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Terminology and Notation

➤ Configuration Space / Background Rm

with coordinates (xi), i = 1, 2, . . .m.
In 2D, we may set x1 = x, x2 = y.

➤ Phase Space / Cotangent Bundle T ∗Rm

with coordinates (xi, qi), i = 1, 2, . . . ,m
(q’s are fibre coordinates).

➤ Use Einstein summation convention throughout.
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(Contact) Monge–Ampère Equations

➤ Monge–Ampère (MA) Equations are non-linear second-order PDEs
which are quasi-linear w.r.t. second order partial derivatives, up to
determinants of the Hessian or its minors.

➤ In two dimensions, they take the form

Aψxx + 2Bψxy + Cψyy +D(ψxxψyy − ψ2
xy) + E = 0

where A,B, . . . E can depend on x, y, ψ, ψx, ψy non-linearly.

➤ If A,B, . . . E do not depend on ψ, we have a symplectic
Monge–Ampère equation.
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Monge–Ampère Structures and Solutions

➤ A Monge–Ampère Structure is a triple (T ∗Rm, ω, α) with

☞ ω ∈ Ω2(T ∗Rm) symplectic, e.g. ω = dqi ∧ dxi,
☞ α ∈ Ωm(T ∗Rm) is ω-effective, i.e. α ∧ ω = 0,

We call α the Monge–Ampère Form. [Banos 2002]

➤ A Generalised Solution to a MA equation, w.r.t. a MA structure, is
a submanifold L ↪→ T ∗Rm s.t.

☞ L is Lagrangian, i.e. dim(L) = m and ω|L = 0.
☞ α vanishes on L, i.e. α|L = 0.

[Kushner et al. 2007]

https://bit.ly/3GDxiQ0
https://bit.ly/3QF6nb0
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Recovering PDEs and Classical Solutions

➤ Consider L = dψ with coordinates
(xi, ∂iψ) for some ψ ∈ C ∞(Rm).

➤ Trivially Lagrangian for canonical ω as
ω|dψ = 0.

➤ The condition α|dψ = 0 corresponds to a
MA equation, with classical solution ψ.
[Lychagin 1979]

➤ The projection π : L→ Rm is a
diffeomorphism.

https://bit.ly/3kgbhz6
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Monge–Ampère Equations in Two Dimensions

The ω-effective MA forms for 2D background (4D phase space) are

α = A dq1 ∧ dx2 +B (dx1 ∧ dq1 + dq2 ∧ dx2)

+ C dx1 ∧ dq2 +D dq1 ∧ dq2 + E dx1 ∧ dx2

.
Imposing that α|dψ = 0 yields (x1 = x, x2 = y, and qi = ∂iψ)

Aψxx + 2Bψxy + Cψyy +D
(
ψxxψyy − ψ2

xy

)
+ E = 0

This correspondence is a bijection – unique MA form in ω-effective class.
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The Pfaffian of a Monge–Ampère Form

➤ The Pfaffian of α is defined by α ∧ α =: fω ∧ ω
and in 2D, is given by f = AC −B2 −DE.

➤ Hence, the MA equation α|dψ = 0 is

elliptic ⇔ f > 0.
hyperbolic ⇔ f < 0.
parabolic ⇔ f = 0.

➤ Two MA forms (hence equations) α1, α2 are locally equivalent if
there exists a local symplectomorphism
F : (T ∗R2, ω, α1) → (T ∗R2, ω, α2) such that F ∗α2 = α1.
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The Lychagin–Rubtsov Theorem and Equivalence

➤ .[Lychagin et al. 1993] define the endomorphism of vector fields
J : X(T ∗R2) → X(T ∗R2) by

1√
|f |
α(· , ·) =: ω(J · , ·)

f > 0 ⇔ J is almost complex (J2 = −1)
f < 0 ⇔ J is almost para-complex (J2 = 1)

➤ The Lychagin–Rubtsov theorem states t.f.a.e:

☞ d( 1√
|f |
α) = 0.

☞ α|dψ = 0 is locally equivalent to ∆ψ = 0 or □ψ = 0.
☞ J is integrable.
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The Navier–Stokes Equations, Vorticity, and Strain

➤ Homogeneous, Incompressible Navier–Stokes on Rm background:

∂tv = −(v · ∇)v −∇p+ ν∆v (−c) . (∗)

➤ Continuity equation is then ∇ · v = 0 and applying ∇ to (∗) yields:

∆p (+∇ · c) = ζijζ
ij − SijS

ij .

where ζij =
1
2
(∇jvi −∇ivj) and Sij =

1
2
(∇jvi +∇ivj).

