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@ Lowenergy impact on composite panels

Cone of damage

[Lopes et al. 2009]

6 different experiments

N

fibre fracture

depth in mm

delamination

60mm

[Davies et al. 2004]

[Hautier et al. 2010]

=y spatial localization of damage and thickness of the ply << size of the structure
(helical cracks)

sy implicit-explicit co-simulation (Zebulon / Europlexus) [Chantrait 2014]
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@ Industrial application of the BGC-micro method (explicit /implicit co-simulation)
[Chantrait Rannou Gravouil 2014]

120 |
Dfmp PbSL
PbI  —
Doy, PbSL
. 80 +
=
£
= 60 | Schur complement
E (20 mn)
(]
40 +
20 |
0
ZN ZN N
Qo \QOO ~?OOO

sl Significant time saving (dt,,, = 1.x10-°s) and main numerical effort in the

. explicit domain
7 ONERA
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Outline

Introduction

General formalism A general formalism of direct time integrators combined with

Stability Lagrange multipliers

HATI
© stavility analysis

Conclusions

A unified strategy to control « locally » the accuracy and the
time step — Application to a bridge crane under earthquake

6 Conclusions & prospects
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sl |n a first step, it consists in controlling the ACCURACY

@ 5 properties are generally identified:

4 )
e Unconditional stability for implicit integrators in the linear case

e Second order accuracy (Dahlquist barrier for linear multi steps methods (LMS))
[Dahlquist 1963]

e A unique implicit equation to solve at each time step
e «self-starting » integrators

e Control of the numerical dissipation in the “high frequency” range
[Hilber & Hughes 1978 (overshoot), Hulbert 2004]

- J

nmmmdp Example 1 (limited to Dahlquist barrier): Newmark integrators, o time
integrators (HHT-a, Wood-Bossak-Zienkiewicz (WBZ)-o, Chung-Hulbert (CH)-
a) allow to ensure a second order accuracy and numerical dissipation of high
frequency spurious oscillations [Newmark 1959, Hilber Hughes 1977, Wood Bossak

Zienkiewicz 1980, Wiberg Zeng Li 1992, Safjan Oden 1993, Chung Hulbert 1993, Pegon
2001, Krenk 2005, Masuri Hoitink Zhou Tamma 2009]

nmmm=p Fxample 2 (not limited by Dahlquist barrier): time discontinuous Galerkin
(TDG), time extended finite elements (T-XFEM) allow strong time
discontinuities with high order accuracy [Yin & al 2000, Kanapady Tamma 2003,
Réthoré & al 2005]; space-time finite elements allow a space-time adaptation for
controlling both the accuracy and the time step [Hughes Hulbert 1988 and 1990,
Palaniappan & al 2004, Haber & al 2005, Cavin & al 2005, Gopalakrishnan & al 2017]
(mapped tent pitching schemes)
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@ Historically, the extension to non-linear or non-smooth problems has highlighted the
following challenges:

Ve

Loss of unconditional stability for implicit time integrators
Loss of accuracy (from order 2 to order 1)
Energy properties to check / enforce

Overshoot, high frequency numerical behavior

Numerical integration of internal forces

J

10/62

Many contributions for 50 years until today propose to overcome these
difficulties:

Integrators ensuring balance of linear momentum, angular momentum, energy,
entropy [Simo et Tarnow 1992, Armero et Petocz 1998, Betsch et Steinmann 2001, Botasso et
al 2001, Krenk 2006, Romero 2009]

Symplectic integrators (Hamiltonian approaches, conservative problems) [Simo et
al 1992, Marsden et West 2001, Chhay Hoarau Hamdouni Sagaut 2011]

Variational and o-variational integrators [Cannarozzi & al 1995, Laursen & Chawla
1997, Kuhl & Crisfield 1999, Armero & Romero 2001, Masuri Hoitink Zhou Tamma 2009]

Variational integrators for discrete mechanics
[Marsden & West 2001, Hauret Letallec 2006]

For example, symplectic variational integrators can exactly conserve a discrete
Lagrangian with a symplectic structure and have better numerical properties over
long periods, port-Hamiltonian approach, Q-structures [Hamdouni et al 2011];

applications also to non-smooth dynamics [Moreau 1999, Jean 1999, Pandolfi Kane
Marsden Ortiz 2002, Acary 2008, West 2004, Betsch 2011, Renard 2013]
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s> /n a second step, it consists in controlling the TIME STEP

@ 3 main conditions are generally identified:

7

e Frequency content of the structure and the prescribed loading

e Accuracy and stability properties of integrators (conditionally stable explicit
schemes)

e Convergence of nonlinear solver for implicit integrators

\

mmm=d Adaptive variable time steps strategies are often used to ensure the
automatically the accuracy and efficiency in terms of CPU
[Wood 1990, Zienkiewicz Taylor 1991, Wiberg Zeng Li 1992, Wiberg Li 1999, Schleupen
Ramm 2000, Czekanski El-Abbasi Meguid 2001]

nmmmm- A first conclusion: the main limitation of all these time discretizations is in using
A UNIQUE TIME INTEGRATOR (homogeneous time integrator) and A UNIQUE
TIME STEP for all the finite element mesh (synchronous time integrator).

has its own integrator) asynchronous (each part of the mesh has its own time

sl One obvious improvement is to develop heterogeneous (each part of the mesh
step) time integrators.

