvia) = (Wer — Wi )V (X, ) H(viw—vwe ) e— (Ve w— vy )

Result:
L*[u] v(x,t) = L[u] v(x, t),

so R[u] is self-adjoint.

Lagrangian:




@ Heat equation for u(x,t): R[u] = ur — ux = 0.
o Linearization: L[u]v(x,t) = vt — v = 0.
o Adjoint linearization operator: L™ [u] w(x,t) = —w: — wix = 0,

@ NOT self-adjoint!

Append the adjoint:

o R[u', v*] = {uf — ug, =0, — uf — up, =0},

@ Self-adjoint!

o Lagrangian: £ = % (—ul(u‘;2 — uZ,) + v (up — u}:x))

@ Euler-Lagrange equations:
Eq (L) = —u— i = R E2(L) = up — uy, = R

@ This technique can be used to make any PDE system self-adjoint.
@ Non-physical Lagrangian (pseudo-Lagrangian).




Example 4:

o KdV for u(x,t) R[u] = ut + uux + U = 0.
o Odd-order, clearly NOT self-adjoint.

... a differential substitution:

@ U — (Qx, R[q] = (xt -+ Qx Oxx F oo — O;

@ Self-adjoint!

~ 1 1 1
e Lagrangian for R[q]: £ = qux - qu: ~ 5xqr.

@ For a given PDE /system, it is not simple to conclude whether it follows from a
variational principle.

e Much depends on the “right” writing.
e Tricks can make equations variational...

@ A feasible tool: comparison of local variational symmetries and local conservation
laws.

@ [ his is based on the first Noether’s theorem.




Consider a general DE system

R7[u] = R7(x,u.0u.....0%u) =0, o=1,....N

that follows from a variational principle with J[u] = [, £[u] dx.
A symmetry of R?[u] given by

x* = f(x,u;a) = x + a&(x.u) + 0(a%).
u* = g(x,u;a) = u+an(x,u) + 0(a%)

is a variational symmetry of R“[u] if it preserves the action J[u].

Example 2: scaling for the wave equation

2
2 1 o c 2
Ut = C Uy, L= _—u’""— —u .

2 2

The scaling x* = x, t* =t, u* = u/a is not a variational symmetry: J* = o?J.




Given:
©Q a2 PDE system R°[u] =0, 0 =1,..., N, following from a variational principle;

@ a variational symmetry

(x')" = f'(x,u;a) = x" + a¢'(x, u) + O(a%),
(u”)" —g"( a):u + an?(x,u) + 0(a%).

Then the system R°[u] has a conservation law D;®'[u] = 0.
In particular,

D;®'[u] = Ay [u]R [u] = 0,
where the multipliers are given by

o ¢(xu),

Ao = (¢7[u] =77 (x,u) -




Example 2

o Equation: Wave equation uy = Cu., U= u(x.t).
e Time Translation Symmetry:
t*=t+a, & =1,
x* = x, & =0,
ut = u, n=20

@ Multiplier: A=(C=79—0-ux—1- v = —uy;

o Conservation law (Energy):

2 2
AR = —u:(un — ) = — [Dt (u; + czuzx) — Dy (czutux)} = 0.




Recollect:

@ Given PDE or system: R[u] = 0.
d

@ Linearized system (Fréchet derivative): Lu]v(x) = —

de

R[u+ ev] = 0.
0

£E=

@ Adjoint Linearized system:

w(x) - (L[u] v(x)) |J}"Em(L* [u] w(x)) - v(x) + (divergence).

@ Symmetry components ¢’ [u] are solutions of the linearized system.

e Conservation law multipliers As[u] are solutions of the adjoint linearized system.

A self-adjointness test:

@ Check # equations = # unknowns.

@ In some writing, CL multipliers and symmetries are “similar’?

@ The test is not systematic... the “correct” writing of the system is not prescribed!

