Symmetry Methods in mechanics of materials and rheology

Jean-François Ganghoffer

LEM3, Université de Lorraine, Nancy, France

Coll.: Rachid Rahouadj, V. Magnenet (Nancy) G. Bluman (UBC, Vancouver, Canada), A. Cheviakov (Univ. Saskatchewan, Canada)

Outline

• Thermodynamic approach of relaxation and time-temperature superposition principle from Lie symmetries (direct approach)

• Inverse modeling approach: constitutive laws from Lie groups as a general strategy

• Example: acrylic polymer stickes under low velocity impact

Outlook

A thermodynamic approach of relaxation

Thermodynamic framework of relaxation

Kinetic equations for the internal variables

 \boldsymbol{z} : non controlled variables outside equilibrium (internal reorganizations)

$$\begin{array}{c} \longrightarrow \text{ Kinetics law} \qquad \dot{z} = L \cdot A \qquad L_{ij} = L_{ji} \\ \text{(Onsager's properties)} \\ \end{array} \\ \begin{array}{c} \longrightarrow \\ \text{Relaxed state} \qquad -\dot{A}^r = 0 \\ \end{array} \\ \begin{array}{c} -\dot{A} = b^T \cdot \dot{y} + g \cdot \dot{z} \qquad \Longrightarrow \qquad \begin{cases} \dot{z}^r = -g^{-1} \cdot b^T \cdot \dot{y} \\ \dot{z} = -(L \cdot g)(z - z^r) \\ \end{array} \\ \end{array} \\ \begin{array}{c} & = (L \cdot g)^{-1} \\ \end{array} \\ \begin{array}{c} & \text{Internal variables} \\ \text{evolution} \\ \end{array} \\ \begin{array}{c} \dot{z}_k = -\frac{z_k - z_k^r}{\tau_k} \\ \end{array} \end{array}$$

Relaxation time

au

(kinetic information)

Constitutive law and least action principle

Challenge : conciliate Hamiltonian dynamics with irreversible thermodynamics

PLA : $\delta S = 0$ with respect to the variations of the d.o.f. δq_i

 $L = L((q_i, \dot{q}_i, \nabla q_i, \dots), i = 1 \dots N$ Lagrange density

 \rightarrow Euler-Lagrange equations (necessary conditions) :

$$-\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{q}_i}\right) - \nabla \cdot \left(\frac{\partial L}{\partial \nabla q_i}\right) + \frac{\partial L}{\partial q_i} = 0$$

Least action principle: historical perspective

- Helmholz : first attempts to reduce the principle of TIP to general principles of mechanics
- Onsager (1931) : principle of least dissipation or energy, cornerstone of modern TIP
- Gyarmati : integral principle of thermodynamics \rightarrow force variation at constant fluxes combined with energy balance

Lagrange densities having arguments not being of the type $\{q, \dot{q}\}$

 \rightarrow Euler-Lagrange equations $-\nabla \cdot \left(\frac{\partial L}{\partial \nabla q_i}\right) + \frac{\partial L}{\partial q_i} = 0$ truncated from their temporal dimensions

$$\rightarrow$$
 Non-Hamiltonian action $S = \int_{\Omega_t} L d\Omega$

Lagrangian formulation of the constitutive laws

Constitutive law in rate form :
$$\mathbf{P} = \begin{cases} \mathbf{P}_{Y}(\mathbf{y}, \mathbf{z}) = \dot{\mathbf{Y}} - \mathbf{e}_{,yy} \cdot \dot{\mathbf{y}} - \mathbf{e}_{,yz} \cdot \dot{\mathbf{z}} = 0 \\ \mathbf{P}_{\mathbf{A}}(\mathbf{y}, \mathbf{z}) = \dot{\mathbf{A}} - \mathbf{e}_{,zy} \cdot \dot{\mathbf{y}} - \mathbf{e}_{,zz} \cdot \dot{\mathbf{z}} = 0 \end{cases}$$

Self-adjunction condition of the Frechet derivative of ${\bf P}$:

$$Dp = Dp^* \to e_{,x_jx_i} = e_{,x_ix_j}, x \in \{y, z\}$$

 \rightarrow Maxwell conditions for internal energy satisfied due to its status of potential

Lagrangian formulation of the constitutive laws (2)

