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General notation

Lagrangian description: uppercase. Eulerian description:
lowercase. For instance, (x , t) = (ϕ(X , t), t),
v(x , t) = V (X , t) = ∂ϕ

∂t (X , t) and so on.

▶ Deformation gradient F (X , t), deformation rate
H(X , t) = ∂

∂tF (X , t). Incompressible: J = detF = 1.

▶ Velocity gradient h(x , t) = ∇xv(x , t), stretching tensor
d = Sym h, spin tensor w = Skew h. Incompressible:
tr(d) = 0, (h = HF−1), i.e., divx v = 0.

▶ First Piolà-Kirchhoff stress TR, Cauchy stress σ.
Incompressible: σ = TRF

T .

▶ Material derivative σ̇ = ∂σ
∂t + vi

∂σ
∂xi

= ∂
∂t (σ ◦ Φ).

▶ Dynamics equation ρv̇ − divx σ = b.
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Objective derivatives

Frame-indifference: if ϕ∗(X , t) = Q(t)ϕ(X , t) + a(t) then

σ∗(x∗, t) = Q(t)σ(x , t)Q(t)T .

An objective derivative is a first order in time differential
operator such that

∗
σ∗(x∗, t) = Q(t)σ(x , t)Q(t)T .

A differential constitutive relation for the Cauchy stress of
the form

σ(x , t) = G (σ(x , t), d(x , t))

can then be frame-indifferent.

The material derivative is not objective.
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A characterization of objective derivatives

Unfortunately, there are infinitely many different objective

derivatives. Consider those of the form σ = σ̇ +Ob(σ, h),
with Ob: Sym3×M3 → Sym3.

All functions Obs : Sym3×Sym3 → Sym3 such that
Obs(QσQT ,QdQT ) = QObs(σ, d)Q

T are known (objective
functions), cf. Smith (1971). In particular, all
symmetric-valued polynomials in (σ, d).

Theorem

Such an operator is objective if and only if

Ob(σ, h) = σw − wσ +Obs(σ, d).

with w = Skew(h), d = Sym(h), and
Obs : Sym3×Sym3 → Sym3 is an objective function.

(Gurtin-Fried-Anand, 2010).
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Popular objective derivatives

Plenty of them.

▶ The Zaremba-Jaumann derivative
□
σ = σ̇ + σw − wσ,

with Obs = 0,

▶ the Oldroyd A or lower convected derivative
△
σ = σ̇ + hTσ + σh with Obs(σ, d) = dσ + σd ,

▶ the Oldroyd B or upper convected derivative
▽
σ = σ̇ − hσ − σhT with Obs(σ, d) = −dσ − σd ,

▶ the Truesdell derivative
◦
σ =

▽
σ + tr(h)σ with

Obs(σ, d) = −dσ − σd + tr(d)σ.

Something special about Oldroyd B (incompressible case):

▽
σ = F

∂Σ

∂t
FT ,

where Σ is the second Piolà-Kirchhoff stress. (σ = FΣFT ).
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where Σ is the second Piolà-Kirchhoff stress. (σ = FΣFT ).



Fluide d’Oldroyd B
et second principe

de la
thermodynamique
The Oldroyd B
fluid and the

second principle of
thermodynamics

H. Le Dret1, A.
Raoult2

Objective
derivatives

The Oldroyd B
fluid

Viscoelastic
materials with
internal variables

Lagrangian
Oldroyd B

Oldroyd B and the
second principle

Oldroyd B-like
models

Conclusions

Popular objective derivatives

Plenty of them.

▶ The Zaremba-Jaumann derivative
□
σ = σ̇ + σw − wσ,

with Obs = 0,

▶ the Oldroyd A or lower convected derivative
△
σ = σ̇ + hTσ + σh with Obs(σ, d) = dσ + σd ,

▶ the Oldroyd B or upper convected derivative
▽
σ = σ̇ − hσ − σhT with Obs(σ, d) = −dσ − σd ,

▶ the Truesdell derivative
◦
σ =

▽
σ + tr(h)σ with

Obs(σ, d) = −dσ − σd + tr(d)σ.

Something special about Oldroyd B (incompressible case):

▽
σ = F

∂Σ

∂t
FT ,
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The Oldroyd B fluid

Oldroyd (1950), an objective analogue of a Jeffreys model
(1929) of Fröhlich and Sack (1946) for a suspension of stiff
linearly elastic balls in a Newtonian fluid.

Now widely used
for complex fluid modeling. An incompressible model: the indeterminate pressure in
the Cauchy stress is ignored by the constitutive theory.