>




Definition

The Euler operator with respect to U/:

) d s d .
Eu; w_ Ia—f_ff—l_ ‘I‘( ) i1 DIS@U{I i‘l‘ _]—1 ..... m
Let U(x) = (U'.....U™). The equations E,; F[U] =0, j = 1,....m. hold for arbitrary

U(x) if and only if | _
F[U] = D;V'[U]

for some functions W'[U].

o Seek conservation laws in the characteristic form | D;®" = A, R = 0

(based on Hadamard's lemma for systems of maximal rank).




Given:

o A totally nondegenerate PDE system R[u] =0, o =1,..., N [cf. Olver (1993)].
e A nontrivial local CL: D;®'[u] = 0.
e Denote G[U] = D;¢'[U].

Hadamard lemma for differential functions:

A differential function G[U] vanishes on solutions of a PDE system R if and only if it
has the form

G[U] = P;[U] D4 R7[U].

Characteristic form of a CL:

Using the product rule, one has
G[U] = D;¢'[U] = A, [U] R°[U] + div H[U],

where H[U] is linear in R?; div H[u] = 0 is a trivial CL.

Hence every CL D;®'[u] = 0 has an equivalent characteristic form

Di®'[u]l = As[ul R7[ul =0, & =" —H'.

o CL multipliers (characteristics): {A,[u]}>_;.




Consider a general system R[u] = 0 of N PDEs.

Direct Construction Method

@ Specify dependence of multipliers: Ao = As(x,U,...), e=1,....N.
@ Solve the set of determining equations
Ey(A:R°)=0, j=1,...,m,

for arbitrary U(x) (off of solution set!) to find all such sets of multipliers.

o Find the corresponding fluxes ®'[U] satisfying the identity
Ao R = D;id".

@ Each set of fluxes, multipliers yields a local conservation law
D;®'[u] = 0.

holding for all solutions u(x) of the given PDE system.




Extended Kovalevskaya form

A PDE system R[u] = 0 is in extended Kovalevskaya form with respect to an
independent variable x/, if the system is solved for the highest derivative of each

dependent variable with respect to X/, i.e.,

a&_)sﬁ u’ = G (x,u,0u,...,0%), 1<s,<k, o=1,...,m, (1)

where all derivatives with respect to x/ appearing in the right-hand side of each PDE in
(1) are of lower order than those appearing on the left-hand side.

Theorem [R. Popovych, A. C]

Let R[u] = 0 be a PDE system in the extended Kovalevskaya form (1). Then every its
local conservation law has an equivalent conservation law in the characteristic form,

AR = D;®' =0,

such that neither A, nor ®' involve the leading derivatives or their differential

consequences.




Fig. 1. Material and Eulerian coordinates.

Material picture

e A solid body occupies the reference (Lagrangian) volume Qo C R3.
o Actual (Eulerian) configuration: Q C R>.

@ Material points are labeled by X € Q.

@ The actual position of a material point: x = x (X, t) € Q.

@ Jacobian matrix (deformation gradient): J =detF > 0.

Material picture
@ Boundary force (per unit area) in Eulerian configuration: t = on.
o Boundary force (per unit area) in Lagrangian configuration: T = PN.
@ o = o(x,t) is the Cauchy stress tensor.
@ P = JoF 7 is the first Piola-Kirchhoff tensor.
@ Density in reference & actual configuration: po = po(X), p = p(X,t) = po/J.




Equations o1 moti

Dynamical BVP:

J=detF=1,

PoXe = divpg P+ pgR,

B T ow
P=—-pF +P o5

(X, 1) = po(X) /] = pp(X).

i

. i oP . :
(divi,P) =— lLagrangian divergence

)

FP" = PF' conservation of linear momentum

Additive split of strain energy density: W" = Wi, + W g0

Mooney-Rivlin constitutive model:

Left & right Cauchy-Green tensors:

Mapping of fiber material vector:

Wiso =a(l; —3) + b(I; - 3)

a=a(X,t)=FA/|FA| =FA//,

Anisotropic contribution: W aniso = ¢(Is —(14)°)

I,=A"CA I5=ATC?A.

