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Global philosophy / religion

Geometry encodes the mechanics / physics of the system
and this is useful for numerics

Classical -

classical Poisson
(ODE) Q-structures

Nodern multi-symplectic.
classical :
mechanics Stokes—Dirac

(PDE) Dirac
Q-structures




Episode 1:
Generalized geometry...



Hamiltonian systems and more

Canonical case:
given H: T*Q —» R

_OH . 0H

Symplectic geometry
w= Z dp; A dg’
i

tx,w =dH

More general case:
given H: M — R and
an antisymmetric J(x)

Poisson geometry
{+-} on : C=(M)

8H XH = {H7 }
* =095 x = {H,x}
Dissipation,
interaction, Dirac structures

constraints




Courant algebroids, Dirac structures

Let us construct on E=TM & T*M

an exact Courant algebroid structure:

— symmetric pairing: <v@&n, v &1 >=1,n+ 1,7,
— Courant — Dorfman bracket:

lven v el = [v, Ve ® (dev + wd)n” = dn(v')).



Courant algebroids, Dirac structures

Let us construct on E=TM & T*M

an exact Courant algebroid structure:

— symmetric pairing: <v@&n, v &1 >=1,n+ 1,7,
— Courant — Dorfman bracket:

lven v el = [v, Ve ® (dev + wd)n” = dn(v')).

An almost Dirac structure D is a maximally isotropic (Lagrangian)
subbundle of an exact Courant algebroid E.
It is a Dirac structure iff it is closed w.r.t. [-,-]cp

Trivial example: D = TM.



Dirac structures: (pre)symplectic example.

Example. D = graph(w)

Isotropy <
wjj antisymmetric.

Involutivity <
w closed.

w= Zw,-jdxi A dxd

i

™

a=w(v, .)




Dirac structures: Poisson example.

n= Zﬂ' 8X’

Example. D = graph(MN¥)

Isotropy <
7 antisymmetric.

Involutivity <
1 Poisson.

8

where ¥ (x) 1= {x', ¥’}

™




Dirac structures: general

Choose a metricon M = TM® T*M = TM @ TM,

Introduce the eigenvalue subbundles Ex = {v & +v}

of the involution (v, a) — (o, v). Clearly, Ey = E_ = TM.
(Almost) Dirac structure — graph of an

e=m orthogonal operator O € I'(End(TM)):

(v,a) = ((id — O)w, g((id + O)w, )

Dirac structure = almost Dirac +

(Jacobi-type) integrability condition:

g (07'V(a-0)6 (0)é2,&) + cycl(1,2,3) = 0

Remark. If the operator (id + O) is invertible, one recovers Dp

with T = ig _T_g (Cayley transform), integrability < [I1,M]sy = 0.




Application 1: Implicit Lagrangian systems / constraints

Ziegler—Bigoni system
Exercise: Compare with Jean Lerbet! ¢ @

Details:

e V.S., A Hamdouni, From modelling of systems with constraints
to generalized geometry and back to numerics, ZAMM 2019;

e D. Razafindralandy, V.S., A. Hamdouni, A. Deeb, Some robust
integrators for large time dynamics, AMSES, 2019.



Application 2. Port-Hamiltonian systems.
Example: Electric circuit ( L1, Ly, C)

L1, 01 L, e Q = Sol/Ll - 902/1-2
cal Zg

¢1=-Q/C
o2 =Q/C.

G B
2L, 2L, 2C

Hamiltonian system: x = J(x)% with

Q 0 1 -1
x=|py1| J=[-10 0
©2 1 0 0

PQ Q/C H=—elf,=0
fo i =—x, e&:= Ppy | = SOI/LI .

Py,



Application 2. Port-Hamiltonian systems.
Example: Electric circuit ( L1, Ly, C) with a controlled port u

L1, 01 L, e Q = Sol/Ll - 902/1-2
— ¢1=—-Q/C+u
ch ¢2 — Q/C
2 2 2
u ¥1 ¥2 Q
H="*+1%4+ —
® 2L, 2L, + 2C
Port: input u, output e = ¢1/L;.
Port-Hamiltonian system: x = +g(x)f with
Q 0 1 0 Feu
x=[e| J=[-1 0 =1 -
2 1 0 o) e=w/h
PQ Q/C H=—elfi=upi/l; &
fo .= —x, es:= P | = 901/L1 . esTfs—l—ef =0

Py @2/ Lo = almost Dirac



Port-Hamiltonian systems

A lot of examples
(ask Antoine Falaize) :




Port-Hamiltonian systems

A lot of examples
(ask Antoine Falaize) :

Conjecture (VS): Everything is port-Hamiltonian.
Question: OK for the fun, but does it really help?



Episode 2:
Graded geometry...



Graded manifolds — motivating example

Consider functions on T[1]X.

ol,..., 09 — coordinates on X:

deg(o'.u‘) =0, Mgt = gl2gh,
deg(h(ot,...,09) =0.