Looks like this:

σ + λ1
▽
σ = 2η

(
d + λ2

▽
d
)
,

η > 0 global viscosity, 0 < λ2 ≤ λ1 relaxation times.
Frame-indifferent by design. Initial conditions?

⇔ σ = σs + σp, σs = 2ηsd and σp + λ1
▽
σp = 2ηpd ,

ηs =
λ2
λ1
η and ηp =

(
1− λ2

λ1

)
η.

σs : Newtonian solvent stress with solvent viscosity ηs ,
σp: polymer stress with polymer viscosity ηp.

Many different ways of deriving the Oldroyd B model. Here
a phenomenological Lagrangian approach for testing its
compatibility with the second principle of thermodynamics.
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(1929) of Fröhlich and Sack (1946) for a suspension of stiff
linearly elastic balls in a Newtonian fluid. Now widely used
for complex fluid modeling. An incompressible model: the indeterminate pressure in
the Cauchy stress is ignored by the constitutive theory.

Looks like this:

σ + λ1
▽
σ = 2η

(
d + λ2

▽
d
)
,

η > 0 global viscosity, 0 < λ2 ≤ λ1 relaxation times.
Frame-indifferent by design. Initial conditions?

⇔ σ = σs + σp, σs = 2ηsd and σp + λ1
▽
σp = 2ηpd ,

ηs =
λ2
λ1
η and ηp =

(
1− λ2

λ1

)
η.

σs : Newtonian solvent stress with solvent viscosity ηs ,
σp: polymer stress with polymer viscosity ηp.

Many different ways of deriving the Oldroyd B model. Here
a phenomenological Lagrangian approach for testing its
compatibility with the second principle of thermodynamics.



Fluide d’Oldroyd B
et second principe

de la
thermodynamique
The Oldroyd B
fluid and the

second principle of
thermodynamics

H. Le Dret1, A.
Raoult2

Objective
derivatives

The Oldroyd B
fluid

Viscoelastic
materials with
internal variables

Lagrangian
Oldroyd B

Oldroyd B and the
second principle

Oldroyd B-like
models

Conclusions

The Oldroyd B fluid

Oldroyd (1950), an objective analogue of a Jeffreys model
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Viscoelastic materials with internal variables 1

A pretty general thermo-visco-elastic framework of
HLD-AR,1 based on the Coleman-Noll procedure exploiting
the second principle of thermodynamics or Clausius-Duhem
inequality.

Here no heat. Thermodynamic variables F ∈ M+
3 , H ∈ M3.

A symmetric matrix-valued internal variable Bi ∈ Sym3.

Constitutive ingredients needed:

1. Helmholtz free energy specific density
Âm : M+

3 ×M3 × Sym3 → R.
2. 1st Piolà-Kirchhoff stress T̂R : M+

3 ×M3 × Sym3 → M3.

3. Flow rule K̂ : M+
3 ×M3 × Sym3 → Sym3 used in ode

∂Bi

∂t
= K̂ (F ,H,Bi ).

What about initial conditions?

1A few remarks on thermomechanics, Discrete and Continuous
Dynamical Systems Series S, 2023
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Viscoelastic materials with internal variables 2

Consequences of C-N procedure (i.e., C-D inequality +
constitutive assumptions + any deformation + chain rule):

▶ No H in Âm.

▶ Natural decomposition of the first PK stress

T̂R(F ,H,Bi ) = T̂Rd(F ,H,Bi ) +
∂Âm

∂F
(F ,Bi ).

▶ Constitutive law for the internal dissipation

D̂int(F ,H,Bi ) = T̂Rd(F ,H,Bi ) : H

− ∂Âm

∂Bi
(F ,Bi ) : K̂ (F ,H,Bi ).

Second principle, C-N version: D̂int(F ,H,Bi ) ≥ 0 for all
possible arguments. A constitutive restriction, equivalent to
the second principle in this case.

We will have be to less demanding for Oldroyd B.
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Oldroyd B: Lagrangian w. an internal variable 1

List of ingredients for Oldroyd B:

Initial idea of Francfort & Lopez-Pamies (pers. comm.

2021): start with the neo-Hookean energy W̃ (C ) = µ
2 trC ,

µ > 0, where C = FTF . ≈ elastic polymer energy.

HLD-AR 2022 framework: Helmholtz free energy specific
density Âm based on neo-Hookean:

Âm(F ,Bi ) = W̃ (BiC ) =
µ

2
Bi : C .

Kinematically viscous stress: Newtonian solvent,

T̂Rd(F ,H,Bi ) = 2ηs Sym(HF−1) cofF .

= solvent part of the Cauchy stress σs = 2ηsd .