11/62
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nmmsms=lp- Construction of a unified formalism for a large class of time integrators with
Lagrange multipliers

@ Transient non-linear dynamics equation semi-discretized by the finite element method:

Mi () + £, (W () = Lo, () V1 € [t0, 2]
u(t) =ug, u(fp) =g
@ Linear case:
Mii (1) + Ku (1) = s (1) V1 € [t0, 1]
u (fo) =ug, u(fp) =up
nmmmmp These expressions have the following drawbacks:

e Second order hyperbolic in time
e Strong formulation in time with restrictive properties of differentiability

e Inadequate with time discontinuities (non-smooth dynamics, dynamic crack
propagation, shock waves)

sl /nadequate starting point for the construction of modern time integrators (in
the aim to ensure discretized balance equations in the time domain)

nmmm=lp- ynsuitable for building heterogeneous asynchronous time integrators
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s We consider as a starting point the simplest weak formulation in time for

structural dynamics

@ Variational formulation based on the following well-known action integral:

Ve

-

t

A(u,il)z/fﬁ(u,il) dd Lmuw)=Tm-V(@)

1
T @) = S Mi
1

SA=0 Véuely(H'(Q,[to,2f])),8u(.,t0) =8u(.,tr)=0

o SA=0<% [/ 8u’ (1) (Mii(r) + Ku (t) —foq () df =0

inmmmm=pp The previous semi-discretized formulation corresponds to the Euler-Lagrange

equation of the variational form above.

inmmsslp The corresponding semi-discretized weak formulation can be considered as a

starting point for the construction of time integrators. In this context, it
"relaxes" the concept of equilibrium at a given time.
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nmmm=P Passage from a second order time differential equation to a system of two first
order time differential equations

@ Two field Time action integral [Hu Washizu 1969] (Legendre transform on the
velocity):

4 tf )
Apgr (u,0,v) = / Lpr (w,0,v) dt  Lpr,0,v) = Tgr (@, v) —V (u)
o
1
S Aup = 0 Tur (w,0,v) = vVMu — EVtMV
Ly
& / —8u’ (1) (Mv (¢) + Ku (¢) —f.; (2)) dt
to tr
+/ SV ()M () —v(t)) dt =0
\. fo J
@ Corresponding Euler-Lagrange equation and symplectic structure: (p = MV)
Mv (1) + Ku (¢) = fo: (t) V1 € [to, /] p 0 —1 OCp
. _ P
u(t)—v(@)=0 Vtelt,ty] "= P or,
u (o) = o, V(%) = Vo g Ou
J
s The corresponding weak formulation introduces the velocity v .
as a new variable. The fundamental state vector becomes: X = (u,v)
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nmm=lp- This weak formulation in time is the basis of many modern time integrators,
for instance rigid solid dynamics [Cardona Geradin 1989, Simo & Wong 1991, Botasso
et al 2001, Krenk & Hogsberg 2005, Krenk 2006].

immsmsp- On the other hand, the stationary principle highlights the central role of the
velocity in structural dynamics. In other-words, the good duality bracket is
based on velocity and momentum/impulse, not acceleration and force.

nmmmmP Example of kinematic constraint on a limited part of the mesh:

La(f) = 0
wmmssslp- This condition can be introduced easily into the time action integral with a
Lagrange multiplier:
( ~ t'f _ )
A(u,a,v,A) = / L(u,ua,v,A) dt
o
Ly
= [ (Car iy + 2T O L)
lo
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@ We obtain the following three fields stationary principle:
(64=0 )
Introduction & / —8u’ (t) (MV (t) + Ku (¢) — fox; (t) —L'A (¢)) dt
General formalism
/ SV ()M (?) —v(2)) dt
Stability
HATI + / SA'(t)Lu(¢) dt =0
_ \ o J
Conclusions

@ We can then deduce the corresponding Euler-Lagrange equations:
Mv (1) + Ku (t) = f£.: (t) + L'A (t) Vit € [to, 7]
u()—v() =0 Vi€ [to, 1]
Lu(®) =0 Vt € [to,t5]
u (fo) = up, (%) =g

iwmmm=p This gives the physical meaning of the Lagrange multiplier (interface
loading 1A ) (A — _),) (generalized moment [Benes Matous 2010])

sy Unlike Ordinary Differential Equations without multipliers (ODE), we now get a
system of Differential Algebraic Equations (DAE).

16/62
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s We can now introduce the time discretization:

o<l <+ <lIp<lpt1 <+ <If h=tyr1—1y
Introduction s Now, from the previous three fields time action integral, we assume that the
time discretized equilibrium equation is checked only at a given time within h.
General formalism This time strongly depends on the chosen time integrator. This idea is not new
and follows the very general concepts developed in the G-a methods [Kuhl
Stability Crisfield 1999, Erlicher Bonaventura Bursi 2002] or more generally by Tamma [Hoitink
et al 2008, Masuri et al 2009] (particular cases: HHT-a, WBZ-a, CH-a)
HATI
Conclusions (T _ t 2)
MvV,g, T KUy, =g, + LA, (§5.67) €[0,1]

/tf SA'(H)Lu(t) dt =0

. J

\wemmm=p> External, internal forces and multipliers are expressed at time Ip g, . As
indicated by Tamma, a specific parameter is dedicated to the acceleration in
order to find a second order accuracy for acceleration. In fact, many well-
known 2"? order time integrators (for displacements and velocity) are only of
order 1 for the acceleration [Hulbert Hughes 1988, Erlicher et al 2002, Masuri et al
2009]. Thus, the order 2 for all quantities can be obtained if an equilibrium in a
weak sense in time is introduced (all LMS integrators have this specific time for
acceleration).

17/62
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@ The previous equation allows now (Vnig, = (1 —=8g)Vn + &gVt
to introduce a general formalism . — . :
for direct time integrators with Uptg, = (1=§f)0n + & rnt

Lagrange multipliers (prerequisite
in order to introduce HATI).

