Géométrie généralisée et graduée pour la mécanique

Vladimir Salnikov et Aziz Hamdouni CNRS & La Rochelle University

24^e Congrès Français de Mécanique Rencontres Mathématiques-Mécanique Brest, 28 août 2019

Global philosophy / religion

Geometry encodes the mechanics / physics of the system and this is useful for numerics

Episode 1:

Generalized geometry...

Hamiltonian systems and more

Transitional Systems and more			
Canonical case: given $H \colon T^*Q \to \mathbb{R}$ $\dot{\mathbf{q}} = \frac{\partial H}{\partial \mathbf{p}}, \dot{\mathbf{p}} = -\frac{\partial H}{\partial \mathbf{q}}$	Symplectic geometry $\omega = \sum_i dp_i \wedge dq^i$ $\iota_{X_H} \omega = \mathrm{d} H$		
More general case: given $H \colon M \to \mathbb{R}$ and an antisymmetric $J(\mathbf{x})$ $\dot{\mathbf{x}} = J(\mathbf{x}) \frac{\partial H}{\partial \mathbf{x}}$	Poisson geometry $\{\cdot,\cdot\}$ on $: C^{\infty}(M)$ $X_H = \{H,\cdot\}$ $\dot{\mathbf{x}} = \{H,\mathbf{x}\}$		
Dissipation, interaction, constraints	Dirac structures		

Courant algebroids, Dirac structures

Let us construct on $E = TM \oplus T^*M$ an exact Courant algebroid structure:

- symmetric pairing: $\langle v \oplus \eta, v' \oplus \eta' \rangle = \iota_{v'} \eta + \iota_{v} \eta'$,
- Courant Dorfman bracket:

$$[v \oplus \eta, v' \oplus \eta']_{CD} = [v, v']_{Lie} \oplus ((d\iota_v + \iota_v d)\eta' - d\eta(v')).$$

Courant algebroids, Dirac structures

Let us construct on $E = TM \oplus T^*M$ an exact Courant algebroid structure:

- symmetric pairing: $\langle v \oplus \eta, v' \oplus \eta' \rangle = \iota_{v'} \eta + \iota_{v} \eta'$,
- Courant Dorfman bracket:

$$[v \oplus \eta, v' \oplus \eta']_{CD} = [v, v']_{Lie} \oplus ((d\iota_v + \iota_v d)\eta' - d\eta(v')).$$

An almost Dirac structure \mathcal{D} is a maximally isotropic (Lagrangian) subbundle of an exact Courant algebroid E. It is a Dirac structure iff it is closed w.r.t. $[\cdot,\cdot]_{CD}$

Trivial example: $\mathcal{D} = TM$.

Dirac structures: (pre)symplectic example.

$$\omega = \sum_{i,j} \omega_{ij} \mathrm{d} x^i \wedge \mathrm{d} x^j$$

Example. $\mathcal{D} = graph(\omega)$

Isotropy \Leftrightarrow ω_{ij} antisymmetric.

Involutivity \Leftrightarrow ω closed.

Dirac structures: Poisson example.

$$\Pi = \sum_{i,j} \pi^{ij}(x) \frac{\partial}{\partial x^i} \wedge \frac{\partial}{\partial x^j}, \quad \text{ where } \pi^{ij}(x) := \{x^i, x^j\}$$

Example. $\mathcal{D} = graph(\Pi^{\sharp})$

 $\begin{array}{l} \mathsf{Isotropy} \Leftrightarrow \\ \pi^{ij} \ \mathsf{antisymmetric}. \end{array}$

Involutivity \Leftrightarrow Π Poisson.

Dirac structures: general

Choose a metric on $M \Rightarrow TM \oplus T^*M \cong TM \oplus TM$, Introduce the eigenvalue subbundles $E_{\pm} = \{v \oplus \pm v\}$ of the involution $(v, \alpha) \mapsto (\alpha, v)$. Clearly, $E_{+} \cong E_{-} \cong TM$.