Account for extensity of order -1 of second derivatives of e:

$$e_{,yy} (\lambda y, \lambda z) = \frac{e_{,yy}(y, z)}{\lambda} \qquad e_{,yz} (\lambda y, \lambda z) = \frac{e_{,yz}(y, z)}{\lambda}$$
$$e_{,zy} (\lambda y, \lambda z) = \frac{e_{,zy}(y, z)}{\lambda} \qquad e_{,zz} (\lambda y, \lambda z) = \frac{e_{,zz}(z, z)}{\lambda}$$

and extensity order 0 of the intensive variables :

$$\mathbf{Y}(\lambda \mathbf{y}, \lambda \mathbf{z}) = \mathbf{Y}(\mathbf{y}, \mathbf{z}); \ \mathbf{A}(\lambda \mathbf{y}, \lambda \mathbf{z}) = \mathbf{A}(\mathbf{y}, \mathbf{z})$$
$$\rightarrow L = \mathbf{y}.\dot{\mathbf{Y}} - \mathbf{z}.\dot{\mathbf{A}} + \mathbf{e}_{,y}.\dot{\mathbf{y}} + \mathbf{e}_{,z}.\dot{\mathbf{z}} + \frac{\mathbf{d}}{\mathbf{dt}} \left(\mathbf{e}_{,y}.\mathbf{y} + \mathbf{e}_{,z}.\mathbf{z}\right)$$

Equivalent Lagrangian : the Euler-Lagrange equations are nil, viz $E_i(U) = 0, \forall i = 1 \dots q$, iff U is the generalized divergence of a quadrivector **P** :

$$Div\mathbf{P} = \sum_{i=1}^{4} \frac{dP_i}{dx_i} \equiv \frac{dP_t}{dt} + \frac{dP_x}{dx} + \frac{dP_y}{dy} + \frac{dP_z}{dz}$$

Lagrangian formulation of the constitutive laws (3)

$$\rightarrow$$
 use Gibbs-Duhem relation : $\mathbf{y} \cdot \dot{\mathbf{Y}} - \mathbf{z} \cdot \dot{\mathbf{A}} = 0 \Rightarrow \mathbf{L} = \mathbf{e}_{,y} \dot{\mathbf{y}} + \mathbf{e}_{,z} \dot{\mathbf{z}} = \frac{\mathrm{de}(\mathbf{y}, \mathbf{z})}{\mathrm{dt}}$

 \rightarrow Stationarity condition of the action integral $\delta S = \delta e = \delta \int_0^t \frac{de}{dt} dt = \delta \int_0^t de = 0$

Physical sense

internal energy keeps its status of a potential function during dynamic evolution.

Generalization of Poincaré lemma to functional forms [Olver, 1993] : $\delta \omega = \int_{\Omega} [d\mathbf{u} \wedge (\mathbf{D}_{\mathbf{P}}^* - \mathbf{D}_{\mathbf{P}})] d\mathbf{x}) \qquad P = \{P_i(\mathbf{x}, \mathbf{u}^{(\mathbf{n})}), \mathbf{i} = \mathbf{1}..\mathbf{q}\}$ let one-form $\omega = \int_{\Omega} (\mathbf{P}.\mathbf{d}\mathbf{u}) \mathbf{d}\mathbf{x} \qquad D_P$ Frechet derivative of \mathbf{P} if ω is written in the form $\omega = \delta \psi$ with $\psi = \int_{\Omega} L(\mathbf{x}, \mathbf{u}^{(\mathbf{n})}) \mathbf{d}\mathbf{x}$

 $\longrightarrow \text{ Get following equivalence} : \omega = \delta \psi = \delta \int_{\Omega} L(\mathbf{x}, \mathbf{u}^{(\mathbf{n})}) d\mathbf{x} \Leftrightarrow \delta \omega = \delta \delta \psi = 0$ Form is exact equivalent to the fact that it is closed

$$dd\psi = \sum_{1 < i < j < q} \left(\frac{\partial^2 \psi}{\partial u_i \partial u_j} - \frac{\partial^2 \psi}{\partial u_j \partial u_i}\right) du_i \wedge du_j = 0 \Leftrightarrow \frac{\partial^2 \psi}{\partial u_i \partial u_j} = \frac{\partial^2 \psi}{\partial u_j \partial u_i}$$

$$\longrightarrow \text{Maxwell's conditions for the functional } \psi$$

10

Lagrange formalism associated to the internal energy

$$(y, z)$$

$$(y, z)$$

$$(y, z)$$

$$(y, z)$$

$$(y_{1}, z_{1})$$

$$(y_{0}, z_{0})$$

$$(z_{0})$$

$$(z$$

True for any thermodynamic potential (according to the choice of control variables)

Incorporation of the kinetics of internal variables

relations $\dot{z}_k = -\frac{z_k - z_k^r}{\tau_k}$ not contained in the lagrangian $L = \dot{\psi}$

 \longrightarrow considered as N constraints (N dissipative modes)

$$\int_{t_0}^{t_1} \left(\dot{z}_k + \frac{z_k - z_k^r}{\tau_k} \right) dt = 0$$

 \rightarrow Constrained lagrangian (lagrangian multipliers λ_k) :