7\

Uptg, = (1 _Ef)un ‘I'Efun-H
frve, = (L =§p)tn + §rtnta
LAn-i—Ef =(1 _gf)An +SfAn+1

@ Closed system of eq.: U,+1 = Uy, + ha, + (% — ,3) h?v, + Bh*Vui1

(9 unknowns g eq.):

U1 = Uy + (1 —y)hvy + yhvui

I(*Aﬁn+l = gn+1 + LtAn—i—Ef

/tf SA'(H)Lu(z) dt =0

1 Bh
K* = £, —M+£,20

Y

-

gn+1 = fn+’g'f — Ku, — thKﬁn — ( — E_g) Mv, — Ef (%) hZK‘.'n

J

sy /t may be noted here the role played by the two parameters in the operator K* as

a linear combination of the mass and stiffness.
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@ General compact form with Lagrange multipliers:
-
K*AUpt1 = Gnp1 + L' Apye, )
(}n+1 ==1Fn+ff-_'FQHJn
* ] [ . .
* I§h 09 ¢ L/ Uy JA\) P
K* = —71 10| L'!=1]0 Upy= | | , AUp4+1 = | Aup4g
__thI 01 0 Vi AVptq
B —28 § ]
fore, ErhK K &7 (52 ) K+ (1-5)m
IFn+§'f = 0 N = hl 0 (_y;Z,B) h?1
0 14
0 0 —21
\ - Y il

sy This compact form contains all the equations required for the complete solving
at a given time step (for all known a-integrators), to which we add the weak

kinematic constraint in time:

ftf SA'(H)Lu(r) dt =0

0
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@ Special case of CH-o time integrators introduced by Chung and Hulbert 1993:

(1 —-ag)Mvy1 +agMv, + (1 —ap)Ku,yg + a rKu,

{Sg =1—qa

=1—-«

— (1 _af)fn+1 + (1 _af)fn +LtAn+1_af Ef S
Scheme Qg of Y B
HHT-« 0 —appT = 1 o 3 — OHHT 1(1— apnr)?
WBZ-a QWBZ = fﬁf’;oi 2 — awBz (1 —awpz)?

2000—1 3 2
CH-« lp_moo : _ﬁ?oo 5 —2ay (1—ay)

nmmssdp- |n practice, the four parameters are set to achieve unconditional stability,
second order accuracy, control of spurious high frequency oscillations, while
minimizing the numerical dissipation at low frequencies. Both o parameters can
be defined as functions of the spectral radius to the high frequency limit, in order
to control the numerical dissipation rate in this interval.

@ Particular case of Newmark:

Sg=§5=v

s§r=§=y

nmmsp- No time integrator of Newmark allows the control of the spurious high frequency

oscillations while ensuring second-order accuracy.

sy This formalism also contains Simo, Krenk, Verlet integrators as special cases

with Lagrange multipliers.
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@ Special case of non-smooth dynamics:
rFl ru1 rF1 rul
‘ q“ = @ b
ii
e E ' Moy
@ Hertz-Signorini-Moreau conditions (HSM):
Impenetrability: &, = [(X2+u2) —(X14+u1)]-n1 >0
Contact pressure: tN =O0g-Ng Ny <0 , a=1,2
Complementarity: 8y * Lty = 0
@ Moreau lemma [Moreau 1978] (velocity-impulse formulation of HSM):
((ifgn>0 then J, =0
gy 20
t, <0 = { | En >0
gy-ty=0 if gy=0 then Iy <0
\ &y In=10
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@ Four fields time action integral with impact with velocity HSM conditions at time t,
[Cirak and West 2005]

~ tc tr
A(u,a,v, tc,k):/ L(u,a,v)dt+ [ L(u,a,v)dt+ L7 (t)gp(te)
t

0 te
@ Stationarity of action integral: 8,2\ 0=
( ] )
Smooth dynamics ou 1| MV +Fjnt = Fext, Vee[to,to]u[td tf]
equation: Sv u=v
- t;_j_ -
Impact equation: St. Mv(t)] " = Vgl (to)Mte)
L tc
_ t+
Kinetic energy balance: Su(tc) : (MV)TM_I(MV)} ‘= 0
L te

.

@ Unified HSM non-smooth dynamics equation [Moreau 1999, Chen 2013, Acary 2014]

Y dvs = vdt
dvns = v(t]) —v(t)

dv = dvs + dv,s

0  Vte [t t UL, tf]
LT (t)Mte)

Mdv + F;,+dt = Fo i dt +dl dl(t) :{
L = VgN
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@ A new central difference method with Lagrange multipliers for non-smooth dynamics
[Belytschko 2000, Casadei 2009, Heinstein 2010, Geradin and Rixen 2014, Fekak Brun
Gravouil 2017] (compatible with the previous general formalism):

4 )
M/uman_}_g = M/umpV,H_% + At(Fext,n+1 - Fint,n+1 - CVn+%)+ Int1
T
Int1 = I'n+17“n+%

Vn—{—% = Ln+1Vn+%

(if g,’v(t,,+1) > 0 then XfH_% =0
|
vn+% >0
if g (tr11)<O0 then 7~ﬁ,+g >0 vie{l,..,p}
/ }\’/ —0
_ (3t )

@ Corresponding Delassus or Steklov-Poincaré operator at time t

n+3/2:

(Ln+1ML][:anrz-+l>}\‘n+% = b
b= Vn+% —Lnt1 (Vn+% + AtM/_u}np(Fext,n—l—l —Fint,nr1— CV,,_%))

sy Comments: acceleration not required, time of impact detection not required
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nmmmsdp Two kinds of Time integrators for non-smooth dynamics

@ Event-tracking time integrators
e Strong formulation in time semi-discretized in space
e Solving impact equation at time tc

e Solving smooth dynamic equation between to events (contact, free movement)

( )

@ Time-stepping time integrators

e Space-time weak formulation for non-smooth dynamics

e Solving a unique non-smooth dynamic equation for one time step

sy Only Time-stepping integrators converge in time with infinite impacts in a
finite time (non-smooth dynamic equation and velocity HSM ensured in a
weak sense on a time step).

