Monge–Ampère Geometry and the Navier–Stokes Equations

Lewis Napper (University of Surrey, UK)

Work with Ian Roulstone, Martin Wolf (University of Surrey, UK) and Volodya Rubtsov (University of Angers, France)

> 23rd November 2023 arXiv:2302.11604

GDR GDM Meeting

Lewis Napper

 A Review of Monge–Ampère Geometry

2. Pressure, Vorticity, and Strain in Incompressible Fluids

3. Monge–Ampère Geometry of 2D Incompressible Flows

4. Higher Dimensions and Curved Backgrounds

- ➤ Configuration Space / Background R^m with coordinates (xⁱ), i = 1, 2, ... m. In 2D, we may set x¹ = x, x² = y.
- ▶ Phase Space / Cotangent Bundle $T^* \mathbb{R}^m$ with coordinates $(x^i, q_i), i = 1, 2, ..., m$ (q's are fibre coordinates).
- ► Use Einstein summation convention throughout.

Lewis Napper

 A Review of Monge–Ampère Geometry

2. Pressure, Vorticity, and Strain in Incompressible Fluids

3. Monge–Ampère Geometry of 2D Incompressible Flows

4. Higher Dimensions and Curved Backgrounds

(Contact) Monge–Ampère Equations

- Monge–Ampère (MA) Equations are non-linear second-order PDEs which are quasi-linear w.r.t. second order partial derivatives, up to determinants of the Hessian or its minors.
- In two dimensions, they take the form

$$A\psi_{xx} + 2B\psi_{xy} + C\psi_{yy} + D(\psi_{xx}\psi_{yy} - \psi_{xy}^2) + E = 0$$

where $A, B, \ldots E$ can depend on $x, y, \psi, \psi_x, \psi_y$ non-linearly.

➤ If A, B,...E do not depend on ψ, we have a symplectic Monge-Ampère equation.

GDR GDM Meeting

Lewis Napper

A Review of Monge–Ampère Geometry

2. Pressure, Vorticity, and Strain in Incompressible Fluids

3. Monge–Ampère Geometry of 2D Incompressible Flows

4. Higher Dimensions and Curved Backgrounds

Monge–Ampère Structures and Solutions

A Monge–Ampère Structure is a triple (T*ℝ^m, ω, α) with
 ω ∈ Ω²(T*ℝ^m) symplectic, e.g. ω = dq_i ∧ dxⁱ,
 α ∈ Ω^m(T*ℝ^m) is ω-effective, i.e. α ∧ ω = 0,
 We call α the Monge–Ampère Form. [Banos 2002]

A <u>Generalised Solution</u> to a MA equation, w.r.t. a MA structure, is a submanifold L → T*ℝ^m s.t.
 ^{ISF} L is Lagrangian, i.e. dim(L) = m and ω|_L = 0.
 ^{ISF} α vanishes on L, i.e. α|_L = 0.
 [Kushner et al. 2007]

GDR GDM Meeting

Lewis Napper

A Review of Monge–Ampère Geometry

2. Pressure, Vorticity, and Strain in Incompressible Fluids

3. Monge–Ampère Geometry of 2D Incompressible Flows

4. Higher Dimensions and Curved Backgrounds

Recovering PDEs and Classical Solutions

Lewis Napper

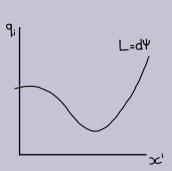
 A Review of Monge–Ampère Geometry

2. Pressure, Vorticity, and Strain in Incompressible Fluids

3. Monge–Ampère Geometry of 2D Incompressible Flows

4. Higher Dimensions and Curved Backgrounds

- ► Consider $L = d\psi$ with coordinates $(x^i, \partial_i \psi)$ for some $\psi \in \mathscr{C}^{\infty}(\mathbb{R}^m)$.
- Trivially Lagrangian for canonical ω as $\omega|_{d\psi} = 0.$
- The condition α|_{dψ} = 0 corresponds to a MA equation, with classical solution ψ. [Lychagin 1979]
- The projection $\pi: L \to \mathbb{R}^m$ is a diffeomorphism.