➤ Vorticity term dominates ⇔ ∆p > 0.
Strain term dominates ⇔ ∆p < 0.
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The Weiss–Okubo Criterion for 2D Flows

➤ In 2D, solving ∇ · v = 0 yields a stream function ψ with
v1 = −ψy and v2 = ψx.

➤ Pressure equation is then a Monge–Ampère equation for ψ:

∆p = 2
(
ψxxψyy − ψ2

xy

)
.

➤ Vorticity dominates ⇔ ∆p > 0 ⇔ Elliptic equation.
Strain dominates ⇔ ∆p < 0 ⇔ Hyperbolic equation.
No dominance ⇔ ∆p = 0 ⇔ Parabolic equation.
[Weiss 1991, Larchevêque 1993]

https://bit.ly/3WphM01
https://bit.ly/3kgLTJk
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Monge–Ampère Geometry for the Poisson Equationn

➤ The pressure equation ∆p = 2(ψxxψyy − ψ2
xy) is recovered from

α = dq1 ∧ dq2 − 1
2
∆p dx1 ∧ dx2 ,

➤ Pfaffian is f = 1
2
∆p, hence:

Vorticity dominates ⇔ ∆p > 0 ⇔ f > 0 ⇔ Elliptic.
Strain dominates ⇔ ∆p < 0 ⇔ f < 0 ⇔ Hyperbolic.
No dominance ⇔ ∆p = 0 ⇔ f = 0 ⇔ Parabolic

➤ The Lychagin–Rubtsov theorem says ∆p = 2(ψxxψyy − ψ2
xy) is

locally equivalent to ∆ψ = 0 or □ψ = 0 iff ∆p is constant.
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The Lychagin–Rubtsov Metric

➤ For choice of K ∈ Ω2(T ∗R2), we define the Lychagin–Rubtsov
metric ĝ(· , ·) := −K(J · , ·) [Roulstone et al. 2001]:

ĝ =

(
fI2 0

0 I2

)
➤ The pull-back of this metric to classical solution L = dψ is

ĝ|dψ = ζ

(
ψxx ψxy
ψxy ψyy

)
where ζ = ∆ψ.
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Summary Table

Dominance Vorticity Strain None

∆p > 0 < 0 = 0

f > 0 < 0 = 0

α|dψ = 0 Elliptic Hyperbolic Parabolic

J2 −1 1 Singular

ĝ Riemannian (4, 0) Kleinian (2, 2) Degenerate**

ĝ|dψ Riemannian (2, 0) Kleinian (1, 1)* Degenerate**

*Except when ζ = 0, in which case it is degenerate.

**Degeneracies when ∆p = 0 correspond to singularities of scalar
curvature – they persist under coordinate changes.
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Topology of 2D Vortices

➤ For simply connected regions Σ of 2D flows on which ∆p > 0 and
with boundary given by a closed stream-line, all streamlines within
Σ are also closed (and convex). [Larchevêque 1993]

➤ Σ is topologically a disc [χ(Σ) = χ(dψ(Σ)) = 1] and Gauß–Bonnet
theorem on L = dψ(Σ) is:∫

dψ(∂Σ)

ds κ(x(s)) = 2π −
∫
dψ(Σ)

voldψ(Σ)R(ĝ|dψ)

➤ The mean curvature of the boundary of a ‘vortex’ is described by
gradients of vorticity and strain.
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A Jacobi System Formulation?

➤ Rather than working with the stream function, use velocity directly.
Consider L with coordinates (xi, vi(x)).

➤ ω|L = 0 no longer trivial and implies vorticity vanishes.
We need a different symplectic form:

ϖ = dqi ∧ ⋆ (dxi)

such that ϖ|L = 0 gives ∇ · v = 0.

➤ Our MA form can be written

α = 1
2
dqi ∧ dqj ∧ ⋆ (dxi ∧ dxj)− 1

2
∆p volm

and α|L = 0 yields ∆p = ζijζ
ij − SijS

ij = 2det(J(v, x)).
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Towards Multi-symplectic Monge–Ampère Systems

➤ A k-Plectic Form is a closed and non-degenerate
ϖ ∈ Ωk+1(T ∗Rm). [Cantrijn et al. 2009]

➤ A (Higher) Monge–Ampère Structure will be a triple (T ∗Rm, ϖ, α)
where ϖ is (m− 1)-plectic (no effectiveness condition yet).

