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Geometry, Spacetime, and Gravitation

Space and time are the most fundamental concepts of
mechanics / physics.

1 Aristotle paradigm : There was an absolute time, absolute
space, and an absolute referential frame, the earth;

2 Newton paradigm (1686): There was absolute 1-continuum
time (same for all), absolute Euclidean 3-spatial continuum,
but no absolute rest frame;

3 Einstein paradigm (1915) : Space and time fused to form a
Riemanian 4-continuum spacetime, not an inert entity,;

Gravitation is a manifestation of spacetime geometry
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Geometry and Continuum Physics (G & EM)

1 Elasticity is based on Euclidean geometry (metric = angle
and length) with zero curvature

2 Gravitation lies on the geometry of Riemannian spacetime
with non zero curvature (2nd derivatives of metric)

3 Electromagnetism a priori assumes the introduction of
electric and magnetic field as primal variables

Basic motivation : Could the electromagnetic variables (and
then continuum physics) be deduced from spacetime

geometry ?
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”Geometrization” of electromagnetism

Historical :

Weyl approach (non metricity) : Weyl 1918

Kaluza-Klein theory (Kaluza 1921, Klein 1926)

Non symmetric metric (Einstein 1925)

Teleparallel gravitation, (Einstein 1928)

Finslerian geometry (contact geometry) : e.g. Asanov 1985,
Voicu 2011

Approach with Riemann-Cartan geometry:

Roots : Reichenbach 1929 (after Cartan geometry)

Some recent references : e.g. Poplawski 2010, Giglio et al
2012, Hehl & Obukhov 2013, R 2017, Hammond (1987)
2018, ...
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Planning

1 Wave equation in homogeneous continuum physics

2 Examples of Non Homogeneous Continuum (NHC)

3 Covariant models for NHC

4 Continuum physics vs. spacetime geometry

5 Concluding remarks
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I. Wave equation in ”homogeneous” continuum
physics :

Main Interest : wave analysis in continuum

caracterisation (NDT)

geophysical prospection and engineering

models in physics, ...
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Elastic waves in solids
11/18/16 3:06 PMTypes Of Earthquake Waves
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TYPES OF EARTHQUAKE WAVES
Earthquake shaking and damage is the result of three basic types of elastic waves. Two of the three
propagate within a body of rock. The faster of these body waves is called the primary or P wave. Its motion
is the same as that of a sound wave in that, as it spreads out, it alternately pushes (compresses) and pulls
(dilates) the rock. These P waves are able to travel through both solid rock, such as granite mountains, and
liquid material, such as volcanic magma or the water of the oceans.

The slower wave through the body of rock is called the secondary or S wave. As an S wave propagates, it
shears the rock sideways at right angles to the direction of travel. If a liquid is sheared sideways or twisted,
it will not spring back, hence S waves cannot propagate in the liquid parts of the earth, such as oceans and
lakes.

The actual speed of P and S seismic waves depends on the density and elastic properties of the rocks and
soil through which they pass. In most earthquakes, the P waves are felt first. The effect is similar to a sonic
boom that bumps and rattles windows. Some seconds later, the S waves arrive with their up-and-down and
side-to-side motion, shaking the ground surface vertically and horizontally. This is the wave motion that is
so damaging to structures.

The third general type of earthquake wave is called a surface wave, reason being is that its motion is
restricted to near the ground surface. Such waves correspond to ripples of water that travel across a lake.

Surface waves in earthquakes can be divided into two types. The first is called a Love wave. Its motion is
essentially that of S waves that have no vertical displacement; it moves the ground from side to side in a
horizontal plane but at right angles to the direction of propagation. The horizontal shaking of Love waves is
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particuly damaging to the foundations of structures.

The second type of surface wave is known as a Rayleigh wave. Like rolling ocean waves, Rayleigh waves
wave move both vertically and horizontally in a vertical plane pointed in the direction in which the waves
are travelling.

Surface waves travel more slowly than body waves (P and S); and of the two surface waves, Love waves
generally travel faster than Rayleigh waves. Love waves (do not propagate through water) can effect surface
water only insofar as the sides of lakes and ocean bays pushing water sideways like the sides of a vibrating
tank, whereas Rayleigh waves, becasuse of their vertical component of their motion can affect the bodies of
water such as lakes.

P and S waves have a characteristic which effects shaking: when they move through layers of rock in the
crust, they are reflected or refracted at the interfaces between rock types. Whenever either wave is refracted
or reflected, some of the energy of one type is converted to waves of the other type. A common example; a
P wave travels upwards and strikes the bottom of a layer of alluvium, part of its energy will pass upward
through the alluvium as a P wave and part will pass upward as the converted S-wave motion. Noting also
that part of the energy will also be reflected back downward as P and S waves.