(Almost) Dirac structure – graph of an orthogonal operator $\mathcal{O} \in \Gamma(\operatorname{End}(TM))$: $(v, \alpha) = ((\operatorname{id} - \mathcal{O})w, g((\operatorname{id} + \mathcal{O})w, \cdot))$ Dirac structure = almost Dirac + (Jacobi-type) integrability condition:

$$g\left(\mathcal{O}^{-1}\nabla_{(\mathrm{id}-\mathcal{O})\xi_1}(\mathcal{O})\xi_2,\xi_3\right)+cycl(1,2,3)=0$$

Remark. If the operator $(\mathrm{id} + \mathcal{O})$ is invertible, one recovers D_Π with $\Pi = \frac{\mathrm{id} - \mathcal{O}}{\mathrm{id} + \mathcal{O}}$ (Cayley transform), integrability $\Leftrightarrow [\Pi, \Pi]_{SN} = 0$.

Application 1: Implicit Lagrangian systems / constraints

Details:

- V.S., A.Hamdouni, From modelling of systems with constraints to generalized geometry and back to numerics, ZAMM 2019;
- D. Razafindralandy, V.S., A. Hamdouni, A. Deeb, Some robust integrators for large time dynamics, AMSES, 2019.

Application 2. Port-Hamiltonian systems.

Example: Electric circuit (L_1, L_2, C)

$$\begin{cases}
\dot{Q} = \varphi_1/L_1 - \varphi_2/L_2 \\
\dot{\varphi}_1 = -Q/C \\
\dot{\varphi}_2 = Q/C.
\end{cases}$$

$$H = \frac{\varphi_1^2}{2L_1} + \frac{\varphi_2^2}{2L_2} + \frac{Q^2}{2C}$$

$$\begin{cases} \dot{Q} = \varphi_1/L_1 - \varphi_2/L_2 \\ \dot{\varphi}_1 = -Q/C \\ \dot{\varphi}_2 = Q/C. \end{cases}$$
$$H = \frac{\varphi_1^2}{2L_1} + \frac{\varphi_2^2}{2L_2} + \frac{Q^2}{2C}$$

Hamiltonian system:
$$\dot{\mathbf{x}} = J(\mathbf{x}) \frac{\partial H}{\partial \mathbf{x}}$$
 with

$$\mathbf{x} = \begin{pmatrix} Q \\ \varphi_1 \\ \varphi_2 \end{pmatrix} \quad J = \begin{pmatrix} 0 & 1 & -1 \\ -1 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$

$$egin{aligned} egin{aligned} egin{aligned\\ egin{aligned} egi$$

Application 2. Port-Hamiltonian systems.

Example: Electric circuit (L_1, L_2, C) with a controlled port u

$$\begin{bmatrix} L_1, \varphi_1 & & L_2, \varphi_2 \\ & C, Q & & \end{bmatrix}$$

$$\begin{cases} \dot{Q} = \varphi_1/L_1 - \varphi_2/L_2 \\ \dot{\varphi}_1 = -Q/C + u \\ \dot{\varphi}_2 = Q/C. \end{cases}$$
$$H = \frac{\varphi_1^2}{2L_1} + \frac{\varphi_2^2}{2L_2} + \frac{Q^2}{2C}$$

Port: input u, output $e = \varphi_1/L_1$.

Port-Hamiltonian system: $\dot{\mathbf{x}} = J(\mathbf{x}) \frac{\partial H}{\partial \mathbf{x}} + g(\mathbf{x}) \mathbf{f}$ with

$$\mathbf{x} = \begin{pmatrix} Q \\ \varphi_1 \\ \varphi_2 \end{pmatrix} \quad J = \begin{pmatrix} 0 & 1 & -1 \\ -1 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix} \quad \mathbf{g} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \quad \begin{array}{c} f = u \\ e = \varphi_1/L_1 \end{array}$$

$$(\varphi_{2}) \qquad (1 \quad 0 \quad 0) \qquad (0) \qquad \varphi_{1}/21$$

$$f_{s} := -\dot{\mathbf{x}}, \quad e_{s} := \begin{pmatrix} p_{Q} \\ p_{\varphi_{1}} \\ p_{\varphi_{2}} \end{pmatrix} \equiv \begin{pmatrix} Q/C \\ \varphi_{1}/L_{1} \\ \varphi_{2}/L_{2} \end{pmatrix}. \quad \begin{array}{l} \dot{H} \equiv -e_{s}^{T} f_{s} = u\varphi_{1}/L_{1} \Leftrightarrow e_{s}^{T} f_{s} + ef = 0 \\ \Rightarrow almost \ Dirac \end{array}$$

Port-Hamiltonian systems

A lot of examples (ask Antoine Falaize) :

Port-Hamiltonian systems

A lot of examples (ask Antoine Falaize) :

Conjecture (VS): Everything is port-Hamiltonian. Question: OK for the fun, but does it really help?