Monge–Ampère Equations in Two Dimensions

The ω -effective MA forms for 2D background (4D phase space) are

$$\alpha = A \, \mathsf{d}q_1 \wedge \mathsf{d}x^2 + B \left(\mathsf{d}x^1 \wedge \mathsf{d}q_1 + \mathsf{d}q_2 \wedge \mathsf{d}x^2\right) + C \, \mathsf{d}x^1 \wedge \mathsf{d}q_2 + D \, \mathsf{d}q_1 \wedge \mathsf{d}q_2 + E \, \mathsf{d}x^1 \wedge \mathsf{d}x^2$$

Imposing that $lpha|_{\mathsf{d}\psi}=0$ yields $(x^1=x,\ x^2=y,\ \mathsf{and}\ q_i=\partial_i\psi)$

$$A\psi_{xx} + 2B\psi_{xy} + C\psi_{yy} + D\left(\psi_{xx}\psi_{yy} - \psi_{xy}^2\right) + E = 0$$

This correspondence is a bijection – unique MA form in ω -effective class.

GDR GDM Meeting

Lewis Napper

A Review of Monge–Ampère Geometry

2. Pressure, Vorticity, and Strain in Incompressible Fluids

3. Monge–Ampère Geometry of 2D Incompressible Flows

4. Higher Dimensions and Curved Backgrounds

The Pfaffian of a Monge–Ampère Form

The Pfaffian of α is defined by $\alpha \wedge \alpha =: f\omega \wedge \omega$ and in 2D, is given by $f = AC - B^2 - DE$.

► Hence, the MA equation $\alpha|_{d\psi} = 0$ is *elliptic* $\Leftrightarrow f > 0$. *hyperbolic* $\Leftrightarrow f < 0$. *parabolic* $\Leftrightarrow f = 0$.

Two MA forms (hence equations) α₁, α₂ are locally equivalent if there exists a local symplectomorphism
F: (T*ℝ², ω, α₁) → (T*ℝ², ω, α₂) such that F*α₂ = α₁.

Lewis Napper

A Review of Monge–Ampère Geometry

2. Pressure, Vorticity, and Strain in Incompressible Fluids

3. Monge–Ampère Geometry of 2D Incompressible Flows

4. Higher Dimensions and Curved Backgrounds

The Lychagin–Rubtsov Theorem and Equivalence

▶ .[Lychagin et al. 1993] define the endomorphism of vector fields $J: \mathfrak{X}(T^*\mathbb{R}^2) \to \mathfrak{X}(T^*\mathbb{R}^2)$ by

$$\frac{1}{\sqrt{|f|}}\alpha(\cdot,\cdot) \coloneqq \omega(J\cdot,\cdot)$$

 $\begin{array}{l} f>0 \Leftrightarrow J \text{ is almost complex } (J^2=-1) \\ f<0 \Leftrightarrow J \text{ is almost para-complex } (J^2=1) \end{array}$

The Lychagin-Rubtsov theorem states t.f.a.e:
 ^{ISF} d(1/√|f|α) = 0.
 ^{ISF} α|_{dψ} = 0 is locally equivalent to Δψ = 0 or □ψ = 0.
 ^{ISF} J is integrable.

GDR GDM Meeting

Lewis Napper

A Review of Monge–Ampère Geometry

2. Pressure, Vorticity, and Strain in Incompressible Fluids

3. Monge–Ampère Geometry of 2D Incompressible Flows

4. Higher Dimensions and Curved Backgrounds

The Navier–Stokes Equations, Vorticity, and Strain

> Homogeneous, Incompressible Navier–Stokes on \mathbb{R}^m background:

$$\partial_t v = -(v \cdot \nabla)v - \nabla p + \nu \Delta v \ (-c) \,. \tag{(*)}$$

▶ Continuity equation is then $\nabla \cdot v = 0$ and applying ∇ to (*) yields:

$$\Delta p \ (+\nabla \cdot c) = \zeta_{ij} \zeta^{ij} - S_{ij} S^{ij} \,.$$

where $\zeta_{ij} = \frac{1}{2}(\nabla_j v_i - \nabla_i v_j)$ and $S_{ij} = \frac{1}{2}(\nabla_j v_i + \nabla_i v_j)$.

► Vorticity term dominates $\Leftrightarrow \Delta p > 0$. Strain term dominates $\Leftrightarrow \Delta p < 0$.