➤ Generalised Solutions are now submanifolds L ↪→ T ∗Rm satisfying
ϖ|L = 0 and α|L = 0 (not necessarily Lagrangian).

➤ We focus on L with coordinates (xi, vi(x)), diffeomorphic to Rm, in
lieu of classical solutions.

https://bit.ly/3H5xSHt
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The Lychagin–Rubtsov Metric in Higher Dimensions

➤ Can again define a metric ĝ(· , ·) = −K(J · , ·) on T ∗Rm of the form

ĝ =

(
fIm 0

0 Im

)
.

➤ For Aij = ∇jvi, the pullback metric is

(ĝ|L)ij = AkiAkj − 1
2
δijAklA

lk .

➤ In general, signature change of ĝ|L does not coincide with sign
change in f — more complicated relationship.
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Topology of 3D Vortices

➤ No Gauss–Bonnet Theorem in odd dimensions – how to extract
topological information?

➤ Let θ = qidx
i be the tautological form. Then the helicity density is

(θ ∧ ω)|L = viζ
idx1 ∧ dx2 ∧ dx3

➤ Under ideal conditions, helicity is an invariant quantity and vorticity
is conserved.

➤ Helicity can be related to topological quantities from knot theory
i.e. the Gauss linking number, Călugăreanu invariant, and Jones
Polynomial [Liu and Ricca 2012, Ricca and Moffatt 1992].
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Extension to Riemannian Manifold

➤ On a Riemannian manifold (M, g), the
approach is broadly the same:

∆p+Rijv
ivj (+∇ic

i) = ζijζ
ij − SijS

ij .

➤ Schematically take
dqi → dqi − dxjΓij

kqk.
I → g.
f = 1

2
∆p→ f = 1

2
(∆p+Rijqiqj).

➤ Geometric justification for Weiss criterion
for equation type still applies on a manifold,
e.g. S2 [Napper et al. 2023].

Navier–Stokes equations in
spherical geometry describe
ocean/atmosphere dynamics

(Joshua Stevens - NASA Earth
Observatory)
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Summary

➤ We introduced MA geometry as a tool for studying the Poisson
equation for the pressure of an incompressible flow.

➤ We provided a geometric validation for the Weiss–Okubo criterion
and showed how the Lychagin–Rubtsov metric could be used to
generalise this to flows in higher dimensions/on curved background.

➤ We highlighted select results concerning solutions, vortices, and
their topologies from the wider framework laid out
by [N. et al. 2023].
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Outlook – Generalised Solutions

➤ Generalised solutions may have non-immersive
projections (Arnold’s Singularities) and
contain the multivalued solutions.
See [Ichikawa et al. 2007, Vinogradov 1973]

➤ In semi-geostrophic theory, these produce additional degeneracy of
ĝ|L and type change, which represent weather fronts.
[D’Onofrio et al. 2023]

➤ The geometry of classical solutions models flows with elliptic
vortices, vortex tubes, and lines. Perhaps singular locus of
projections could be used to model vortex sheets.

https://arxiv.org/abs/2209.13337
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Outlook – Open Questions

➤ Can one make precise the notion of ‘Higher’ Monge–Ampère
equations? What do we replace effectiveness and Lagrangian with?

➤ Is it possible to encode dynamics as well as kinematics? Could the
vorticity equation

∂tζ +∇(ζ · v)− ν∆ζ = 0

be used as a (Ricci-like) flow equation for the solutions L?

➤ .[Lychagin et al. 1993, Banos. 2003] respectively classify 2D and
3D MA equations using integrability of a (para-)complex structure
J (and the metric ĝ). Can we use generalised complex structures to
classify ‘higher’ Monge–Ampère equations?



GDR GDM Meeting

Lewis Napper

1. A Review of
Monge–Ampère
Geometry

2. Pressure, Vorticity,
and Strain in
Incompressible Fluids

3. Monge–Ampère
Geometry of 2D
Incompressible Flows

4. Higher Dimensions
and Curved
Backgrounds

5. Summary and
Outlook

Thank you!

Image Credit [Kushner, Lychagin, Rubtsov. 2007]
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