General proof of convergence with the Hausdorff Measure [Acary 2012].

nmsssmlp The new CD-Lagrange is a symplectic explicit time-stepping integrator [Fekak 2017]
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@ The bouncing ball example: rigid / rigid analytical solution 5
e First rebound: o = 2g—h z| M
Introduction
1—e" ¢
General formalism ® Nthrebound: th =to <2 1—e 1)
" 1+e
Stability e Downtime of themass: T = t 0
l—e P
HATI
" — DL ) ' '
Conclusions 1 - _Exa;ctagrange | , tg)l();aagmnge |
o
W
£ B
=
o2 1 2 3 4 5 0 1 2 3 4 5
£(s) t(s)
nmssmmp- The mass does an infinity of rebounds before it stops in a finite time (Zeno
Phenomenon) (restitution coefficient e=0.8)
25/62
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@ Contact/impact of two identical elastic bars : deformable / deformable analytical

solution
2] i 2]
oy ; -
I
I - i 1l >l
< L 1 d ! d ™ L 1
E =2.110" Pa
p = T847 kg/m?
L=0.254m
d=0.210"3m
vo=5m/s
A =0.645 1073 m?
10™
< 107°
S
T
L 10 s
—+— CD-Lagrange
—e— Moreau-implicit
—— O(At)
. —O(At?)
10 -8 ‘-7 l-s -5
10 10 10 10

At (log scale)

6 :
—— At =8.10"7s,h =5.210"3m
. —— At =4.10""s,h = 2.610"%m|
—— At =8.10"%s,h = 5.210~*m
2
w0
~
E
> 2
e
s
-8 i
0 1 2
t(s) x10
10° -
E 107
]
3
=)
2
S 102 :
—s+— CD-Lagrange
—e— Moreau-implicit
— O(At)
1
10° : C')(AtZ)
107 107 10° 10°

At (log scale)

nmsssmslp Space-time global error indicator (Hausdorff measure) [Acary 2012]

nmsssslp- Moreau implicit of order %3, CD-Lagrange of order 1 [Fekak 2017]
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@ Contact/impact of two identical elastic bars : deformable / deformable analytical

solution
Contact force
x10°
0 J]
2}
4}
—~ gl -
Z
Q
R gl
ol
ol —— At = 0.8Atcritical
- = = At = 0.25Atcritical
At = 0.05Atcritical
-14
; 2
#(s) x10™
Impact impulse
0 e
— At = 0.8 Atcritical
-0.01 —— At = 0.25Atcritical
— At = 0.05Ateritical
-0.02
003
]
Z 004t
3
g -0.0s}-
£
TP TSR R (| RS
~0.07
~0.08
~0.09

42 44 46 48 5

32 34 36 38 4
t(s) x10°

a(m/s?)

Contact acceleration

Wwvw»«o

—— At = 0.8 Ateritical
= = = At = 0.25Atcritical |
At = 0.05Atcritical

1
t(s) x107

At impact time, acceleration and contact
forces do not converge, however impulse

converges.



Introduction
General formalism
Stability

HATI

Conclusions

28/62

Stability analysis

La Rochelle,
GdR GDM,

June 7, 2019



Introduction
General formalism
Stability

HATI

Conclusions

29/62

La Rochelle,
GdR GDM,
June 7, 2019

@ Numerical analysis of time integrators is essential to understand their advantages and
disadvantages for structural dynamics

11—

11—

11—

Stability, accuracy, numerical dissipation, overshoot are crucial.

The stability properties may be assessed by appropriate norms on the state
vector X = (u,v) (displacements, velocities and accelerations possibly).
They are generally based on the orthogonality property of the eigenvectors
(decoupled differential systems, SDOF) [Hulbert Hughes 1987, Hulbert 2004]

Using of the amplification matrix: X(tn+1) - AX (tn ) -L = At'c(tn )

( )

A-stability — Xp4+1 = AX, |A| <1 (symplectic)c A'JA =J
consistency |17(tX < cAt*, Vt E[O,T] , k>0

Convergence: if At — 0 then e(tn) -0 e(’[n+1 ) = X(t el )— X,
(S+C) )
The majority of time integrators are A-stable (only in the linear case).

What about transient nonlinear dynamics?
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@ A significant example: the HHT-o time integrator can show some inefficiency of the
numerical dissipation in the nonlinear case with possible overshoot of the velocity and
only first order accuracy for the acceleration [Bauchau Damilano Theron 1995, Hulbert
Hughes 1987].

nmmmmp> A better property is L-stability (no overshoot) [Piché 1995].

s | -stability combined with an optimization of the numerical dissipation of high
frequency modes illustrates the very good properties of the CH-a integrators
[Chung Hulbert 1993].

nmmmmm | -stability is connected to the high frequency numerical dissipation and it has
been shown that this is a critical property for non-linear constraints dynamic
problems. Link to Liapunov exponents [Nawrotzki Eller 2000].

inmss=P |n the non-linear regime, energy-stability is also a norm of great interest
[Belytschko Schoeberle 1975, Hughes 1976].