B=FF', B'=FF, C=FF,



9
(=
S,
o w
A 2
<t o
[ ]
I
”nr.’ ......
=
lx
<
. .”_vr.._.r q
c m_gz@ﬂ%
8 oy
= i
© R (1 (L
— b “;—:—a :
g N N N _— N N
1 = Z s
-
5 o S b
. o
h [
7] =< o
Q ~ ~ T c
g < 9
= O )
= -+ r.n_rlu
c ,.w,\. -
@© —
m I m “_ﬂ___
S " 3 i
3 o i\
= il
e 1 g i
o L i
m LL
N ﬁ”
nlw X >~ >~
o & & o E
S + [ w
an x I —
'S5 I I
&) < <

A sample deformed mesh (Eulerian configuration)

The reference (Lagrangian) mesh with fibers.

Fiber direction.

-> Strongly nonlinear boundary value problem (BVP) difficult to solve in general.



MoUoenN transvers

BVP for one fiber reinforced material governed by two PDE’s:

0°G B 0°G 0°G
ot? - 1)2 * 2
o(x*)" o(x?)

2
> |+ B cos’ 7/{30052 ;/(88761) + 6cos;/sin;/§761+ 2sin? 7/]

0 |G G oG G |
oX*'| oX* oX'oX? axza(xl)z

S cos’ A (cos G sin )+b 0G_0G 06 06
7a(x1)2 Toxt T ) TR X axiox X o(x?)

Search Lie groups of point transformations satisfied by these two PDE'’s:
G* =g(X', X%, t,G &) = G+enX', X2, t,G)+ O(e?),

" ox?

XN =X X%, 6,G ) =2 +e£ X', X2, 1,6)+0(e), i=1,2

¥ = h()‘(1 X2 t.G: £) =u! +.~'_—.'1:(}!{1 X2t G)+0(&?),



SYyMmmEetry classiication oi tn

-> search infinitesimal generators of Lie algebra: v = £ (x', X2, ¢, C;%Jrr(xl,xz, t, C)a—at+ nx', X2, t, C}%

Parameters Symmetries
Arbitrary 1_0 2 @ 3 0 B 1 d 2 0 d d
Y =Y =— Y =—7 Y= dG Y th Y° = =X g+ X5 g+ G
— ! = =
r=x/2 o1 f=4q=0 YLV VR v v v v = x2 L x1 2l vE_ g
aX aX G

Y1, Y4 space & time translations.

Y®: Galilean group in the direction of displacement.

Y6: homogeneous space-time coupling.

* Specific case g cos y =0 (in Table): fiber bundle orthogonal to (X!, X?) plane.
Y7: rotation.

Y8: scaling of G.

* 1D wave propagation independent of fiber direction: displacement only function of X2

X1
2
X — X2 > "Z'gza‘* % ""Pl = apz =0 | Linear equ.
X3+Q(X2, t) dt X7y  aX aX




1D moetion (aependent on fiver air

X'l
X = X* motion
X*+G(xt)
G = §a+ﬁ cos 2?,[{3 cos2y)(Gx)* +(6 siny cos y)Gx + 2sin 2?,.] )’Gm dynamical hyperbolic equ.

|
= C2
0 =py—2fp, cos 3y (cosyGy+ siny )Gy, =P p=fip,cos3y(cosyG+2siny)Ge+f(t)  €Xplicit

Look for Lie point symmetries: Parameters Symmetries y#0,m/2,
d b a Arbitrary L S 4 5 4 d d
Z=CX 1,0yt T(X, 1, C)=r 411X, 1, C)== L=x?%=w’=% 24_535’ L =Xt e
da = f, .25, 7,7, 7,
vy angle between fiber & sin?2y = 24 Z° = 21 COS 7= +X COS7 — —XSiNy —=
] at ax a0

wave propagation direction

Pr.: 1D PDE is hyperbolic for any fiber orientation v iff 4a>p.

Necessary condition for loss of hyperbolicity = vanishing coeff. of G,,, is 4a<f3 & sin2(2y}z4§

Ex.: model of rabbit artery (Holzapfel, 2000):
a=1.5 kPa, g=1.18 kPa (media) / a=0.15 kPa, q=0.28 kPa (adventitia).
-> 40>, model remains hyperbolic.