Thermodynamic information Kinetic information

Stationarity condition of $S \Rightarrow$ state laws and kinetic evolution equations for the internal variables

Symmetries and master response for viscous materials

Time temperature superposition for a viscous behaviour

Isothermal stress relaxation

Master curve at strain rate $\underline{\dot{\epsilon}}^*$ obtained by shifting (shifts a_t)

Variational symmetry condition

Invariance of the functional under a group of symmetry :

$$\int_{t_0}^{t_1} L(t, \boldsymbol{\gamma}^{(1)}, \boldsymbol{z}^{(1)}, \boldsymbol{\beta}^{(1)}, \boldsymbol{A}^{(1)}) dt = \int_{\bar{t_0}}^{\bar{t_1}} \bar{L}(\bar{t}, \bar{\boldsymbol{\gamma}}^{(1)}, \bar{\boldsymbol{z}}^{(1)}, \bar{\boldsymbol{\beta}}^{(1)}, \bar{\boldsymbol{A}}^{(1)}) d\bar{t}$$

$$\Leftrightarrow \quad pr^{(1)}\boldsymbol{v}L + LDi\boldsymbol{v}\boldsymbol{\xi} = 0 \quad (*)$$

First prolongation : $pr^{(1)}\boldsymbol{v} = \boldsymbol{v} + (\phi_{\gamma}{}^{t})\frac{\partial}{\partial\dot{\gamma}} + \phi_{\boldsymbol{z}}{}^{t}\frac{\partial}{\partial\dot{\boldsymbol{z}}} + \phi_{\beta}{}^{t}\frac{\partial}{\partial\dot{\beta}} + \phi_{\boldsymbol{A}}{}^{t}\frac{\partial}{\partial\dot{\boldsymbol{A}}}$ $\phi_{\gamma}{}^{t} = \frac{d}{dt}(\phi_{\gamma} - \boldsymbol{\xi}\cdot\boldsymbol{\gamma}) + \boldsymbol{\xi}\cdot\dot{\boldsymbol{\gamma}}$

Find all \boldsymbol{v} satisfying (*) with $L = \boldsymbol{\beta} \cdot \dot{\boldsymbol{\gamma}} - \boldsymbol{A} \cdot \dot{\boldsymbol{z}} + \sum_{k=1}^{N} \lambda_k (\dot{z}_k + \frac{z_k - z_k^r}{\tau_k})$

Variational symmetry condition

Profound difference in the status of variables in TIP versus Lie groups:

In TIP, time t is a parameter, control variables (ϵ, T, z_k) , observable variables (σ, S, A_k)

Vector generator $\mathbf{v} = \mathbf{v}_{con} + \mathbf{v}_{obs} = \left(\xi \frac{\partial}{\partial t} + \phi^{\epsilon} \frac{\partial}{\partial \epsilon} + \phi^{T} \frac{\partial}{\partial T} + \phi^{z_{k}} \frac{\partial}{\partial z_{k}}\right) + \left(\phi^{\sigma} \frac{\partial}{\partial \sigma} + \phi^{s} \frac{\partial}{\partial s} + \phi^{A_{k}} \frac{\partial}{\partial A_{k}}\right)$

Components of the observable vector field $\mathbf{v}_{\rm obs}$ calculated from those of the controllable field $\mathbf{v}_{\rm con}$:

Use state laws :
$$\begin{cases} \sigma = f_{,\epsilon}(\epsilon, T, z) \\ s = -f_{,T}(\epsilon, T, z) \\ A_i = -f_{,z_i}(\epsilon, T, z) \end{cases} \xrightarrow{\delta\sigma = f_{,\epsilon\epsilon}\delta\epsilon + f_{,T\epsilon}\deltaT + f_{,z_k}\delta z_k \\ \delta s = -f_{,\epsilon T}\delta\epsilon - f_{,TT}\deltaT + f_{,z_k}T\delta z_k \\ \delta A_i = -f_{,\epsilon z_i}\delta\epsilon - f_{,Tz_i}\deltaT + f_{,z_k}z_i\delta z_k \\ \delta A_i = -f_{,\epsilon z_i}\delta\epsilon - f_{,Tz_i}\deltaT + f_{,z_k}z_i\delta z_k \\ \phi^{\sigma} = f_{,\epsilon\epsilon}\phi^{\epsilon} + f_{,T\epsilon}\phi^T + f_{,z_k}\epsilon\phi^{z_k} \\ \phi^{s} = -f_{,\epsilon T}\phi^{\epsilon} - f_{,TT}\phi^T - f_{,z_k}T\phi^{z_k} \\ \phi^{A_i} = -f_{,\epsilon z_i}\phi^{\epsilon} - f_{,Tz_i}\phi^T - f_{,z_k}z_i\phi^{z_k} \end{cases}$$