1""A'—l—l""K' " 1A""{(f f.)} ! AVF A AN
—V AV —u AU = —Au — — —_ —
5 5 ) ; n+1 — fn =3 {AV'AAV)
AEvkin + AEvim‘ — AEvext + AEvdiss

Stability properties by the pseudo- energy

A=M -+ ( — _) hZK nmmsmp method (equivalent to A-stability in the
2 linear case) [Hughes 1987].
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@ Some properties of the stability analysis by the pseudo-energy:

La Rochelle,
GdR GDM,
June 7, 2019

g
e Equivalent to the A-stability in the linear case

e Does not require any state vector (useful for HATI)

the right hand side (ODE -> DAE):

1.
AEinterface — ZAut {Lt (An+1 — An)}

.

e With Lagrange multipliers, the following pseudo-energy interface is used in

J

inmmmm=lp- This method has historically served to validate or invalidate the first attempts

to build new HATI.

@ Difference between the pseudo-energy norm (dedicated to stability) and the discrete
energy balance of a time integrator. Example of discretized energy balance of CH-a

time integrators introduced by Chung and Hulbert 1993:

( n+1 .

[30'Mu + Ju’Ku + (8 — 1) 3h°V'MV]

Au' {5 (Enr1 +£2) + (v — 3) Bor1 —£0)}
—(1—y —ag) AUMAV — (% —ays) Au’KAu
- (= 3) (- 5 AV MBS

AWiin + AW + AI/Vcomp = AWerr + AWig

n =

~N
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A unified strategy to control « locally » the accuracy and
the time step
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= A state of the art on Heterogeneous Asynchronous Time Integrators (HATI)

@ In order to go beyond the conventional time integrators in nonlinear computational
dynamics, many attempts in the past consisted in developing HATI within the finite
element method. We can highlight the pioneering work of Belytschko and co-authors in
the 7o0s.

11—

Mixed methods (exp /imp) or Multi-time steps (exp / exp or imp /imp) element or
node partitions [Mullen Kennedy Belytschko 1976, Belytschko Mullen 1978, Hughes Liu
1978, Hughes Pister Taylor 1979, Smolinski Belytschko 1988]

Mixed methods and multi-time-step (exp /imp) [Liu Belytschko 1982]

A first proof of stability by energy method (exp / exp multi-time) [Smolinski 1992,
Smolinski Sleith Belytschko 1996] and in the case (exp/imp same time) [Hughes 1987]

An original strategy for element time integration (with a unique time
integrator); explicit time integrator [Casadei Halleux 2009] variational time

integrator [Ryckman Lew 2012]

Two difficulties: no evidence of stability in the general case (in particular multi-
time exp / imp) and difficulties in the explicit case (multi-time exp / exp) with
possibilities of instability lower than the CFL condition [Belytschko Lu 1993, Daniel
1997, Daniel 2003]; statistic stability condition [Sotelino 1994]

A first remark: it seems that no evidence of stability will be available for these
methods because counter-examples exist (unstable multi-time exp /imp)

A second note: all these methods are equivalent to primal domain
decomposition techniques (displacement continuity on the interface)
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s From a theoretical point of view, space-time weak formulations allow to choose
displacement, velocity or acceleration interface continuity. Subsequently, we
show that a velocity dual approach (with Lagrange multipliers) is the (only?) one
able to provide a general framework for any time integrator coupling with their
own time scale (HATI)

AT AT I
QLaNQp =0
hy = [t0§tm]
X 3 hqg =mhp

@ Starting from the three-fields space-time weak formulation previously introduced with
a velocity continuity between two subdomains A and B (subsequently be omitted weak
relations between 01 and v for clarity):

-
SA=0

\

e f " sut’ (1) (M4 (1) + Kqu? (1) —£4 (1) — LY A (2)) dt

[ 5" () (Ms¥® (1) + Ko (1) — 5 (1) — LA (1)) d

4]

+ [ s (1) (Law? (1) + Lpa® (1)) dr = 0
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@ In order to consider a wide class of time integrators, we follow the approach of the first
part inspired by Crisfield, Tamma and co-authors. We derive a system of 7 equations

with 8 parameters V4,BA.§4,7r.54,¢ and vB,BB.&B,f.EB,g :

-

-

(KA, =g, + LiyAnie, .y h
] Auj = ﬁ;ﬁA AUA + hqug + 2A2PAp2 4

\ A‘.”% ~ Ya hA Au VIA ‘.764

(KpAu? =gl + LA 146y
| Auf—ﬁﬁzBAuB—khBu + YB_=CB ?thBVJ )

Ai’? - )’BhBAu yig .f 1

Vje {l,m}

\ .

f SA' (1) (Lau® (£) + Lpa® (1)) dr = 0

! y,

sy Fach subdomain A and B has its own time scale and time integrator
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@ With a more compact form:

KZAUT;Q = IFJz;lA - NAU64 + ]LZAEA,f
KEAU}B = IFJB—I-F)’B o NBUJB—l + I[‘tBAJ'—1+§B,f Vj e {l,m}
W BAY (1) (Lau? (1) + Lpa® (1)) dr = 0

J/

nmmmmdp-  The last step consists in discretizing the weak time continuity of the velocity at
the interface between A and B.

nmssp- For that purpose, we consider the following pseudo-interface energy between 2
subdomains:

m
AEfym+ OB+ Y {AED  + AED } =

j=1
m m
AEelit,m + Z AE(gt,j + AEcgss,m + Z AEcgss,j T AEinterface
j=1 J=1
1 t U t
AE; = EAAu;; LYy (Am—Ao)}+ > {%BAuj? L5 (A — A,-_l)}}