Episode 2:

Graded geometry...

Graded manifolds – motivating example

Consider functions on $T[1]\Sigma$.

$$\sigma^1, \ldots, \sigma^d$$
 – coordinates on Σ :
 $deg(\sigma^{\mu}) = 0$, $\sigma^{\mu_1}\sigma^{\mu_2} = \sigma^{\mu_2}\sigma^{\mu_1}$.
 $deg(h(\sigma^1, \ldots, \sigma^d)) = 0$.
 $\theta^1, \ldots, \theta^d$ – fiber linear coordinates:

 $\theta^1, \dots, \theta^d$ – fiber linear coordinat $deg(\theta^\mu) := 1$, $\theta^{\mu_1}\theta^{\mu_2} = -\theta^{\mu_2}\theta^{\mu_1}$

Arbitrary homogeneous function on $T[1]\Sigma$ of deg = p: $f = \sum f_{\mu_1...\mu_p}(\sigma^1,...,\sigma^d)\theta^{\mu_1}...\theta^{\mu_p}$.

Graded commutative product: $f \cdot g = (-1)^{deg(f)deg(g)}g \cdot f$

Graded manifolds - motivating example

Consider functions on $T[1]\Sigma$.

$$\sigma^1, \ldots, \sigma^d$$
 – coordinates on Σ :
 $deg(\sigma^{\mu}) = 0$, $\sigma^{\mu_1}\sigma^{\mu_2} = \sigma^{\mu_2}\sigma^{\mu_1}$.
 $deg(h(\sigma^1, \ldots, \sigma^d)) = 0$.
 θ^1 θ^d – fiber linear coordinates

$$\theta^1,\ldots,\theta^d$$
 – fiber linear coordinates: $deg(\theta^\mu):=1$, $\theta^{\mu_1}\theta^{\mu_2}=-\theta^{\mu_2}\theta^{\mu_1}$

Arbitrary homogeneous function on $T[1]\Sigma$ of deg = p: $f = \sum f_{\mu_1...\mu_p}(\sigma^1,...,\sigma^d)\theta^{\mu_1}...\theta^{\mu_p}$.

Graded commutative product: $f \cdot g = (-1)^{deg(f)deg(g)}g \cdot f$

$$f \leftrightarrow \omega = \sum f_{\mu_1 \dots \mu_p} \mathrm{d}\sigma^{\mu_1} \wedge \dots \wedge \mathrm{d}\sigma^{\mu_p} \in \Omega(\Sigma)$$

Graded manifolds - motivating example

Consider functions on $T[1]\Sigma$.

$$\sigma^1, \ldots, \sigma^d$$
 – coordinates on Σ :
 $deg(\sigma^{\mu}) = 0$, $\sigma^{\mu_1}\sigma^{\mu_2} = \sigma^{\mu_2}\sigma^{\mu_1}$.
 $deg(h(\sigma^1, \ldots, \sigma^d)) = 0$.
 $\theta^1, \ldots, \theta^d$ – fiber linear coordinates:

 $deg(heta^{\mu}):=1,\ heta^{\mu_1} heta^{\mu_2}=- heta^{\mu_2} heta^{\mu_1}$

Arbitrary homogeneous function on
$$T[1]\Sigma$$
 of $deg = p$: $f = \sum f_{\mu_1...\mu_p}(\sigma^1, ..., \sigma^d)\theta^{\mu_1}...\theta^{\mu_p}$.