 \rightarrow search for symmetries on a subset of the total jet space

Symmetry condition from the kinetic Lagrangian

Independent variable : time t dependent variables : control variables (ϵ, T, z_k)

Variational invariance of l_{thermo} automatically satisfied :

since the generator includes the state laws

$$pr^{(1)}v\left(L_{thermo}\right) + L_{therm}Div\xi = 0$$

 \rightarrow search for vector fields **v** satisfying invariance condition

 $pr^{(1)}v(L_{kine}) + L_{kine}Div\xi = 0$, on optimal path $(L_{kine} = 0)$

Equivalent to local symmetry condition $pr^{(1)}v(L_{kine}) = 0$

Application: linear viscous behavior

Control variables
(can be controlled during a test)Observable variables
(function of control variables)
$$\gamma = \begin{cases} uniaxial strain tensor \varepsilon \\ absolute temperature T \end{cases}$$
 \longleftrightarrow Cauchy stress $\sigma \\ entropy s \end{cases}$

Helmholtz free energy : $f(\varepsilon, T, z_k)$

$$L = \sigma \dot{\varepsilon} - s \dot{T} - \sum_{k=1}^{N} A_k \dot{z}_k + \sum_{k=1}^{N} \lambda_k \left(\dot{z}_k + \frac{z_k - z_k^r}{\tau_k} \right)$$

Experimental conditions (assumptions) :

$$\dot{T} = 0$$
 $\dot{\varepsilon} = constant$ $\tau_k(T) = \frac{h}{kT} \exp(\frac{\Delta H - T\Delta S_k}{RT})$
activation enthalpy activation entropy of kth dissipative mode

Time-temperature superposition principle

Particular solution v_0 satisfying $pr^{(1)}v_0L + LDiv\boldsymbol{\xi} = 0$ $\boldsymbol{v}_0 = t\frac{\partial}{\partial t} - \frac{RT^2}{RT + \Delta H}\frac{\partial}{\partial T}$

$$G_0 \begin{cases} \bar{t} = e^{\mu}t \\ \bar{T} = \exp\left(L_W\left(\frac{\Delta H}{R}\exp\left(\frac{\mu T - T\ln(T^*) + \frac{\Delta H}{R}}{T}\right)\right) - \mu + \ln(T^*) - \frac{\Delta H}{RT}\right) \\ \bar{\sigma} = \sigma \\ \bar{\varepsilon} = \varepsilon \end{cases}$$

Invariance property for the secant modulus

$$E_s(t,T) = \frac{\sigma(t,T)}{\varepsilon(t,T)}$$

$$E_s(\log t, T) = E_s(\log t + \frac{\mu}{\ln 10}, \bar{T})$$

$$\mu(T,\bar{T}) = \frac{\Delta H(T-\bar{T})}{RT\bar{T}} + \ln\frac{T}{\bar{T}}$$

Validation with experimental data

Construction of master curve

Comparison with the WLF model

Williams, Landel, Ferry empirical formulation for polymers (early seventies)

States equivalence property for the secant modulus or relaxation

 $E_s(t,T) = E_s(ta_{T',T},T') \frac{\rho(T)T}{\rho(T')T'}$

shift factor given by $\log a_{T',T} = \frac{-C_1(T'-T)}{(C_2+T'-T)}$

Reference temperature = glass transition temperature (here 363° K) C_1, C_2 material coefficients specific to each polymer

 $C_1 = 3, C_2 = 530^{\circ}K$ 'typical values' of WLF coefficients : $2 \le C_1 \le 30$ $35K \le C_2 \le 220K$ differences due to temperature dependence of mechanical properties

Thus, empirical WLF formula and time–temperature equivalence principle consequence of a particular symmetry of the constitutive equations 21

Lie symmetries in mechanics of materials : identification of a constitutive law

Lie groups construction of material's constitutive law EU project 'ScreenClean': glue shall be separated from paper fibers during paper recycling Analyse mechanical response of acrylic stickies under impact

 \rightarrow specimen casted in a cylindrical mould; stick cooled to remove air bubbles

mass M = 1kg dropped $(V_0 = 0)$ from height H_0

measure displacement S(t) (laser sensor) / compression force F(t) (load sensor)

→ assume isochoric deformation, thus $S(t) = \frac{S_0 h_0}{h(t)}$, with $h(t) = h_0 - \delta(t)$ → strain rate $\dot{\epsilon} = \frac{\delta(t)}{h_0 - \delta(t)}$

Experimental results

Experiments with 5 heights : $H_0 = 15cm, H_0 = 30cm, H_0 = 50cm, H_0 = 60cm, H_0 = 90cm$ \longrightarrow associated initial strain rates : $\dot{\epsilon}(0) = \frac{\sqrt{2gH_0}}{h_0}$