LD motion depe At oN fiper direction: exact Invariant solution

: _ . 4
Case of fiber angle with direction of wave propagation s.t. sin“2y =5

—> Necesary but not sufficient condition (!) for loss of hyperbolicity satisfied.

X
Search for solutions invariant under Z6: y="Tp M(y) = y/12ficos *y(G(x, t)+xtany).

, 3IM(y)
—> Reduced 2" order ODE: M (y)=— IC: — (0) = .
Displacement Displacement Coeff. of G,

C

K_G‘ue—_.ﬁ_ - M
-4 -2 0 2 4
x
[ m =0 o ;=2 0 (=5 o t=20—-—t=x| | m ;-() ® ;=2 O (=5 o ;=20—-—f=oa| [ ® ¢=0 ® =2 8 (=5 © t=20 © t=]

a=1/12, p=1/3, mog =1, y =x/4, y= —x/4 -> BVP remains hyperbolic



Viotion transverse to an axis

Xl
X*+H(X't) |
X3 +c(x1, t) -> incompressibility condition automatically satisfied.

Motion orthogonal to X! axis; wave propagation in X! direction
X =

0 =Py —2fpy cOs *y[(cOSy G+ Siny)Gux + COSyHxHyx), == p = fip, cos 3;.»[ cosy (Gy+H2)+2siny G,c] +f(t).

. d
Hy = aHyx+ ff cos 3r [ CosS r{[Cﬁ +Hi]Hm +2GxHGyx)+ 2 sin rE{CxHx}]

BVP: =
Ga = aGo+fc0s?y [25in?y Gut 05y (26 HiH o+ (H; +3G7) G

+ 5in 2y (3G, Gy + HyH )]

a=2a+by=0, f=4q0=0

[ He— % ([a+p‘ cos 3;«-{(Gf +H%)cos y+2Gysin y}] H,-.c)k

Reduced form of PDE’s

G =2 (m;x +fcosy [2 sin’y Gy + cos 2y(G2 + H2)Gy )
X in conserved form

+ sin y cos y(EGf+Hf}] ).



Viotion transverse to an axis

Lie point symmetries in fully non-linear situation:

d d d . d
W=_&(x,t H, G}E+r(x, t.H, G}E-i—?f(x, t.H, G‘}m+g(x, t,H, G}E

Parameters Symmetries
i i : i ; 3 3
Arbitrary wl—ﬁ wi—ﬁ=wi—f;_H W—E W5_Eﬁ
\uﬂu’b_['m W= ;;i: -r%-H% G%
W‘*_c-:rs;( % G%) xsmyﬁ
da <, whowes, we o wrtowe, we o wel, owe,
sinzzy_# W = Erms;ﬂ% xms;% xslnyﬁ

« Special symmetry W® when sin®2y = Tﬁ'_a necesary condition for loss of hyperbolicity

« Galilean group W> in x2 direction
* Fiber-dependent (via y) rotation group W8:

t*=t x*=x,
H* =Hcos ¢ +Gsingh+xtany sin ¢,
G*= —Hsingp+Geosgp—xtany(1— cos ),



Vietion trans\Verse

d d

Symmetry generator: Wiy = c—+—. —> Invariants: T=x-ct. Hx.t)=h(r), Gx, t)=g(r).
—> Balance of momentum: [a—c+fcos*y(3(h' Y +)")+2psinyg | +2f cos>ylcos y g
(2 equ. for g(r), h(r)) +sinylh'g’ =0, 2fcos’y[cosy g+ sinylh'h + [a—c?+fcos?y

x (cnsz;v [(h")* +3(g)*]+3sin 2y g’+25in2y)]g' =0

Example of solution: harmonic functions h(r) =A cos(kr+¢g), g(r)=Asin(kr+¢,), A=R/k.