Graded commutative product: $f \cdot g = (-1)^{deg(f)deg(g)}g \cdot f$

$$f\leftrightarrow\omega=\sum f_{\mu_1...\mu_p}\mathrm{d}\sigma^{\mu_1}\wedge\cdots\wedge\mathrm{d}\sigma^{\mu_p}\in\Omega(\Sigma)$$

- ightarrow "Definition" of a graded manifold
- manifold with a $(\mathbb{Z}$ -)grading defined on the sheaf of functions.

Graded manifolds details

"...graded manifolds are just manifolds with a few bells and whistles..." (D. Roytenberg)

Graded geometry: definitions (do not read)

- Graded vector space V is a collection of vector spaces V = ⊕V_i $(i \in \mathbb{Z} \text{ or } \overline{i \in \mathbb{Z}_{\geq 0}})$: if $v \in V_i$, deg(v) = i.
- Homomorphism shifting the grading by p: (V[p])_i = V_{i-p}.
- Assume the base to be of degree 0, the dual vector space (V_i)* is defined as $(V^*)_{-i}$.
- Graded algebra structure ·: V ⊗ V → V, s.t. V_n ⊗ V_n → V_{n+n}
- Graded commutator [a, b] = ab − (−1)^{deg(a)deg(b)} ba.
- Graded symmetric algebra over V: S(V) = Tensor(V)/[·.·]

Definition. Graded manifold M is a couple (M_0, \mathcal{O}_M) , where M_0 is a smooth manifold and the sheaf of functions \mathcal{O}_M is locally isomorphic to $C^{\infty}(U_0) \otimes S(V)$, where U_0 is an open subset of M_0 .

 Top degree of the generators of O_M – is called degree of M. Standard abuse of notations: Vi-vector bundle or sheaf of sections

Graded manifolds, super manifolds

History

Joseph

Rernstein

Felix Berezin

Philosophy

"...graded manifolds are just manifolds with a few bells and

whistles "

Graded manifolds

D. Rovtenberg: "...bells and whistles..."

Prop. (D.Roytenberg) Given a non-negatively graded manifold (M, \mathcal{O}_M) there is a tower of fibrations

$$M = M_n \rightarrow M_{n-1} \rightarrow \cdots \rightarrow M_1 \rightarrow M_0$$
,

where any M_k is a graded manifold of degree at most k, for k > 0 $M_{k+1} \rightarrow M_k$ is an affine bundle.

Remark. Gradings can be encoded in the Euler vector field $\epsilon = deg(q^{\alpha})q^{\alpha}\frac{\bar{\partial}}{\partial q^{\alpha}}$; V_i corresponds to the i-eigenspace of ϵ .

Remark. Gradings can be encoded in the homogeneity structure $h: \mathbb{R}_+ \times \mathcal{M} \to \mathcal{M}$ such that

$$(q^1,\ldots,q^N)\mapsto h_t(q^1,\ldots,q^N)\equiv (t^{\deg(q^1)}q^1,\ldots,t^{\deg(q^N)}q^N).$$

Q-manifolds (DG-manifolds)

```
Motivating example: T[1]\Sigma,\ deg(\sigma^\mu)=0,\ deg(\theta^\mu)=1, Functions of the form: f=\sum f_{\mu_1...\mu_p}(\sigma^1,\ldots,\sigma^d)\theta^{\mu_1}\ldots\theta^{\mu_p} Consider a vector field Q=\sum \theta^\mu\frac{\partial}{\partial\sigma^\mu} deg Q=1 Q(f\cdot g)=(Qf)\cdot g+(-1)^{\mathbf{1}\cdot deg(f)}f\cdot (Qg) [Q,Q]\equiv 2Q^2=0
```

Q-manifolds (DG-manifolds)

```
Motivating example: T[1]\Sigma,\ deg(\sigma^\mu)=0,\ deg(\theta^\mu)=1, Functions of the form: f=\sum f_{\mu_1...\mu_p}(\sigma^1,\ldots,\sigma^d)\theta^{\mu_1}\ldots\theta^{\mu_p} Consider a vector field Q=\sum \theta^\mu \frac{\partial}{\partial \sigma^\mu} \deg Q=1 Q(f\cdot g)=(Qf)\cdot g+(-1)^{\mathbf{1}\cdot deg(f)}f\cdot (Qg) \{Q,Q\}\equiv 2Q^2=0
```