Noise filtering has been done

Superposition of measurements : master curve

 $\log \varepsilon_{90} = \log a_{x \to 90} + \log \varepsilon_x$ Superposition of data in $(\epsilon, \dot{\epsilon})$ plane : $\log \dot{\varepsilon}_{90} = \log a_{x \to 90} + \log \dot{\varepsilon}_x$ $\log a_{15 \to 90}$ Parameter $\log a_{30 \rightarrow 90}$ $\log a_{50 \rightarrow 90}$ $\log a_{90 \rightarrow 90}$ $\log a_{60 \rightarrow 90}$ Value 0.520.36 0.36 0.22()3 3 2 2 log *d*€^{*}/dt log *dε^{*}/dt* Direction of translation $H_0 = 15 cm$ - $H_0 = 15 cm H_0 = 30 cm$ ------ $H_0 = 30 cm$ ------0 0 $H_0 = 50 cm$ $H_0 = 50 cm$ $H_0 = 60 cm$ H₀ = 60cm $H_0 = 90 cm$ ----- $H_0 = 90 \text{ cm}$ ------1 -1 -1.5 -4.5 -3.5 -3 -2.5 -2 -1.5 -5 -4 -1 -0.5 -5 -4.5 -3.5 -2.5 -2 -1 -0.5 -4 -3 $\log \varepsilon$ $\log \varepsilon$

Height of 90cm selected as reference response for the master curve

Superposition of measurements : master curve (2)

Superposition of data in
$$(\sigma, \epsilon)$$
 plane : $\log\left(\frac{\sigma_{90}}{\sigma_0^*}\right) = b_{x\to90}\log\left(\frac{\sigma_x^*}{\sigma_0^*}\right)$
Parameter $b_{15\to90}$ $b_{30\to90}$ $b_{50\to90}$ $b_{60\to90}$ $b_{90\to90}$ σ_0^*
Value 2.48 1.97 1.53 1.53 1 59900
 $\frac{1}{10^{-1}}$ $\frac{1}{10^$

Height 90cm: reference response

One parameter Lie group

 $b_{x\to 90} = \beta e^{\alpha \log a_{x\to 90}}$ with $\beta = 1.045, \alpha = 1.687 \ (R^2 = 99.24)$

$$\varepsilon_{90} = e^{\mu_x} \varepsilon_x \qquad \mu_x = \ln a_{x \to 90} \qquad (1)$$

$$\dot{\varepsilon}_{90}^* = e^{\mu_x} \dot{\varepsilon}_x^* \tag{2}$$

Lie group for stickies:

$$\frac{\sigma_{90}^*}{\sigma_0^*} = \left(\frac{\sigma_x^*}{\sigma_0^*}\right)^{\beta e^{\alpha \mu_x}} \tag{3}$$

Viscoplastic constitutive law for acrylic (dynamical loading) (Naik and Perla, 2008) : $\sigma^* = k_1(\dot{\varepsilon}^*)\varepsilon^{k_2(\dot{\varepsilon}^*)}$

 $\varepsilon, \dot{\varepsilon}^*$ independent variables; accounting for (1),(2),(3) gives symmetry generator

$$\boldsymbol{v} = \varepsilon \frac{\partial}{\partial \varepsilon} + \dot{\varepsilon}^* \frac{\partial}{\partial \dot{\varepsilon}^*} + \alpha \sigma^* \log\left(\frac{\sigma^*}{\sigma_0^*}\right) \frac{\partial}{\partial \sigma^*}$$

Symmetry condition gives $\sigma = \sigma_0 \left(c_1 \left(\frac{\varepsilon}{\dot{\varepsilon}^*} \right)^{c_2} \right)^{(\dot{\varepsilon}^*)^{\alpha}}$, with $\sigma_0 = \sigma_0^* \times 1$ Pa material parameters obtained by least square adjustment with data : $c_1 = 1.05$, $c_2 = 0.053$

One parameter Lie group (2)

Powerfullness of proposed modelling strategy : account for a limited set of experimental data in a synthetic manner (Lie group structure)

prediction of material's reponse under various conditions

Typical response of viscous polymers

Lie groups method to build constitutive laws: general strategy

Lie groups method to build constitutive laws: general strategy

30

Creep and rupture of ferritic martensitic steels (9Cr1Mo)

Experimental master curve for rupture

<u>Observable variables</u>: strain rate, time to rupture. <u>Control variables</u>: applied stress, temperature.