GDR GDM Meeting

Lewis Napper

1. A Review of Monge–Ampère Geometry

2. Pressure, Vorticity, and Strain in Incompressible Fluids

3. Monge–Ampère Geometry of 2D Incompressible Flows

4. Higher Dimensions and Curved Backgrounds

The Weiss-Okubo Criterion for 2D Flows

- ► In 2D, solving $\nabla \cdot v = 0$ yields a stream function ψ with $v_1 = -\psi_y$ and $v_2 = \psi_x$.
- > Pressure equation is then a Monge–Ampère equation for ψ :

$$\Delta p = 2\left(\psi_{xx}\psi_{yy} - \psi_{xy}^2\right)$$

► Vorticity dominates $\Leftrightarrow \Delta p > 0 \Leftrightarrow$ Elliptic equation. Strain dominates $\Leftrightarrow \Delta p < 0 \Leftrightarrow$ Hyperbolic equation. No dominance $\Leftrightarrow \Delta p = 0 \Leftrightarrow$ Parabolic equation. [Weiss 1991, Larchevêque 1993]

GDR GDM Meeting

Lewis Napper

 A Review of Monge–Ampère Geometry

2. Pressure, Vorticity, and Strain in Incompressible Fluids

3. Monge–Ampère Geometry of 2D Incompressible Flows

4. Higher Dimensions and Curved Backgrounds

Monge-Ampère Geometry for the Poisson Equationn

▶ The pressure equation $\Delta p = 2(\psi_{xx}\psi_{yy} - \psi_{xy}^2)$ is recovered from

$$lpha = \mathsf{d} q_1 \wedge \mathsf{d} q_2 - \frac{1}{2} \Delta p \, \mathsf{d} x^1 \wedge \mathsf{d} x^2$$

► Pfaffian is $f = \frac{1}{2}\Delta p$, hence: *Vorticity dominates* $\Leftrightarrow \Delta p > 0 \Leftrightarrow f > 0 \Leftrightarrow Elliptic.$ *Strain dominates* $\Leftrightarrow \Delta p < 0 \Leftrightarrow f < 0 \Leftrightarrow Hyperbolic.$ *No dominance* $\Leftrightarrow \Delta p = 0 \Leftrightarrow f = 0 \Leftrightarrow Parabolic$

The Lychagin–Rubtsov theorem says $\Delta p = 2(\psi_{xx}\psi_{yy} - \psi_{xy}^2)$ is locally equivalent to $\Delta \psi = 0$ or $\Box \psi = 0$ iff Δp is constant.

GDR GDM Meeting

Lewis Napper

1. A Review of Monge–Ampère Geometry

2. Pressure, Vorticity, and Strain in Incompressible Fluids

3. Monge–Ampère Geometry of 2D Incompressible Flows

4. Higher Dimensions and Curved Backgrounds

For choice of $K \in \Omega^2(T^*\mathbb{R}^2)$, we define the Lychagin–Rubtsov metric $\hat{g}(\cdot, \cdot) \coloneqq -K(J \cdot, \cdot)$ [Roulstone et al. 2001]:

$$\hat{g} = \begin{pmatrix} fI_2 & 0\\ 0 & I_2 \end{pmatrix}$$

> The pull-back of this metric to classical solution $L = d\psi$ is

$$\hat{g}|_{\mathsf{d}\psi} = \zeta \begin{pmatrix} \psi_{xx} & \psi_{xy} \\ \psi_{xy} & \psi_{yy} \end{pmatrix}$$

where $\zeta = \Delta \psi$.

GDR GDM Meeting

Lewis Napper

 A Review of Monge–Ampère Geometry

2. Pressure, Vorticity, and Strain in Incompressible Fluids

3. Monge–Ampère Geometry of 2D Incompressible Flows

4. Higher Dimensions and Curved Backgrounds

Summary Table

Dominance	Vorticity	Strain	None
Δp	> 0	< 0	= 0
f	> 0	< 0	= 0
$\alpha _{d\psi}=0$	Elliptic	Hyperbolic	Parabolic
J^2	-1	1	Singular
\hat{g}	Riemannian $(4,0)$	Kleinian $(2,2)$	Degenerate**
$\hat{g} _{d\psi}$	Riemannian $(2,0)$	Kleinian $(1,1)^*$	Degenerate**

*Except when $\zeta = 0$, in which case it is degenerate.

**Degeneracies when $\Delta p = 0$ correspond to singularities of scalar curvature – they persist under coordinate changes.

GDR GDM Meeting

Lewis Napper

1. A Review of Monge–Ampère Geometry

2. Pressure, Vorticity, and Strain in Incompressible Fluids

3. Monge–Ampère Geometry of 2D Incompressible Flows

4. Higher Dimensions and Curved Backgrounds

- ➤ For simply connected regions ∑ of 2D flows on which Δp > 0 and with boundary given by a closed stream-line, all streamlines within ∑ are also closed (and convex). [Larchevêque 1993]
- ► Σ is topologically a disc $[\chi(\Sigma) = \chi(d\psi(\Sigma)) = 1]$ and Gauß–Bonnet theorem on $L = d\psi(\Sigma)$ is:

$$\int_{\mathsf{d}\psi(\partial\Sigma)} \mathsf{d}s \ \kappa(x(s)) = 2\pi - \int_{\mathsf{d}\psi(\Sigma)} \operatorname{vol}_{\mathsf{d}\psi(\Sigma)} R(\hat{g}|_{\mathsf{d}\psi})$$

The mean curvature of the boundary of a 'vortex' is described by gradients of vorticity and strain.