Q-manifolds (DG-manifolds)

```
Motivating example: T[1]\Sigma,\ deg(\sigma^\mu)=0,\ deg(\theta^\mu)=1, Functions of the form: f=\sum f_{\mu_1\dots\mu_p}(\sigma^1,\dots,\sigma^d)\theta^{\mu_1}\dots\theta^{\mu_p} Consider a vector field Q=\sum \theta^\mu \frac{\partial}{\partial \sigma^\mu} \deg Q=1 Q(f\cdot g)=(Qf)\cdot g+(-1)^{\mathbf{1}\cdot deg(f)}f\cdot (Qg) \{Q,Q\}\equiv 2Q^2=0
```

Definition. Q-structure – vector field Q on a graded manifold, s.t. deg(Q) = 1 and it squares to zero.

Poisson manifold $o (T^*[1]M, Q_\pi)$

Consider a Poisson manifold M, $\{\cdot,\cdot\}: C^{\infty}(M) \times C^{\infty}(M) \to C^{\infty}(M)$.

A Poisson bracket can be written as $\{f,g\} = \pi(\mathrm{d}f,\mathrm{d}g)$, where $\pi \in \Gamma(\Lambda^2 TM)$ is a bivector field. $\pi^{ij}(x) = \{x^i,x^j\}$.

Poisson manifold $o (T^*[1]M, Q_\pi)$

Consider a Poisson manifold M, $\{\cdot,\cdot\}: C^{\infty}(M) \times C^{\infty}(M) \to C^{\infty}(M)$.

A Poisson bracket can be written as $\{f,g\} = \pi(\mathrm{d}f,\mathrm{d}g)$, where $\pi \in \Gamma(\Lambda^2 TM)$ is a bivector field. $\pi^{ij}(x) = \{x^i,x^j\}$.

Consider $T^*[1]M$ (coords. $x^i(0), p_i(1)$), with a deg = 1 vector field

$$Q_{\pi} = \left\{ \frac{1}{2} \pi^{ij} p_i p_j, \cdot \right\}_{T^*M} = \pi^{ij}(x) p_j \frac{\partial}{\partial x^i} - \frac{1}{2} \frac{\partial \pi^{jk}(x)}{\partial x^i} p_j p_k \frac{\partial}{\partial p_i}$$

Jacobi identity for π : $Q_{\pi}^2 = 0 \Leftrightarrow$

$$\{f, \{g, h\}\} + \{g, \{h, f\}\} + \{h, \{f, g\}\} = 0 \Leftrightarrow$$

$$\frac{\partial \pi^{ij}(x)}{\partial x^{l}} \pi^{lk}(x) + \frac{\partial \pi^{ki}(x)}{\partial x^{l}} \pi^{lj}(x) + \frac{\partial \pi^{jk}(x)}{\partial x^{l}} \pi^{li}(x) = 0$$

Derived bracket construction

Let (\mathcal{M},Q) be a Q-manifold, and \mathcal{G} be degree -1 vector fields ε on \mathcal{M} . Define the $\underline{Q$ -derived bracket}: $[\varepsilon,\varepsilon']_Q:=[\varepsilon,[Q,\varepsilon']]$.

Remark. Good for equivariant Q-cohomology.

V.S. "Graded geometry in gauge theories and beyond", JGP, 2015.

Derived bracket construction

Let (\mathcal{M},Q) be a Q-manifold, and \mathcal{G} be degree -1 vector fields ε on \mathcal{M} . Define the Q-derived bracket: $[\varepsilon,\varepsilon']_Q:=[\varepsilon,[Q,\varepsilon']]$.

Remark. Good for equivariant *Q*-cohomology.

V.S. "Graded geometry in gauge theories and beyond", JGP, 2015.

Example 1.
$$(T^*[1]M, Q_{\pi})$$

 $\varepsilon = \varepsilon_i(x) \frac{\partial}{\partial p_i} \leftrightarrow \varepsilon_i(x) dx^i \in \Omega^1(M).$
If ε is exact, i.e. $\varepsilon_i dx^i = \epsilon_{,i} dx^i$, then $[\varepsilon, \varepsilon']_Q = \{\epsilon, \epsilon'\}_{,i} \frac{\partial}{\partial p_i}$

Example 2. Dirac structures.