61, ...,09 — fiber linear coordinates:
deg(0") == 1, Gr0re = —prege

Arbitrary homogeneous function on T[1]X of deg = p:
f=>% fm,,,ﬂp(al, o o)em L g,

Graded commutative product: f - g = (—1)deg(f)deg(e) g . f
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Graded manifolds — motivating example

Consider functions on T[1]X.

ol,..., 09 — coordinates on X:

deg(o'.u‘) =0, Mgt = gl2gh,
deg(h(ot,...,09) =0.

61, ...,09 — fiber linear coordinates:
deg(0") == 1, Gr0re = —prege

Arbitrary homogeneous function on T[1]X of deg = p:
f=>% fm,,,ﬂp(al, o o)em L g,

Graded commutative product: f-g = (_1)deg(f)deg(g)g. p
f S w= Z flll---llpdaul A A dO'/’LP c Q(Z)

— "“Definition” of a graded manifold
— manifold with a (Z-)grading defined on the sheaf of functions.



Graded manifolds
— details

“...graded manifolds are

just manifolds with a few bells
and whistles...” (D. Roytenberg)

Graded manifolds, super manifolds
History

Joseph Pierre Deligne

Felix Berezin Bernstein Dimitry Leites

Philosophy

“...graded manifolds are just
manifolds with a few bells and
whistles...”

Dmitry
Roytenberg

Graded geometry: definitions (do not read)

e Graded vector space V is a collection of vector spaces V = @&V,
(i€ Zori€Zs)ifve Vi deg(v)=i.

« Homomorphism shifting the grading by p: (V[p])i = Vi—p.

o Assume the base to be of degree 0, the dual vector space (V;)* is
defined as (V*)_.

® Graded algebra structure - V@V — V,st. V@ Vg — Vpig
o Graded commutator [a, b] = ab — (—1)98(2)des(b) pa

o Graded symmetric algebra over V: S(V) = Tensor(V)/[-,"]

Definition. Graded manifold M is a couple (Mo, Ops), where
Mo is a smooth manifold and the sheaf of functions Oy is locally
isomorphic to C*(Up) ® S(V'), where Ug is an open subset of Mo

o Top degree of the generators of Oy — is called degree of M.
Standard abuse of notations: Vj-vector bundle or sheaf of sections.

Graded manifolds

D. Roytenberg: “...bells and whistles..."”

Prop. (D.Roytenberg) Given a non-negatively graded manifold
(M, Op) there is a tower of fibrations

M =M, = M,y — - = M — My,

where any My is a graded manifold of degree at most k, for k > 0
Micy1 — My is an affine bundle.

Remark. Gradings can be encoded in the Euler vector field
¢ = deg(q")q" 59=: Vi corresponds to the i-eigenspace of ¢

Remark. Gradings can be encoded in the homogeneity structure
h: Ry x M — M such that
(% . q") = he(qh, ... qN) = (198 )gh . roeslaIg).



Q-manifolds (DG-manifolds)

Motivating example:
T[1]X, deg(o*) =0, deg(6*) =1,
Functions of the form: f =3 f,, . (o}, ... ,c®)0m .. gre

Consider a vector field @ = " 0 52;
deg @ =1
Q(f -g) = (Qf) - g + (—1)&()f . (Qg)
[Q.Q]=2@Q*=0
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Q-manifolds (DG-manifolds)

Motivating example:
T[1]X, deg(o*) =0, deg(6*) =1,
Functions of the form: f =3 f,, . (o}, ... ,c®)0m .. gre

Consider a vector field @ = " 0 52;

degQ =1
Q(f - g) = (Qf) - g+ (~1)" = "f - (Qg) } ¢ dde Rham
[Q,Q]=2Q*=0

Definition. Q-structure — vector field @ on a graded manifold,
s.t. deg(Q) =1 and it squares to zero.



Poisson manifold — (T*[1]M, Q)

Consider a Poisson manifold M,
{-,-}: C®(M) x C®°(M) — C>®(M).

A Poisson bracket can be written as {f, g} = n(df,dg), where
7 € T(N2TM) is a bivector field. 77(x) = {x',x/}.



Poisson manifold — (T*[1]M, Q)

Consider a Poisson manifold M,
{-,-}: C®(M) x C®°(M) — C>®(M).

A Poisson bracket can be written as {f, g} = n(df,dg), where
7 € T(N2TM) is a bivector field. 77(x) = {x',x/}.

Consider T*[1]M (coords. x'(0), p;j(1)), with a deg = 1 vector field

1, ’ o  lavk(x)
D | — ) )
Qr = {27r piPj, }T*M 7 (x)pj ox 2 ox PP

Jacobi identity for m: Q2 =0 <

{f.{g,h}} +{g.{h f}} +{h{f.g}} =0«

orli(x Okl (x Ok (x
ax(’ )7rlk x) 8x(’ )7TIJ(X) + 3X(’ ) I(x) =0



Derived bracket construction

Let (M, Q) be a Q-manifold, and
G be degree —1 vector fields € on M.
Define the Q-derived bracket: [¢,¢']g = [e, [@Q, €']].

Remark. Good for equivariant Q-cohomology.
V.S. "Graded geometry in gauge theories and beyond”, JGP, 2015.