WAVE PROPERTIES

SOUND AND LIGHT WAVES

Seismic Home
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WAVE PROPERTIES

SOUND AND LIGHT WAVES

Seismic Home

Longitudinal wave Φ(xµ) with celerity c` :=
√

(λ+ 2µ)/ρ, shearing

wave A(xµ) with celerity cs :=
√
µ/ρ.

Wave propagation equation (from Navier’s equation): ∂2
0 Φ− ∆̂Φ = 0 (x0 := c`t)

∂2
0A− ∆̂A = 0 (x0 := cst)

with u := ∇̂Φ + ∇̂ × A (Helmholtz decomposition)

L Rakotomanana Elements of Geometry



Electromagnetic waves in vacuum

Electric E , magnetic B fields, celerity c :=
√
µ0ε0

−1

From electromagnetic potential Aν = (A0 := Φ,A1,A2,A3) we have:

E := −c ∂0A− ∇̂φ, and B := ∇̂ × A

Wave propagation equation (x0 := ct) (from Maxwell’s equation): ∂2
0 Φ− ∆̂Φ = 0

∂2
0A− ∆̂A = 0
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Gravitational waves in vacuum (site MIT-LIGO)

Perturbed metric g̃ = g + 2ε , traceless part ε := ε− (1/2)Tr(ε) g

Wave propagation equation (x0 := ct) (from Einstein’s equation):

gαβ∇α∇β ε = 0

where gαβ := Diag {+1,−1,−1,−1} is the Minkowskian metric.
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Generic wave equation in ”homogeneous” continuum

Wave equation: unknowns : u := {Φ,A, · · · }, and (x0 = ct, x1, x2, x3)

gαβ ∇α∇β u (xµ) = 0

gαβ :=


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 ∇α :=


∂0

∇1

∇2

∇3


Models are based on :

Geometric structure : metric gαβ et connection ∇α
Material or spacetime property : celerity c

Physics field : u (pressure, shear, electric, magnetic, spacetime
perturbation ... )
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II. Examples of Non Homogeneous Continuum
(NHC)

Motivation: Hypothesis of continuum ”homogeneity” (and
smoothness) is not always acceptable !
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NHC : set of cells in an alloy

In fatigue cross-slip of screw dislocations is a very important factor in the gen-
eration of particular structures, especially persistent slip bands (Fig. 3). Finally a
dynamic steady state between dislocation production and annihilation is established.
In persistent slip bands screw dislocations move in channels of low dislocation den-
sity, annihilating when the distance between their respective slip planes falls below a
critical limit [19]. Edge dislocations at the same time remain stored in multipolar
walls.

1.2. The characteristic elementary process of cross-slip

In the following we want to introduce the essential features of a typical cross-slip
process: Dislocations in close-packed crystal structures usually are split into Shock-
ley partials with a stacking fault in between. This extension of the dislocation core as a
rule takes place along the most densely packed lattice planes which normally are also
the preferred slip planes, such as {111} in f.c.c. and {0001} in h.c.p. If the dislocation
is now to change its slip plane the stacking fault ribbon has to be compressed along a
certain length L (Fig. 4). The dislocation may then bow out into the cross-slip plane.
The constriction of the stacking fault as well as the lengthening of the dislocation
when bowing out take energy. On the other hand, the applied stress component along
the cross-slip plane does work on the system. Making for the present the assumption
that there is no dissociation in the cross-slip plane, all contributions together may be
written simply as

Fig. 2. Typical cell structure of Al, cold-rolled at room temperature up to a true strain of " ¼ 0:11, cor-
respondiong to deformation stage III (unpublished TEM micrograph by courtesy of B. Mingler, H.P.
Karnthaler and B. Weiss).

W. Püschl / Progress in Materials Science 47 (2002) 415–461 419

Figure: Aluminium cell structure : Cell formation closely connected with
the cross-slip of screw dislocations `c = 2µm (from Püschl, 2002).