Example from physics. (Part of) the Standard Model

(j/w Thomas Strobl – Lyon, Alexei Kotov – Hradec Králové)

Gluons

SU(3) symmetry

Example: vortex induced vibrations

Simplified model of fluid-structure interaction (cf. T. Leclercq, E. de Langre, Journal of Fluids and Structures, 80:2018)

The phenomenon is modelled by a harmonic oscillator coupled to the Van der Pol system:

$$\ddot{y} + y = m\Omega^2 q$$

$$\ddot{q} - \varepsilon (1 - q^2) \dot{q} + \Omega^2 q = A \ddot{y}$$

Oscillator

$$\dot{x}_1 = x_2
\dot{x}_2 = -x_1 + m\Omega q$$

Port-Hamiltonian framework: $H = \frac{1}{2}(x_1^2 + x_2^2)$,

$$X = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}, \quad J = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \quad g = \begin{pmatrix} 0 \\ 1 \end{pmatrix},$$

$$f_s = -\dot{X}, \quad e_s = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}, \quad f = M\Omega^2 q, \quad e = \dot{x}_1,$$

Energy evolution: $\dot{H} = -e_s^T f_s = ef$.

Associated Dirac structure

Consider a manifold M, with coordinates (x_1, x_2) , then $f_s \in \Gamma(TM)$, $e_s \in \Gamma(T^*M)$, and the inputs-outputs: $f \in \Gamma(\mathcal{F})$, $e \in \Gamma(\mathcal{F}^*)$. $\mathbb{TM} = (TM \times \mathcal{F}) \oplus (T^*M \times \mathcal{F}^*)$, where one considers \mathcal{F} as a bundle over a point The (almost) Dirac is defined by $e_s^T f_s + ef = 0$ – a subbundle of rank 3, given by

$$\begin{pmatrix} f_s \\ f \\ e_s \\ e \end{pmatrix} = \begin{pmatrix} -x_2 \\ x_1 - M\Omega^2 q \\ m\Omega^2 q \\ x_1 \\ x_2 \\ x_2 \end{pmatrix}$$

Van der Pol system

Rewrite the second equation as

$$\ddot{q} - \varepsilon (1 - q^2) \dot{q} + (\Omega^2 - Am\Omega^2) q = -Ay$$

where $(\Omega^2 - Am\Omega^2) =: \tilde{\Omega}^2$ and $arepsilon(1-q^2) =: a$.

$$q_1 = q_2$$

$$\dot{q}_2 = -\tilde{\Omega}^2 q_1 + aq_2 - Ay,$$

Port-Hamiltonian structure: $H=\frac{1}{2}(\tilde{\Omega}q_1^2+q_2^2)$,

$$Q = \begin{pmatrix} q_1 \\ q_2 \end{pmatrix}, \quad J = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \quad R = \begin{pmatrix} 0 & 0 \\ 0 & a \end{pmatrix}, \quad g = \begin{pmatrix} 0 \\ 1 \end{pmatrix},$$

$$f_s=-\dot{Q}, e_s=\left(egin{array}{c} ilde{\Omega}^2q_1 \ q_2 \end{array}
ight), \quad f_i=-{\mathsf A} y, e_i=\dot{q}_1, \quad f_d=-\dot{q}_1, e_d=-a\dot{q}_1.$$

Energy evolution: $\dot{H} = -e_s^T f_s = e_i f_i + e_d f_d$.

Associated Dirac structure

By abuse of notation, a manifold M with coordinates (q_1,q_2) ; $f_s \in \Gamma(TM), e_s \in \Gamma(T^*M)$. Inputs—outputs: $(f_i,f_d) \in \Gamma(\mathcal{F})$, $(e_i,e_d) \in \Gamma(\mathcal{F}^*)$.