Observed Lie group:

e group:
$$G_1^{obs}$$
 :
$$\begin{cases} \bar{T} = T + \mu \\ \bar{t}_R = e^{\alpha \mu} t_R \\ \bar{\sigma} = e^{\beta \mu} \sigma \end{cases}$$
$$\alpha = -0.0403636, \quad \beta = -0.00584727$$

Step 1: construct master responses for creep and rupture

$T(\mathbf{K})$	748	773	798	823	848	873
μ	0	-25	-50	-75	-100	-125
$a_1(\mu)$	0	0.9	2.0	2.9	4.1	5.1
$b_1(\mu)$	0	0.15	0.32	0.45	0.55	0.74

Table. Values of the shifts $a_1(\mu)$ and $b_1(\mu)$ to superpose a given curve at T on the reference response at T = 748 K, μ being defined by $T = T + \mu$.

$$\begin{cases} \bar{T} = T + \mu \\ \log \bar{t}_R = a_1(\mu) + \log t_R \\ \log \bar{\sigma} = b_1(\mu) + \log \sigma \end{cases}$$

Conservation laws for the creep of ferritic martensitic steels

Master curve obtained at the reference strain $\bar{\epsilon} = 5.0\%$ by shifting the different responses along the log t and log σ axis.

Observed Lie group:

$$\begin{array}{rcl} \mathrm{up:} & G_2^{obs}: \left\{ \begin{array}{l} \bar{t} &=& \mathrm{e}^{\gamma\mu}t \\ \bar{\sigma} &=& \mathrm{e}^{\delta\mu}\sigma \end{array} \right. \\ \gamma = 1.57167, \quad \delta = -0.0172415 \end{array}$$

 $\bar{\varepsilon} = \Theta^{\mu} \varepsilon$

E(%)	5.0	2.0	1.0	0.5	0.2	0.1
μ	0	0.92	1.61	2.30	3.22	3.91
$a_2(\mu)$	0	1.15	2.18	3.33	4.71	6.78
$b_2(\mu)$	0	-0.023	-0.032	-0.046	-0.053	-0.062

Table Values of the shifts $a_2(\mu)$ and $b_2(\mu)$ to superpose a given curve at ε on the reference response at $\overline{\varepsilon} = 5\%$, μ being defined by $\overline{\varepsilon} = e^{\mu}\varepsilon$.

Previous symmetry group for rupture still holds:

$$v_1^{obs} = \alpha t_R \frac{\partial}{\partial t_R} + \beta \sigma \frac{\partial}{\partial \sigma} + \frac{\partial}{\partial T} \cdot$$

$$\boldsymbol{v}_{2}^{obs} = \gamma t \frac{\partial}{\partial t} + \delta \sigma \frac{\partial}{\partial \sigma} + \varepsilon \frac{\partial}{\partial \varepsilon} \cdot \frac$$

Group generator:

Two strategies for the construction of the constitutive law

Step 2: Express constitutive law formally as

$$\Delta_1 = t_R - f(\sigma, T) = 0$$

$$\Delta_2 = \dot{\varepsilon} - h(t, \sigma, \varepsilon, T) = 0$$

f, h unknown functions

apply the symmetry condition v_1^{obs} to Δ_1 and v_2^{obs} to Δ_2 .

$$pr^{(1)}\boldsymbol{v}_{1}^{obs}\Delta_{1} = 0, \quad \text{whenever } \Delta_{1} = 0 \qquad pr^{(1)}\boldsymbol{v}_{1}^{obs} = \alpha t_{R}\frac{\partial}{\partial t_{R}} + \beta \sigma \frac{\partial}{\partial \sigma} + \frac{\partial}{\partial T}$$
$$pr^{(1)}\boldsymbol{v}_{2}^{obs}\Delta_{2} = 0, \quad \text{whenever } \Delta_{2} = 0 \qquad pr^{(1)}\boldsymbol{v}_{2}^{obs} = \gamma t\frac{\partial}{\partial t} + \delta \sigma \frac{\partial}{\partial \sigma} + \varepsilon \frac{\partial}{\partial \varepsilon} + \dot{\varepsilon}(1-\gamma)\frac{\partial}{\partial \dot{\varepsilon}}.$$

Symmetry generator has been built so far by considering experimental response data and assuming a Lie group structure.