Continuum at micro-metric scale with sharp gradients
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NHC : set of layers (following indentation)

Yoo and Jang (2008) examined the inhomogeneous plastic flow of Zr–Cu–Ni–Al–Ti BMG by applying microindentation
and nanoindentation to the bonded interface samples and the bulk samples. The evolution of shear-band-ruled deformation
with an increase in the maximum load of spherical indentation was elucidated. In the study of Xie et al. (2009), Vickers
indentations were carried out on the annealed Zr41Ti14Cu12.5Ni10Be22.5 bulk metallic glass. The evolution of the shear bands
was investigated and compared to that of the as-cast alloy. Results indicate that plastic deformation in a BMG is accompa-
nied by the primary and secondary as well as tertiary shear bands. An experimental investigation for the Vickers hardness
and associated plastic deformation in as-cast and annealed Pd42Ni40P18 BMG was conducted in the study of Ramamurty et al.
(2005). The deformation morphology underneath the indenter and its variation with annealing time was examined by
employing the bonded interface technique. For both the bulk and the interface indentations, the trends in the shear band
varying with the indentation load agree well with those predicted by the expanding cavity model. The mechanical behavior
of bulk metallic glasses was investigated using nanoindentation with a spherical indenter in the study of Bei et al. (2004). The
transition from perfectly elastic behavior to plastic deformation was clearly observed as a pop-in event on the load–displace-
ment curve. Hertzian stress analysis was used to determine the theoretical shear strength of the BMGs.

Fig. 4. (a) Primary and secondary shear bands created during the indentation of Zr52.5Cu17.9Ni14.6Al10Ti5 BMG (Yoo and Jang, 2008); and (b) clean secondary
shear bands (dashed curves) and their corresponding primary shear bands predicted using the proposed model.

1648 K.-W. Chen, J.-F. Lin / International Journal of Plasticity 26 (2010) 1645–1658

Figure: Primary Shear Band (PSB) and secondary (SSB) in metallic glass

`c = 50µm . (from Chen & Lin, 2010 )

Continuum at micro-metric scale with sharp gradients
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NHC : geophysics (set of layers)

Figure: Rock layers (mainly from Cretacea) near Lulworth Cove, Dorset,

Devon, `C ' 1m (from Smith 2014 )

Continuum at metric scale with sharp gradients
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NHC : Universe filament structure

Figure: Filament structure of the universe `C ' 1, 5× 1025m : fiber

structures represent matter (galaxies) and empty regions (dark) cosmic
voids.

(https://www.universetoday.com/135954/largest-scales-milky-way-
galaxy-middle-nowhere/)
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Homogeneity ... Choice of length scale !

1 "
2 "

3 "

4 "

All materials are non homogeneous / defects!

Ariadne’s thread : Extension of connection ∇α to account for
sharp gradients and hopefully electromagnetism !
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Choice of vacuum spacetime as toy model

”Biggest” question: More than 2000 years before admitting that
gravitation and electromagnetic occur in a vacuum spacetime.

Mechanical waves Electromagnetic waves Gravitational waves

Need matter Do not need matter Do not need matter

Physics in Vacuum spacetime

Vacuum spacetime continuum :

Empty (classical mechanics)

Curved (relative gravitation)

Contains gravitons - hypothetical - (quantum mechanics)
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III. Covariant models of NH Continuum Physics

Motivation : How to account for NH and particularly
sharp gradients (defects) in a continuum physics ?
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Deformation : ”Simple Material” continuum (Noll, 1958)

Eα

Eβ

fα

fβ

X

x

O

Metric g measures local deformation : (length & angle) :

gαβ = g (fα, fβ) := fα · fβ =⇒

 ‖fα‖ =
√

fα · fα
cos (fα, fβ) =

fα · fβ
‖fα‖.‖fβ‖

Triads F i
α (X) defines local mapping fα = F i

α Ei

Strain defined by metric : ε = (1/2) (gαβ − δαβ)
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Deformation : NHC (set of microcosms)

Microcosms move relatively each other (discontinuity).

f1+ df1 

f2 + df2 

x +dx

f1

f2

x

Figure: NHC := {Microcosms} (Gonseth, 1929),

dfβ = ∇αfβdxα and ∇αfβ := Γγαβfγ

Microcosm deformation is defined by tetrads : fα := F i
α Eα

Relative motion of microcosms is defined by connection ∇α

with its coefficients : Γγαβ :=
(
F i
γ

)−1
∂αF

i
β .
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Local geometric background for NHC

How to model sharp gradients (relative motions) ? 1

A" B’"

B’’"
C’’"

C’"

Microcosme"M’’"

Microcosme"M’"

Non integrabilty of F i
α (or Jump of scalar field) =⇒ Torsion

ℵγαβ := Γγαβ − Γγβα 6= 0

Non integrability of ∇βF i
α (or Jump of vector field ) =⇒ Curvature

Rκ
αβλ :=

(
∂αΓκβλ + ΓξβλΓκαξ

)
−
(
∂βΓκαλ + ΓξαλΓκβξ

)
6= 0

1Bilby et al, 1955, e.g. R 1997, 2003; Maugin 2005, Kleinert 2008.
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Modeling gravitation and electromagnetism with NHC