Lewis Napper

 A Review of Monge–Ampère Geometry

2. Pressure, Vorticity, and Strain in Incompressible Fluids

3. Monge–Ampère Geometry of 2D Incompressible Flows

4. Higher Dimensions and Curved Backgrounds

A Jacobi System Formulation?

- Rather than working with the stream function, use velocity directly. Consider L with coordinates $(x^i, v_i(x))$.
- > $\omega|_L = 0$ no longer trivial and implies vorticity vanishes. We need a different symplectic form:

$$\varpi = \mathsf{d}q_i \wedge \star (\mathsf{d}x^i)$$

such that $\varpi|_L = 0$ gives $\nabla \cdot v = 0$.

➤ Our MA form can be written

$$\alpha = \frac{1}{2} \mathsf{d}q_i \wedge \mathsf{d}q_j \wedge \star (\mathsf{d}x^i \wedge \mathsf{d}x^j) - \frac{1}{2} \Delta p \operatorname{vol}_m$$

and $\alpha|_L = 0$ yields $\Delta p = \zeta_{ij} \zeta^{ij} - S_{ij} S^{ij} = 2 \operatorname{det}(J(v, x))$

GDR GDM Meeting

Lewis Napper

 A Review of Monge–Ampère Geometry

2. Pressure, Vorticity, and Strain in Incompressible Fluids

3. Monge–Ampère Geometry of 2D Incompressible Flows

4. Higher Dimensions and Curved Backgrounds

Towards Multi-symplectic Monge-Ampère Systems

- ► A <u>k-Plectic Form</u> is a closed and non-degenerate $\varpi \in \Omega^{k+1}(T^*\mathbb{R}^m)$. [Cantrijn et al. 2009]
- ► A (Higher) Monge–Ampère Structure will be a triple $(T^*\mathbb{R}^m, \varpi, \alpha)$ where ϖ is (m-1)-plectic (no effectiveness condition yet).
- <u>Generalised Solutions</u> are now submanifolds $L \hookrightarrow T^* \mathbb{R}^m$ satisfying $\varpi|_L = 0$ and $\alpha|_L = 0$ (not necessarily Lagrangian).
- ▶ We focus on L with coordinates $(x^i, v_i(x))$, diffeomorphic to \mathbb{R}^m , in lieu of classical solutions.

GDR GDM Meeting

Lewis Napper

 A Review of Monge–Ampère Geometry

2. Pressure, Vorticity, and Strain in Incompressible Fluids

3. Monge–Ampère Geometry of 2D Incompressible Flows

4. Higher Dimensions and Curved Backgrounds

The Lychagin–Rubtsov Metric in Higher Dimensions

▶ Can again define a metric
$$\hat{g}(\cdot\,,\cdot) = -K(J\cdot\,,\cdot)$$
 on $T^*\mathbb{R}^m$ of the form

$$\hat{g} = \begin{pmatrix} fI_m & 0\\ 0 & I_m \end{pmatrix}$$

► For $A_{ij} = \nabla_j v_i$, the pullback metric is

$$(\hat{g}|_L)_{ij} = A^k{}_i A_{kj} - \frac{1}{2} \delta_{ij} A_{kl} A^{lk}.$$

▶ In general, signature change of $\hat{g}|_L$ does not coincide with sign change in f — more complicated relationship.

GDR GDM Meeting

Lewis Napper

1. A Review of Monge–Ampère Geometry

2. Pressure, Vorticity, and Strain in Incompressible Fluids

3. Monge–Ampère Geometry of 2D Incompressible Flows

4. Higher Dimensions and Curved Backgrounds

Topology of 3D Vortices

- No Gauss–Bonnet Theorem in odd dimensions how to extract topological information?
- ► Let $\theta = q_i dx^i$ be the tautological form. Then the helicity density is

 $(\theta \wedge \omega)|_L = v_i \zeta^i \mathsf{d} x^1 \wedge \mathsf{d} x^2 \wedge \mathsf{d} x^3$

- Under ideal conditions, helicity is an invariant quantity and vorticity is conserved.
- Helicity can be related to topological quantities from knot theory i.e. the Gauss linking number, Călugăreanu invariant, and Jones Polynomial [Liu and Ricca 2012, Ricca and Moffatt 1992].