Two possible strategies:

1. Solve previous system with respect to Δ .

2. Find the invariants associated to symmetry generators. Express constitutive law in terms of suitable combination of invariants. advantage of identifying constitutive law without solving differential equations

Step 3: Construction of the constitutive law using invariants

$$\boldsymbol{v}^{obs} = \sum_{k=1}^{m} \phi^{p_k} \frac{\partial}{\partial p_k} + \sum_{k=1}^{n} \phi^{u_k} \frac{\partial}{\partial u_k}$$

Observable variables u_k Parameters p_k

$$\phi^{p_k} = \left. \frac{\partial \Phi^{p_k}}{\partial \mu} \right|_{\mu=0}, \quad \phi^{u_k} = \left. \frac{\partial \Phi^{u_k}}{\partial \mu} \right|_{\mu=0}$$

If v^{obs} has s non-vanishing components amongst ϕ^p and ϕ^u , it then has s-1 invariants I_1, I_2, \dots, I_{s-1} given by the solution of the characteristic system:

$$\frac{\mathrm{d}p_j}{\phi^{p_j}} = \frac{\mathrm{d}u_i}{\phi^{u_i}}$$

It is straightforward to show that any function $f(I_1, I_2, \dots, I_{s-1})$ of the invariants is also invariant under v^{obs}

$$\boldsymbol{v}^{obs}[f(I_1, ..., I_{s-1})] = \sum_{k=1}^{m} \phi^{p_k} \frac{\partial f}{\partial p_k} + \sum_{k=1}^{n} \phi^{u_k} \frac{\partial f}{\partial u_k} = \sum_{k=1}^{m} \phi^{p_k} \sum_{l=1}^{s-1} \frac{\partial f}{\partial I_l} \frac{\partial I_l}{\partial p_k} + \sum_{k=1}^{n} \phi^{u_k} \sum_{l=1}^{s-1} \frac{\partial f}{\partial I_l} \frac{\partial I_l}{\partial u_k} = \sum_{l=1}^{s-1} \frac{\partial f}{\partial I_l} \left[\sum_{k=1}^{m} \phi^{p_k} \frac{\partial I_l}{\partial p_k} + \sum_{k=1}^{n} \phi^{u_k} \frac{\partial I_l}{\partial u_k} \right] = 0$$

Let

Step 3: Construction of the constitutive law using invariants

Search for functions Σ_1 , Σ_2 of invariants I_1 , I_2 , I_3 , such that:

$$\Sigma_1(I_1, I_2) = 0 \quad \Leftrightarrow \quad \Delta_1 = 0$$
$$\Sigma_2(J_1, J_2, J_3) = 0 \quad \Leftrightarrow \quad \Delta_2 = 0$$

 I_1, I_2 the invariants of $oldsymbol{v}_1^{obs}$ given by the solution of the system

$$\frac{\mathrm{d}t_R}{\alpha t_R} = \frac{\mathrm{d}\sigma}{\beta\sigma} = \frac{\mathrm{d}T}{T}$$

 J_1, J_2, J_3 the invariants of \boldsymbol{v}_2^{obs} given by the solution of the same characteristic system:

$$\frac{\mathrm{d}t}{\gamma t} = \frac{\mathrm{d}\sigma}{\delta\sigma} = \frac{\mathrm{d}\varepsilon}{\varepsilon} = \frac{\mathrm{d}\varepsilon}{(1-\gamma)\varepsilon}.$$

$$I_1 = \log t_R - \alpha T, \quad I_2 = \log \sigma - \beta T$$

 $J_1 = \log t - \gamma \log \varepsilon, \quad J_2 = \log \sigma - \delta \log \varepsilon, \quad J_3 = \log \dot{\varepsilon} - (1 - \gamma) \log \varepsilon.$

Step 3: Construction of the rupture law using invariants (2)

Considering rupture, we suggest a relation having the form:

$$\log t_R = \frac{F_1(\sigma)}{T} + F_2(\sigma) \cdot$$

Leads to the functional relation between invariants

$$\Sigma_1(I_1, I_2) = \frac{K_1}{I_2} + K_2I_1 + K_3I_2 = 0$$

----> Expression of rupture time versus temperature & stress:

$$\log t_R = \frac{\alpha}{\log \sigma - \beta T} + b \log \sigma + (\alpha - b\beta)T$$

with $a = -K_1/K_2$ and $b = -K_3/K_2$ new constants.

Good agreement with experimental data.

Linear term in T when combining $I_1 \& I_2$: slight difference with Larson-Miller relations.

Step 3: Construction of the creep law using invariants (3)

$$\Sigma_2(J_1, J_2, J_3) = e^{J_3} - A e^{eJ_1} e^{dJ_2} = \dot{\varepsilon} \varepsilon^{-\langle 1 - \gamma \rangle} - A t^e \varepsilon^{-e\gamma} \sigma^d \varepsilon^{-d\delta} = 0$$

Leads to strain versus time, stress and temperature:

$$\varepsilon(t) = (1+c)^{-1/\nu} \left[(1+c)\varepsilon_0(\sigma,T)^\nu + A\nu t^{c+1}\sigma^d \right]^{1/\nu} \cdot \varepsilon_0(\sigma,T) = \frac{\sigma}{E(T)}$$

Hence the isostrain responses:

$$t(\sigma) = \left[\frac{(c+1)(\varepsilon^{\nu} - \sigma^{\nu}E(T)^{-\nu})}{A\nu\sigma^d}\right]^{1/(1+\epsilon)} \cdot$$

Coefficients E(T), a,c,d are adjusted.