NHC mathematical model is (often) defined by:

1 Lagrangian L (extension of Reichenbach model, 1929):

S :=

∫
B

L (gαβ , Γγαβ , ∂λΓγαβ) ωn

2 Conservation laws (variational calculus):

δS = δ

∫
B

L ωn = 0

Covariance
A model is covariant if its governing equation keeps the same shape
following an arbitrary change of coordinate system (diffeomorphism).

In mechanics/physics, any model should be covariant !
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Covariance of Lagrangian L (Antonio & R, 2011)

Theorem

The NHC model defined by the Lagrangian

L = L (gαβ , Γγαβ , ∂λΓγαβ)

is covariant if and only if

L = L (gαβ , ℵγαβ , R
γ
αβλ)

Remarks :

Primal variables are metric gαβ , torsion ℵγαβ , and curvature

Rγ
αβλ (Continuum physics : elasticity, fluid mechanics,

gravitation, electromagnetism (?), ... )

This theorem extends Cartan (1922) and Lovelock-Rund (1971,
1975) theorems from Riemann to Riemann-Cartan continuum.
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Examples of Lagrangian

Elasticity
L = L (gαβ)

where gαβ := g (fα, fβ) form the Cauchy-Green tensor as :

L := (ρ/2)‖∂tu‖2 − (λ/2)Tr2ε− µTr
(
ε2
)

εαβ := (1/2) (∇αuβ +∇βuα)

Gravitation

L = L (gαβ, R
γ
αβλ) as L = (1/2χ) gαβ <λ

λαβ

where spacetime is a NH (second gradient) continuum !
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IV. Continuum physics vs. spacetime geometry

L = L (gαβ,ℵγαβ,<λαβγ)

Figure: Spacetime allowing gravitation and electromagnetic fields

Motivation: ”Geometrization” of gravitation and
electromagnetism in vacuum spacetime
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Gravitation, Electromagnetism in R-spacetime

1 Gravitation (Hilbert-Einstein action) alone :

LHE :=
1

2χ
gαβ<λ

λαβ =⇒ <λρ − R
2
gλρ = 0

depending on the curvature (2nd GC) with χ := 8πG/c3.

2 Electromagnetism (Yang-Mills action) alone :

LYM := −1

4
Fµν Fµν =⇒ ∇νFµν=0

with Fαβ := ∇αAβ −∇βAα and Aα := (Φ,A1,A2,A3).

Fµν =


0 −E1 −E2 −E3

E1 0 B3 −B2

E2 −B3 0 B1

E3 B2 −B1 0
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Gravitation WITH Electromagnetism in RC-spacetime

What would be the interaction of gravitation and electromagnetism ?

1 Gravitation & electromagnetism in coupling :

L := (1/2χ) gαβ<λλαβ︸ ︷︷ ︸
gravitation

− (1/4) Fµν Fµν︸ ︷︷ ︸
electromagnetism

2 Variational calculus δS = δ
∫

M L ωn = 0 (R 2017, 2018)

δS =

∫
M

∇νFµν δAµ ωn +

∫
M

[
(1/2χ)

(
<λρ − (R/2) gλρ

)
+ (1/8) FµνFµν gλρ + (Fµν/4)

(
gµλFρν + Fµρgλν

)]
δgλρ ωn

−
∫

M

[
(Fµν −Fνµ) Aλ + (1/χ) gρν ℵµλρ

]
︸ ︷︷ ︸

NEW DUAL TERMS

δΓλµν︸︷︷︸
N.H.

ωn
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Coupled governing PDE

System of 3 coupled equations ( instead of 2 usual equations ) :

1 Maxwell equations (electromagnetic fields) (δAµ)

∇νFµν= 0

2 Einstein-Maxwell equations (gravitation + EM ) (δgλρ)

<λρ − R
2
gλρ︸ ︷︷ ︸

Einstein

= −χ
4
FµνFµν gλρ +

χ Fµν
2

(
gµλFνρ + Fρµgλν

)
︸ ︷︷ ︸

−Minkowski energy momentum

T 00 = energy, T 0i = E×H; T i0 = D× B; T ij = Maxwell tensor

3 Relation of torsion with electromagnetism (δΓλµν)

gρν ℵµλρ = −χ (Fµν −Fνµ) Aλ
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(1) Extended Maxwell’s equations

Maxwell’s wave equations : From ∇νFµν= 0 and
Fµν := ∇µAν −∇νAµ we obtain :

− gνβ∇ν∇βA
µ︸ ︷︷ ︸

classic Maxwell

− gµαℵγνα∇γA
ν + gµα<αγA

γ︸ ︷︷ ︸
”configurational” forces

= 0

with (x0 := ct, x1, x2, x3) and with Lorenz gauge ∇βA
β ≡ 0.