Jj=1
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@ Historically, the first HATI based on a dual velocity formulation consisted in the
introduction of an additional hypothesis on the Lagrange multipliers within the
Newmark time integrators: linear time interpolation from the macro to the micro scale
[Gravouil 2000, Combescure Gravouil 2001]:

A,-=(1—i)A0+iAm
m m

@ In the context of o methods with Lagrange multipliers (HTTP-o, a-WBZ, CH-a), this
expression is a natural extension of the general expression introduced at the beginning
of the presentation:

Anye, =1 =§7)An +Er AR
sy Finally we can also write:

1
Aji—Aj_1=—(Am—Ay)
m
s The pseudo-interface energy becomes:
1 t =~ 1 t
AEinerace = | — Ay LYy + Y {mAﬁf LfB} (Am — Ao)

ha =
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sy Two options for canceling the pseudo-interface energy are available (to
ensure stability of the overall problem) [Brun Gravouil Combescure 2014]:

m
1 : :
LaAig + ) LpAaf =0 — LA, +LpAij =0
Jj=1

sl The first relation defines the family of BGC-macro (dual HATI) , because
velocity continuity is ensured at the macro time scale between A and B.

sy The second relation defines the family of BGC-micro (dual HATI) , because
velocity continuity is ensured at the micro time scale between A and B.

@ Some properties for these two classes of HATI:

e They guarantee by definition the overall stability of the coupling of a-type time
integrators with their own time scale (proof of stability by Energy method)

e The BGC-micro family includes as a special case the GC method (HATI micro
dedicated to Newmark time integrators) [Gravouil Combescure 2001].

e The BGC-macro family includes as a special case the PH method (HATI macro
dedicated to Newmark time integrators) [Prakash Hjelmstad 2004].
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p— * — p— B —
K% Ch.1 AU; B Fgg P NpUS +E% (Ao ]
* B
Ny K —CL, | | AUZ Ffe,  —NpUE +Ef A0
B
Nz Np Kj —C5 AU, Ff+53,f —NzUJ + E% ;Ao
B B t
Ny Ny Np N K3 —Ct || AUZ Fr1vep , —NsUg +Ej Ao
A _ A t
K; _(Cfélm AU;’: ]Fé'A,f NAIUO + IEA,mI\0
| L, Ly Ly - Lg-L, 0 J[ A, ] L 0 .
K L' [ AU F [Prakash Hjelmstad 2004, Mahjoubi Gravouil
= Combescure 2009, Brun Gravouil Combescure 2014]
B 0 A 0
— | The BGC-macro family
KA Uf ree = I requires the calculation of
HA = —BAUgs,, with H = [BK_ILt] a single Lagrange
KAU:.., = LtA multiplier on each macro
\ link | time step
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@ BGC-micro HATI numerical implementation:

Ve

K*AUga =F2 —NoAUg + LY Ag,
KAU? = IFJB 14yg —NBUP | +LGA; 11, 7 Vi € {1,m}
%LAAI.I;% + LBAllj =0

\.

J

@ The BGC-micro family requires the calculation of m Lagrange multipliers on each
micro time step

HAA; = —b;

With:

= [£4,,LAKY) LY + £, rLp(K}) LY |

b, = ILAAufreem—l—LBAufreeJ LL4(K%) 'Ly Ao —Lp(K5) LA ;4

@ In practice, we can prove that the BGC-micro family — although stable — can
numerically dissipate energy at the interface, which is not the case for the BGC-
macro family [Gravouil & al 2001]

AE i BGC-macro

=0
AbﬂiBGC—micro < 0
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@ Recently, the A-stability analysis (amplification matrix) and the consistency
analysis have been conducted for the BGC family with the following state vector
[Confalonieri et al 2013, Brun Gravouil Combescure 2014]:

@ Stability analysis:

( )

Xn—l—l = AX,
(302 ]= [hos hoe ][5
). G AB4 ABB || XB

X, = [XA XB]" =[uf 0 havl hakn, uf 02 havB]

. J

@ Truncation error anaylsis (consistency)

Ve

tn = AX(tn) — X(tn+1) In = ahﬁ + O(hf\_’_])

T =0(hy), 7 = (R3) 75 = O (k%)
B y

0 0 0
O (hy), 7 =0 (hy). 77 = O (h})

.
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@ Analysis of BGC-macro and BGC-micro methods for a double oscillator
[Brun Gravouil Combescure 2014]

A ka > f(,,Ua
K, +—" NN~ m,
A— AN 7
m, [—>A
7 k —_—> 7
/) b —A
LN\ \\— M, 7 K,
7 — N\ \\— m,
> fu 7
7
f > fbvub
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Absolute value of eigenvalues of a double oscillator with the BGC-macro
(CH-o p, =08 /CH-a p, =0.5 ) for different ratio of time steps

1.5 T T T T T T T T T 1.5
1 1
< <
05| 1 osl
]
// —
I
o L L 1 I I 1L L o 1 L 1 L
o 1 2 3 4 5 6 7 8 9 10 o 1 2 3 4 5 6 7 8 9 10
Qg Qg
(a) m=1 (b) m=2
15 15

¥
3:
i

0.5}

ob— N~

0 1 2 3 4 5 6 7 8 9 10

(d) m=10
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@ Truncation error T of a double oscillator with the BGC-macro method
(CH-ot p,=0.8 /CH-a p_=0.5) with a ratio of time steps of 2

k = Wn@n(h2,4))—In(zn(h1,4))
In(h2, 4)—In(h1,4)