GDR GDM Meeting

Lewis Napper

1. A Review of Monge–Ampère Geometry

2. Pressure, Vorticity, and Strain in Incompressible Fluids

3. Monge–Ampère Geometry of 2D Incompressible Flows

4. Higher Dimensions and Curved Backgrounds

Extension to Riemannian Manifold

➤ On a Riemannian manifold (M, g), the approach is broadly the same:

$$\Delta p + R_{ij}v^iv^j \ (+\nabla_i c^i) = \zeta_{ij}\zeta^{ij} - S_{ij}S^{ij} \,.$$

- $\begin{array}{l} \blacktriangleright \mbox{ Schematically take } \\ \mbox{d} q_i \rightarrow \mbox{d} q_i \mbox{d} x^j \Gamma_{ij}{}^k q_k. \\ I \rightarrow g. \\ f = \frac{1}{2} \Delta p \rightarrow f = \frac{1}{2} (\Delta p + R^{ij} q_i q_j). \end{array}$
- ➤ Geometric justification for Weiss criterion for equation type still applies on a manifold, e.g. S² [Napper et al. 2023].

Navier–Stokes equations in spherical geometry describe ocean/atmosphere dynamics (Joshua Stevens - NASA Earth Observatory)

GDR GDM Meeting

Lewis Napper

A Review of Monge–Ampère Geometry

2. Pressure, Vorticity, and Strain in Incompressible Fluids

3. Monge–Ampère Geometry of 2D Incompressible Flows

4. Higher Dimensions and Curved Backgrounds

Summary

- We introduced MA geometry as a tool for studying the Poisson equation for the pressure of an incompressible flow.
- We provided a geometric validation for the Weiss–Okubo criterion and showed how the Lychagin–Rubtsov metric could be used to generalise this to flows in higher dimensions/on curved background.
- We highlighted select results concerning solutions, vortices, and their topologies from the wider framework laid out by [N. et al. 2023].

Lewis Napper

1. A Review of Monge–Ampère Geometry

2. Pressure, Vorticity, and Strain in Incompressible Fluids

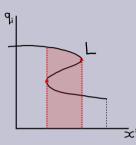
3. Monge–Ampère Geometry of 2D Incompressible Flows

4. Higher Dimensions and Curved Backgrounds

GDR GDM Meeting

Outlook – Generalised Solutions

- Generalised solutions may have non-immersive projections (Arnold's Singularities) and contain the multivalued solutions.
 See [Ichikawa et al. 2007, Vinogradov 1973]
 - In semi-geostrophic theory, these produce additional degeneracy of *ĝ*|_L and type change, which represent weather fronts.
 [D'Onofrio et al. 2023]
 - The geometry of classical solutions models flows with elliptic vortices, vortex tubes, and lines. Perhaps singular locus of projections could be used to model vortex sheets.



Lewis Napper

 A Review of Monge–Ampère Geometry

2. Pressure, Vorticity, and Strain in Incompressible Fluids

3. Monge–Ampère Geometry of 2D Incompressible Flows

4. Higher Dimensions and Curved Backgrounds

- Can one make precise the notion of 'Higher' Monge–Ampère equations? What do we replace effectiveness and Lagrangian with?
- Is it possible to encode dynamics as well as kinematics? Could the vorticity equation

$$\partial_t \zeta + \nabla(\zeta \cdot v) - \nu \Delta \zeta = 0$$

be used as a (Ricci-like) flow equation for the solutions L?

 .[Lychagin et al. 1993, Banos. 2003] respectively classify 2D and 3D MA equations using integrability of a (para-)complex structure J (and the metric ĝ). Can we use generalised complex structures to classify 'higher' Monge–Ampère equations? Lewis Napper

1. A Review of Monge–Ampère Geometry

2. Pressure, Vorticity, and Strain in Incompressible Fluids

3. Monge–Ampère Geometry of 2D Incompressible Flows

4. Higher Dimensions and Curved Backgrounds

Thank you!

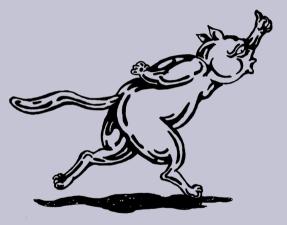


Image Credit [Kushner, Lychagin, Rubtsov. 2007]

GDR GDM Meeting

Lewis Napper

1. A Review of Monge–Ampère Geometry

2. Pressure, Vorticity, and Strain in Incompressible Fluids

3. Monge–Ampère Geometry of 2D Incompressible Flows

4. Higher Dimensions and Curved Backgrounds