Remarks :

Same wave equation as for elastic NH wave equation

Torsion and curvature influence EM waves
Torsion −→ dispersion, Curvature −→ ”breathing”
Bending, twisting of light (e.g. Leonhardt & Philbin 2006 )
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(3) Relation of torsion with electromagnetism

Relation of torsion with electromagnetism (R 2017):

gρν ℵµλρ = −χ (Fµν −Fνµ) Aλ

Electromagnetism is related to torsion of spacetime (e.g.

de Andrade & Pereira 1999, Hammond 2018, 2019)

Giglio & Rodrigues assumed similar relation but using
contortion tensor T µ

λρ := Γµλρ − Γ
µ

λρ (e.g. Giglio et al. 2012)

Spacetime ”new” paradigm: Space and time fused to a
Riemann-Cartan 4-continuum and where :

Curvature ”geometrizes” Gravitation,

Torsion ”geometrizes” Electromagnetism.
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Physical interpretation of torsion

Physical interpretation : 2nd member (Fµν −Fνµ) Aλ is

exactly the 4-dim expression of the Spin Angular Momentum
Lspin (optics, ...).

Figure: Transverse ElectroMagnetic wave (green axis) :
Moment of Poynting vector

∫
M r × (D× B) dv := Lorbital + Lspin

(Allen et al. 1992, Barnett 2002, Padgett et al 2004, Hammond 2018)
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Gravitation and electromagnetic ”forces”

Question : Can gravitation and electromagnetic forces be

defined solely with geometric elements of the spacetime ?

Method (classic) : Analyze gap vector ξ between two geodesics

t

t + dt

x

x + dx

g0

g1

u

u + du

Figure: The gap vector ξ separating autoparallel timelike curves γ0 and
γ1, defined by ∇uu = 0 , with orthogonality condition Luξ = 0 .
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Geometry induces gravitation and electromagnetic forces

Einstein gravitation (Levi-Civita 1927, Synge 1934)

D2ξ

Dτ2
= < (u, ξ,u)

where for classic gravitation : <a
b00 = ∇a∇bΦ, 2nd derivatives

of Newtonian potential Φ

Einstein gravitation with electromagnetism (R 2019)

D2ξ

Dτ2
= < (u, ξ,u) + ℵ

(
Dξ

Dτ
,u

)
+∇uℵ (ξ,u)︸ ︷︷ ︸

electromagnetic forces

Similar results from physical approach by directly extending
Lorentz force F := q (E + v × B) (e.g. Balakin et al. 2000).
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Classification of fundamental forces in physics

Proposition : Gravitation AND Electromagnetic forces could be
also considered as geometric forces of spacetime vacuum

Gravitation force

Electromagnetic force

Weak nuclear force

Strong nuclear force

Electroweak

Geometric

Weak nuclear force : 10-18

Strong nuclear force : 10-15

Gravitation force : Inf

Electromagnetic force : Inf

Figure: Classification of fundamental forces :
(Left) State-of-the-Art : Gravitation + Unified nuclear forces;
(Right) Sketch : Geometric forces (G & EM) + Nuclear forces
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V. Concluding remarks

Figure: Left: NH Continuum (Al alloy, set of microcosms); Middle:
Spacetime in Loop Quantum Gravitation (set of ”quanta”); Right: Beer
foam (for fun, set of ”happy hours”)

Main conclusion Continuum geometry links :

Elasticity ←→ metric (length, angle) gαβ,

Electromagnetism ←→ torsion ℵγαβ,

Gravitation ←→ curvature <γ
αβλ.
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Other concluding remarks

Riemann-Cartan candidate model of (spacetime) continuum with

sharp gradients (as a mosaic of little microcosms of spacetime ).

Electromagnetic and Gravitation are ”geometric forces” for the
vacuum spacetime, described by torsion and curvature.

Spacetime model extended to matter continuum physics

(acoustic, elasticity, electromagnetism, gravitation, ...)

Link with experimental tedious (hopefully not impossible) namely

boundary conditions for ℵ and < are (still) difficult to derive.
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