104 T T T T T

A,

A

A

|

|

I
A

|- - -

- --7

|

|

|

1. a
e <o e M e 0 < T

local truncation error
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@ Convergence rate of the BGC-macro with m=2o0 (globally second order)

|u—error|

|u—error|

relative error in energy

i 102 10
—SDA - BGC-macro —SDA - BGC-macro|
---SDB - BGC-macro ---SDB - BGC-macro|
+ SDA-PH et + SDA-PH
-~ SDB - PH [ . -~ SDB - PH A
{ 10° 10° ;
5 H
o @
] ]
= <
107 107
—SDA - BGC-macro|
---SDB - BGC-macro| -
+ SDA-PH |~
1078 -v SDB - PH 10
107" 1072 107" 102 10
QA QA

AA /CD

CH-ot p, =08 /

timeins

timeins x107*

H B
T ¢ . S
= © : | CH-xp,=05
X ) 107 107 : S
~~SDA - CH-ap=0.0 - [+-SDA-CH-ap-00
8 -4-SDB - CH-a p=0.5 . -4-SDB - CH-a p=0.5| N H : [-4-SDB - CH-0. p=0.5]
2 1 10 — = 10 — H »
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=== Winiertace Vi | 14000 -
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@ Convergence rate of the BGC-micro with m=2o0 (globally first order)
2|
10 ; o
by 1T sEEs
5 10 ~—SDA - CH-ap=0.0 5 107 ~+SDA - CH-0 p=0.0 =107 ~+ SDA - CH-a p=00 AA /CD
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A second example (BGC macro) [Mahjoubi et al 2010]

e Subdomain A : Newmark v = 0.5, 3 =0.25

e Subdomain B : Newmark v = 0.5, 3 = 0.66

e Subdomain C : Krenk o« = 0.25
y
e Subdomain D : HHT o = —-0.2, v = 0.7, 3 =0.36 |
x
e Subdomain E : Newmark v = 0.5, 3 =0.0 c H
e Subdomain F : HHT a = —0.1. v = 0.6, 7 = 0.3025 1

e Subdomain G : Newmark v = 0.7, 5 = 0.36

e Subdomain H : Newmark v = 0.55, 5 = 0.2756

e Subdomain [ : Krenk o« = 0.1111

Sous-domaine | A | B | C D E F G |H| I
m; 1[4 [ 128 [ 512 ] 1024 | 256 | 128 | 32 | 16

0.5

f(t)

Ratio between the different time scales

t(s)

0 0001 0002 ggoy 0004 0005
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Discretized energy balance
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@ A first conclusion on BGC-type dual HATI

Applications in many fields of nonlinear dynamics: simulation of crash tests,
impacts on safety structures, earthquakes, incompatible interfaces, experimental /
numerical hybrid testing in real time, microsystems, electro-mechanical coupled
problems, microelectronics fracture , fluid / structure interaction, co-simulation
[Gravouil 2000, Combescure et al 2001, Herry et al 2002, Faucher et al 2003, Noels
et al 2004, Pinto et al 2004, Bourel et al 2006, Bonnet et al 2008, Bonelli et al 2008,
Mahjoubi et al 2009, Abaqus 6.13 users guide 2011, Batti et al 2011, Brun et al
2012, Ghanem et al 2012, Confalonieri et al 2012, Corigliano et al 2013, Bettinotti
Allix Malherbe 2013, Li Combescure Leboeuf 2013, Karimi et al 2014, Chantrait
Rannou Gravouil 2014, Prakash 2014]

s Co-simulation: castam/castam; radzrad; abaqus standard/abaqus explicit;
castam/europlexus; zébulon/europlexus

@ Here we can distinguish the well known 'partitioned’ approaches used in fluid /
structure interaction and the 'monolithic’ approaches. Formally, the approaches
developed here are equivalent to monolithic strategies and offer general stability
results for any a-time integrator and any time scale.
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@ Heterogeneous Asynchronous Implicit-Explicit integrator for non-smooth dynamics

Heterogeneous Asynchronous Time Integrator : BGC-micro

Gravouil and Combescure, 2001

@ Space-time Velocity continuity
LEvE(t) +LLVI(t) =0 V t € to, tm]

Where L (k =1, E) are restriction operators from Q to I'g
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@ Space-time weak form for implicit-explicit non-smooth dynamics

@ Action integral (HATI [Gravouil et al., 2015]) :

f\(u v uE vE t) = Al(u/ v)+AE@E vE 1)
tm T
+ / (Lng(t)+L’Gv’(t)) e dt
to

o Stationarity of the Action integral : A=0 =

e In € :
Mlvl(t) + F/nt(t) — Flext(t) + F;ink(t)
e In QE .
MEavE + FE dt = FE ,dt+FF , dt +dI

+ HSM velocity conditions

e On interface ¢ :
LEvE()+LLv! (1) =0



Introduction
General formalism
Stability

HATI

Conclusions

52/62

La Rochelle,

GdR GDM,
June 7, 2019
@ Time discretization of the implicit-explicit non-smooth dynamics equations
s A

@ Equilibrium equation in 2; at macro time step t,.m :
lel I I
M'v Vi+m +C'v n+m + F/nt n+m — I:ext ,n+m + FD ,n+m + I:Ilnk ,n+m

@ Non-smooth dynamic equation in €2 at micro time step t,; :

E E — mMmE E _ E E. E
Mlumpvn+j+ — Mlumpv +J At(Flnt n+_/ +C v n+j—%)
E
+At(Fext ,n+j + FD ,n+j + I://nk n+J) + |n+J
- J

@ contact equation at micro time step t,y; :