Derived bracket construction

Let (M, Q) be a Q-manifold, and
G be degree —1 vector fields € on M.
Define the Q-derived bracket: [¢,¢']g = [e, [@Q, €']].

Remark. Good for equivariant Q-cohomology.
V.S. "Graded geometry in gauge theories and beyond”, JGP, 2015.

Example 1. (T*[1]M, Q;)
e= Ei(x)a%i & gi(x)dx € QY (M).
If € is exact, i.e. g;dx’ = € ;dx’, then [e,€']q = {e, 6,}7"8%,-

Example 2. Dirac structures.



Example from physics. (Part of) the Standard Model

g 5 —0m C v O

==
= =

uarks )
Q 8 connection 1-forms

Gluons

SU(3) symmetry

(j/w Thomas Strobl — Lyon, Alexei Kotov — Hradec Kralové)



Example: vortex induced vibrations
D
U s
—~ @ 5"
/S \)

l y (1)

Simplified model of fluid—structure interaction (cf. T. Leclercq,
E. de Langre, Journal of Fluids and Structures, 80:2018)

The phenomenon is modelled by a harmonic oscillator coupled to
the Van der Pol system:

vy o+ y=mq

§ — e(l-q*)g+Qq=Ay



Oscillator

).<1 = X2

Xy = —X1—|—qu

Port-Hamiltonian framework: H = %(X12 + x3),

x= (). 4=(%5) == (3):

Energy evolution: H = —el f; = ef.



Associated Dirac structure

Consider a manifold M, with coordinates (x1, x2),

then £, € [(TM), es € [(T*M),

and the inputs—outputs: f € ['(F), e € [(F*).

™ = (TM x F) @ (T*M x F*), where one considers F as a
bundle over a point The (almost) Dirac is defined by

el f; + ef = 0 — a subbundle of rank 3, given by

—Xo
fs X1 — MQ2 q
fl1_ mQ2q

e | X1

e X2

X2



Van der Pol system
Rewrite the second equation as

G—e(1-q°)q+(Q° - AmQ%)q = —Ay,
where (22 — AmQ?) =: 0% and ¢(1 — ¢?) =: a.
g =

o = —Pa+aq— Ay,

Port-Hamiltonian structure: H = %(qu + q3),

=(2) (D) 6 =)

Q2 a1

fS:_QaeS:<
q2

>7 fi=—Ay,ei=q1, fqg=—q1,eq= —aq:.

Energy evolution: H= —esTfs = eif; + e4fy.



Associated Dirac structure

By abuse of notation, a manifold M with coordinates (g1, g2);
fo € [(TM), es € T(T*M). Inputs—outputs: (fi, fy) € [(F),
(e,-,ed) S I'(]-'*)

T™ = (TM x F) @ (T*M x F*), almost Dirac structure
esTfs + eif; + eqfy = 0 — a subbundle of rank 4, given by

—q2
fs Q%q1 — aqy + Ay
fi —Ay
fa | —qo
Es o Q2 a1
€i q2
€d g2

—aqe



Coupling.

X1 = Xo

xp = —x1+ mQq

G = Q@

@ = —QPq+aq — Ay

Port—Hamiltonian formalism: H = %(xl2 +x3) + %(ﬁqf + 43),

X1 0 1 0 O 0
| x ~|-10 0 0 _ mQ%q,
X=1al 77 lo o 0o 1| &7 0 ’
d> 0 0 -1 0 a(ql)qz — AXl
X1
fo=—X, e = 52)2(21 . e=1ecRY i = mQ%qixo—Axiga+a(q1)q5.

qz



Graded description

Manifold M, with coordinates: (x1, x2, g1, q2),

fs €l (TM),es € T(T*M),

inputs—outputs: f; € ['(F), e € [(F*).

T™ = (TM x F) & (T*M x F*).

The (almost) Dirac structure is given by e/ £, + e;f; — a subbundle

of rank 5, or by
s\ _ (e
(7)=2(2);

where D: TyM x F* — TxM x F — a bivector, in components:

0 -1 0 0 0

1 0 0 0 —mQ?q:
D=10 0 0 -1 0

0 0 1 0 —a(q1)q2 + Axq

0 mQ%q1 0 ago — Axq 0



Q-structure

For the graded description consider the graded manifold T*[1]M
with coordinates x’ (of degree 0), et p; (of degree 1). The degree
1 vector field constructed from D is

0 s 3y O
Q=P+ (= pm2X) 55 —pig st
0
3y, 4 1
+(p3 — psa(x’)x" — Ax )8x4+

+(pamQ2x3 + pga(x3)x* — Axl)% +

0 0 0
A — 4+ (—mQpy 2ex3x* a3 =
+ p4p5p5ap1 + ( ps + 2ex°x p4p5)ap3 a(x>)paps e



Global philosophy / religion

Q-structure
[ Geemetry encodes the physics of the system I

Classical -
classical -
(OE)  Qestructures
Modern DEC
classical multi-symplectic
mechanics Stokes—Dirac
(PDE) Dirac

| ... and this is still useful for numerics |




Trugarez deoc'h evit bezan bet
o selaou ac'hanon!