X! 0
X =pX.t)= | X2 | +A| cos (kX' —ct]+¢,) | Time-periodic perturbation of stress-free state
x3 sin (kX! —ct]+¢y)
a b
4 \\_\‘th
] H:\\ _ N NAIAL Travelling helical
0T T — X0 7\ shear waves
_2 - T [
h‘--‘-‘-““‘"‘--
—4 = hﬁﬁ““‘\
"‘---...__\-‘
—f 6
0 2 [~ 2 4
4)('6 A S

Few material lines for X?=Const, X3= const in reference config. (a). Same lines in actual configuration (b)



Definition: PDE model with M constitutive parameters (K, ..., Ky).

Equivalence transformations map independent variables, dependent variables

& constitutive parameters into new ones s.t. form of PDE’s is preserved.
Ex.: scalings, translations.

-> Reduces number of parameters & simplifies form of PDEs.
Consider PDE system E°(z,u,ou,...,0“u)=0, o=L1.N
n independent variables z=(z,...,.2")
m dependent variables u(z) = (ul(Z), U™ (z))

L constitutive functions / parameters K=(K,...,K))

One-parameter Lie group of equivalence transformations:
z =f(z,u;e), u =g(z,u;e),
K'=G,(z,u,K;e)



. . Fin Fp O F2  —F?
2D BVP of nonlinear elasticity F=|F; F» 0 C = _F, F!
0 0 1
. apt  §p12
Equ. of motion: Po(x")e — T~ 3xE poR' =0,
3P2] 8P22
p[]'(xz)ﬁ _W—m —,O‘(}R2=0,
) AW
po=poX',X*), P'=pX' X)H)—, i,j=1,2
JF;
1
Ciarlet-Mooney-Rivlin model: W =al, +bl, —cl, —Ed Inl;, a>0, b,c,d=0

2D elasticity BVP admits following equivalence transformations:

E: et + &1,

%1 — ¢3 (X] coser — X2 siney) + ea,
X? = e (X'sing; + X*sineg;) + &5,
= 21 +£(0).

X =2 + fA(1),

:5?) = egﬁpﬂa

a+ egG(a, b, ¢, d) + 0(g?),
b — e5G(a, b, ¢, d) + O(£?),
+ £5G(a, b, ¢, d) + 0(?),

ool Stal

c
d.

~ d*f1(t) d*f(¢)
R' =R! , Ez — R’ ,
+ de? ~+ dt?
a=—b —+—€2‘93_2£2(a—|—b), E = b,
T=—b+4+e* %2 1), d=e*2d,

Th.: the dynamics of Ciarlet-Mooney-Rivlin models in 2D depends on only 3 parameters

d
Pz:pDI:AF2—|—B_IC2—IC2:| A=2(a—|—b}20,8=2(b—|—c)20



Symmetry , but also Symmetry breaking!

In biology: at least one asymmetric carbon atom in the molecules = ‘bricks of life’
(nucleotides, amino acids).

-> homochirality of biomolecules: amino acids left-handed (levorotary compound) /
nucleotides right-handed (dextrorotary compound). CHIRALITY

Such chiral molecules non-superposable with their mirror image.

Two possible explanations for this asymmetry:

* Amplification of random fluctuations by some self-catalytic process.

* More fundamental dissymmetry of universe.

Ex.: violation of parity of weak interactions: electrons (matter) that dominate over
positrons are left-handed / positrons are right-handed.

Irreversible processes have a dual role: destroy order close to equilibrium / generate
order far from equilibrium.

Transition towards organized states in non-equilibrium situations due to generation of
order by amplification of fluctuations & percolation phenomena.

-> Generates dissipative structures, like crystals [Prigogine], like in turbulence.



« Symmetry classification & search for conservation laws implemented in symbolic

package GEM (A. Sheviakov, Univ. Saskachewan).

* Divergence-type conservation laws useful in the analysis of BVP & numerics.

* Conservation laws obtained systematically through Direct Construction Method.

* For variational DE systems: conservation laws correspond to variational symmetries.

* Noether’s theorem not a preferred way to derive unknow conservation laws.

* Symmetry methods as reduction methods.

* Numerical schemes preserving symmetries & cons. laws for dissipative systems.