HC/\C,n+j+% — bc

e coupling equation at micro time step t,4; (GC) :
Levi,i+Llevh,=0= (HF+H)Ag,;=b

where HE = StLe(M7,,,) 1 (Le)T

and  H/ :ATy,L’G(M'+ATy,C’+AT2B,K’) HLL)T

nmsslp-  Very efficient for implicit linear / explicit non-linear co-simulation (Hc and H csts)
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@ Co-simulation for implicit-explicit non-smooth dynamics [Fekak et al 2017]

e A
Europlexus Low intrusive Coupling
-~ A ~ /_/% Ve A ~
Introduction :
E P =X [ Initialization J [ Initialization ’
General formalism
HE H'
[ Condensation HE J‘ --1----) Condensation H [K---4--- ‘{ Condensation H' ’
Stability
HATI
— o : < ‘
Conclusions “free” problem on Qg F-- -afJ-H-J-)‘ right hand side b E <-1 e—"'ltm{ “free” problem on €,
5 B
( Y ; o
“link" problem on Qg k-------4 Agnj=Hlb | £
; °
! o
] o
- . E
Update E %
L J ' s
..................................... " g
Loop on the micro time step for 04 j < m . 3
: AG,n+m . ~
———————————— - - - “link" problem on €, ’ 1
\_ J <
4
c
[ Update ’
%

s L ow intrusive coupling and constant H and Hc operators (linear implicit and non-
linear non-smooth explicit)
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@ Industrial context Given Earthquake (10s)

s Multi-contact, multi-scale

Introduction in time and space

General formalism

Stability p
HATI

Conclusions

Low frequency
beam vibration

nmmssp-  Application of implicit-explicit co-simulation to accurately model bridge cranes
subjected to multiple impacts during an earthquake
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@ Explicit-implicit co-simulation (Europlexus / Cast3M) [Fekak et al 2017]

Subdomain decomposition (explicit: blue, implicit: red) according to high frequency
area close to contact zones and pinballs [Belytschko 1993, Casadei 2002]
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@ Explicit-implicit co-simulation (Europlexus / Cast3M) [Fekak et al 2017]

Displacement Magnitude
2.122e-03

£0.0015912

0.0010608

0.00053041

T

—0.000e+00

DEPL Magnitude
2.160e-03

£0.0016199

0.0010799

0.00053997

LT

0.000e+00
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@ Numerical efficiency of co-simulation [Fekak et al 2017]

explicit SD | implicit SD | Interface
dofs 5088 70344 1296
time step 107°s 100*¥107° s —~

sy Sejsmic loading of 10 s

sy Explicit: 10 millions time steps
Implicit: 100 thousand time steps
m = 100

sl Optimization of the coupling
implementation between
Europlexus and Castam

160

140

120

8

B Coupleur

Temps CPU (h)
[02]
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40 [ Europlexus
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@ Comparison between full explicit and implicit-explicit co-simulation [Fekak et al 2017]

Full explicit Explicit-implicit co-simulation
5x1o" 5“04
e Girders e Girders
o ) -= Trolley obihy , --- Trolley
i N
[N '
-5 -5 !
E l‘ E ” |
S \ S
-10 -10
15 15
-20 -20 :
2 4 6 8 10 2 4 6 8 10
t(s) t(s)
First rebound Zoom of the first rebound
oxlc“ 0 — Girdars 500~ . : . 500~ Girders
— — — Trolley 400 400 — — — Trolley
-05 LS 05 300 300
NI " - .
B = 100 \ 100
& 15 15 T [ /' 0~
° \ \ ) 100 /
-2 \ 2 200 -200
E | - '°:
-400 -4
) 2 s 6 s o 2 s 6 8 S0 a s s e 2 4 6 8
Time(s) x10” Time(s) x10”

sy Rebound between trolley and girders are simulated accurately (6.35ms
versus 6.39ms for full explicit and co-simulation respectively)
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@ Comparison between full explicit and implicit-explicit co-simulation [Fekak et al 2017]

Full explicit Explicit-implicit co-simulation
100 100
%0 Weat 1 90 Weat
80 H ---Wrc 8 ---Wic
sy . l e
s 60 == = Whin + Weomp | - o 6 = = = Wkin + Weomp ||
@ 50 -~ ~Whalance \q; 50 = = = Whatance
&0 B0 |
g 40 5 40
‘ s
M 30 (I S
o 41 H 20
g ! |
10 ub,' AL AP AR 101,
oV U8 VA AR N ATALATR Y 0
0 02 04 06 08 1 -10,

t(s)

nmmssp Small numerical dissipation at the interface for the co-simulation (in agreement
with the stability analysis) (here less than 2% with m=100)

6 6

10
5 X 5 x10
\ 1
4y | 4 \
| | !
3t | 3 i
| ' W,
2 | 2 ligly
I f |
1 1 FIRRY R
— —~ oy Has
1 \
55 0 Z 5 v o
o
Ry Ry
-1 s
-2 -2
-3 " -3
Girders —_— Girders
-4 -- Trolley 1 -4r --- Trolley
-5 L L -5 i
0 2 4 6 8 10 0.4131 0.4132 0.4133
£(s) t(s)

sl Successive impacts and contacts between the trolley and girders

sy Observed Dirac correspond to impacts followed by smooth contact
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@ Conclusions and prospects

sl /nspired from the pioneer works of Belytschko & co-authors, we have
proposed a new class of dual Heterogeneous Asynchronous Time Integrators
(HATI) based on interface velocity continuity: BGC-macro and BGC-micro

s A general framework of HATI for G-ua integrators (particular cases: HHT-c,
WBZ-a, CH-o, Krenk-o)

nmmssdp  Wide range of applications: non-linear and non-smooth dynamics, multi-
physics, FSI, co-simulation

sy Development of a BGC-micro HATI with zero numerical dissipation at the
space-time interface in progress
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Thank you for your attention
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