Step 4: Lie analysis of the creep constitutive laws

Recall creep and rupture constitutive laws of 9Cr1Mo stainless steel:

$$\begin{aligned} \dot{\varepsilon} &= A t^{\varepsilon} \sigma^{d} \varepsilon^{1-\gamma-\varepsilon\gamma-d\delta} & \text{if } t \leq t_{R} \\ t_{R} &= \sigma^{b} \mathrm{e}^{\frac{\alpha}{\log \sigma-\beta T} + (\alpha-b\beta)T}. \end{aligned}$$

Lie algebra of the creep model:

$$\begin{aligned} pr^{(1)}\boldsymbol{v}_{2}^{1} &= \sigma^{d}t^{-\varepsilon}\frac{\partial}{\partial t} + c\dot{\varepsilon}\sigma^{d}t^{-\varepsilon-1}\frac{\partial}{\partial\dot{\varepsilon}} \\ pr^{(1)}\boldsymbol{v}_{2}^{2} &= \sigma^{d}\varepsilon^{1-\nu}\frac{\partial}{\partial\varepsilon} + (1-\nu)\sigma^{d}\varepsilon^{-\nu}\dot{\varepsilon}\frac{\partial}{\partial\dot{\varepsilon}} \\ pr^{(1)}\boldsymbol{v}_{2}^{3} &= t\frac{\partial}{\partial t} + \left(\frac{c+1}{\nu}\right)\varepsilon\frac{\partial}{\partial\varepsilon} + \left(\frac{c+1-\nu}{\nu}\right)\dot{\varepsilon}\frac{\partial}{\partial\dot{\varepsilon}} \\ pr^{(1)}\boldsymbol{v}_{2}^{4} &= t\frac{\partial}{\partial t} - \left(\frac{c+1}{d}\right)\sigma\frac{\partial}{\partial\sigma} - \dot{\varepsilon}\frac{\partial}{\partial\dot{\varepsilon}} \end{aligned}$$

In particular, get a master curve:

$$\begin{cases} \log \bar{t} &= \mu + \log t \\ \log \bar{\sigma} &= -\left(\frac{\varepsilon + 1 - \nu}{d}\right) \mu + \log \sigma \\ \log \bar{\varepsilon} &= \mu + \log \varepsilon \cdot \end{cases}$$

Step 4: Lie algebra of the rupture law

Two generators:

 $\begin{aligned} \boldsymbol{v}_{1}^{1} &= t_{R} \left(\frac{b \left(\log \sigma - \beta T \right)^{2} - a}{\log \sigma - \beta T} \right) \frac{\partial}{\partial t_{R}} + \sigma \left(\log \sigma - \beta T \right) \frac{\partial}{\partial \sigma} \\ \boldsymbol{v}_{1}^{2} &= t_{R} \left(\frac{(\alpha - b\beta) \left(\log \sigma - \beta T \right)^{2} + a\beta}{\log \sigma - \beta T} \right) \frac{\partial}{\partial t_{R}} + \left(\log \sigma - \beta T \right) \frac{\partial}{\partial T} \end{aligned}$ Commutator table of the Lie algebra

In particular, get a master curve: $\begin{cases} \log t = \mu + \log t \\ \log \bar{\sigma} = -\left(\frac{e+1-\nu}{d}\right)\mu + \log \sigma \\ \log \bar{\sigma} = -\mu + \log \sigma \end{cases}$

Authors Invariant(s) $T(\log t + \log B_2)$ Larson & Miller $\frac{B_1}{T} - \log t$ Dorn Monkman-Grant $\log t_R + m \log \dot{\varepsilon}_{min}$ Modified Monkman-Grant $\log\left(\frac{t_R}{\varepsilon_R}\right) + m' \log \dot{\varepsilon}_{min}$ Some creep invariants encountered in the literature. Table

Illustrates the general procedure for constructing iso-observables responses

Summary and perspectives (open questions)

• Lie symmetries powerful tool in mechanics of materials: predictive nature, condense mechanical behavior into invariance relations & master responses, thus provide economy of experiments.

• Clarify fundamental significance of symmetries inherent to thermodynamic potentials for materials having a complex rheological behavior.

• Find symmetries for BVP in integro-differential form (hereditary formulations, e.g. viscoelasticity).

 Find approximate symmetries for materials & systems presenting an uncertainty in their behavior (statistical variability in their material properties, ex. biological tissues)
 -> stochastic models, approximate symmetries.

• Numerical schemes preserving symmetries & conservation laws for dissipative systems.