 $\mathbb{TM} = (TM \times \mathcal{F}) \oplus (T^*M \times \mathcal{F}^*)$, almost Dirac structure $e_s^T f_s + e_i f_i + e_d f_d = 0$ – a subbundle of rank 4, given by

$$\begin{pmatrix} f_s \\ f_i \\ f_d \\ e_s \\ e_i \\ e_d \end{pmatrix} = \begin{pmatrix} -q_2 \\ \tilde{\Omega}^2 q_1 - aq_2 + Ay \\ -Ay \\ -q_2 \\ \tilde{\Omega}^2 q_1 \\ q_2 \\ q_2 \\ -aq_2 \end{pmatrix}$$

Coupling.

$$\dot{x}_1 = x_2
\dot{x}_2 = -x_1 + m\Omega q
\dot{q}_1 = q_2
\dot{q}_2 = -\tilde{\Omega}^2 q_1 + aq_2 - Ay$$

Port–Hamiltonian formalism: $H = \frac{1}{2}(x_1^2 + x_2^2) + \frac{1}{2}(\tilde{\Omega}q_1^2 + q_2^2)$,

$$X = \begin{pmatrix} x_1 \\ x_2 \\ q_1 \\ q_2 \end{pmatrix}, \quad J = \begin{pmatrix} 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0 \end{pmatrix}, \quad g = \begin{pmatrix} 0 \\ m\Omega^2 q_1 \\ 0 \\ a(q_1)q_2 - Ax_1 \end{pmatrix},$$

$$f_s=-\dot{X}, e_s=egin{pmatrix} x_1\ x_2\ ilde{\Omega}^2q_1\ q_2 \end{pmatrix}, \quad e_i=1\in\mathbb{R}^1, f_i=m\Omega^2q_1x_2-Ax_1q_2+a(q_1)q_2^2.$$

Graded description

Manifold M, with coordinates: (x_1, x_2, q_1, q_2) , $f_s \in \Gamma(TM)$, $e_s \in \Gamma(T^*M)$, inputs—outputs: $f_i \in \Gamma(\mathcal{F})$, $e_i \in \Gamma(\mathcal{F}^*)$.

$$\mathbb{TM} = (TM \times \mathcal{F}) \oplus (T^*M \times \mathcal{F}^*).$$

The (almost) Dirac structure is given by $e_s^T f_s + e_i f_i$ – a subbundle of rank 5, or by

$$\begin{pmatrix} f_s \\ f_i \end{pmatrix} = D \begin{pmatrix} e_s \\ e_i \end{pmatrix},$$

where $D \colon T_X^* M \times \mathcal{F}^* \to T_X M \times \mathcal{F}$ – a bivector, in components:

$$D = \begin{pmatrix} 0 & -1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & -m\Omega^2 q_1 \\ 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & 1 & 0 & -a(q_1)q_2 + Ax_1 \\ 0 & m\Omega^2 q_1 & 0 & aq_2 - Ax_1 & 0 \end{pmatrix}.$$

Q-structure

For the graded description consider the graded manifold $T^*[1]\mathcal{M}$ with coordinates x^i (of degree 0), et p_i (of degree 1). The degree 1 vector field constructed from D is

$$Q = -p_2 \frac{\partial}{\partial x^1} + (p_1 - p_5 m\Omega^2 x^3) \frac{\partial}{\partial x^2} - p_4 \frac{\partial}{\partial x^3} +$$

$$+ (p_3 - p_5 a(x^3) x^4 - Ax^1) \frac{\partial}{\partial x^4} +$$

$$+ (p_2 m\Omega^2 x^3 + p_4 a(x^3) x^4 - Ax^1) \frac{\partial}{\partial x^5} +$$

$$+ Ap_4 p_5 p_5 \frac{\partial}{\partial p_1} + (-m\Omega^2 p_2 p_5 + 2\varepsilon x^3 x^4 p_4 p_5) \frac{\partial}{\partial p_3} - a(x^3) p_4 p_5 \frac{\partial}{\partial p_4}$$

Global philosophy / religion

Q-structure

Geometry encodes the physics of the system

Classical classical mechanics (ODE)	Poisson symplectic (almost) Dirac Q-structures	
Modern classical mechanics (PDE)	DEC multi-symplectic Stokes-Dirac Dirac	

... and this is still useful for numerics

Trugarez deoc'h evit bezañ bet o selaou ac'hanon!