What about the flow rule?
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Âm(F ,Bi ) = W̃ (BiC ) =
µ

2
Bi : C .

Kinematically viscous stress: Newtonian solvent,

T̂Rd(F ,H,Bi ) = 2ηs Sym(HF−1) cofF .

= solvent part of the Cauchy stress σs = 2ηsd .

What about the flow rule?



Fluide d’Oldroyd B
et second principe

de la
thermodynamique
The Oldroyd B
fluid and the

second principle of
thermodynamics

H. Le Dret1, A.
Raoult2

Objective
derivatives

The Oldroyd B
fluid

Viscoelastic
materials with
internal variables

Lagrangian
Oldroyd B

Oldroyd B and the
second principle

Oldroyd B-like
models

Conclusions

Oldroyd B: Lagrangian w. an internal variable 2

Decomposition of the 1st PK stress ↔ decomposition of the
Cauchy stress σ = σs + σp with polymer part σp=

∂Âm
∂F

(F ,Bi )F
T ,

here,
σp = µFBiF

T or Σp = µBi

when written with the 2nd PK polymer stress.

Some reverse engineering → (
∂Bi
∂t

= K̂(F ,H, Bi ) and
▽
σ = F ∂Σ

∂t
FT

)

K̂ (F ,H,Bi ) = − 1

λ1
Bi +

2ηp
µλ1

F−1 Sym(HF−1)F−T .

Then
▽
σp = − 1

λ1
σp +

2ηp
λ1

d

i.e., Oldroyd B!
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Oldroyd B: Lagrangian w. an internal variable 2

Decomposition of the 1st PK stress ↔ decomposition of the
Cauchy stress σ = σs + σp with polymer part σp=

∂Âm
∂F

(F ,Bi )F
T ,

here,
σp = µFBiF

T or Σp = µBi

when written with the 2nd PK polymer stress.

Some reverse engineering → (
∂Bi
∂t

= K̂(F ,H, Bi ) and
▽
σ = F ∂Σ

∂t
FT

)
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λ1
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2ηp
µλ1

F−1 Sym(HF−1)F−T .
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Oldroyd B and the second principle 1

From HLD-AR (2022), the naive Eulerian internal dissipation
σ : d is not good:

Take ξ = σp as a Eulerian internal variable and see what
happens.
Not good either: no free energy âm(ξ) making the nonnaive
dissipation nonnegative (CN approach).
2023 unpleasant surprise: the Lagrangian reformulation is
equivalent to the above (σp = µFBiF

T ...) with
âm(ξ) =

1
2 tr ξ.

Anyway d̂int(h, ξ) = 2ηs∥d∥2 + 1
2λ1

tr ξ does take strictly
negative values...
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âm(ξ) =

1
2 tr ξ.

Anyway d̂int(h, ξ) = 2ηs∥d∥2 + 1
2λ1

tr ξ does take strictly
negative values...



Fluide d’Oldroyd B
et second principe

de la
thermodynamique
The Oldroyd B
fluid and the

second principle of
thermodynamics

H. Le Dret1, A.
Raoult2

Objective
derivatives

The Oldroyd B
fluid

Viscoelastic
materials with
internal variables

Lagrangian
Oldroyd B

Oldroyd B and the
second principle

Oldroyd B-like
models

Conclusions

Oldroyd B and the second principle 1

From HLD-AR (2022), the naive Eulerian internal dissipation
σ : d is not good:

Take ξ = σp as a Eulerian internal variable and see what
happens.
Not good either: no free energy âm(ξ) making the nonnaive
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Oldroyd B and the second principle 2

Let’s adhere a little less to CN philosophy:

Conditional second principle

Identify the initial conditions for the internal variable(s) such
that the dissipation remains nonnegative for any given future
deformation (if any).

Theorem

The Oldroyd B fluid satisfies the 2nd principle conditionally
iff Bi (0), resp. σp(0)(= ξ(0)), is positive semidefinite.

Sketch of proof: given a deformation ϕ, 1st order linear ode with
constant coefficients for Bi → Duhamel formula. Dissipation is
D̂int(F ,H,Bi ) = 2ηs∥d∥2 + µ

2λ1
Bi : C , and we show that

Bi (t) : C(t) ≥ 0 for all t ≥ 0.
Crucial remark: ∀ sym. positive semi-definite C ,D in SL(3), C : D ≥ 3.
But Bi does not remain positive semidefinite for all times!
(C : D ≥ n(det C)1/n(detD)1/n)

Role of indeterminate pressure?
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Oldroyd B dissipation with positive definite initial σp

Smallest eigenvalue of σp
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Oldroyd B-likes, same Lagrangian approach

▶ Compressible Oldroyd B w. Truesdell derivative. At least
one special case satisfies 2nd principle conditionally.

▶ Incompressible nonlinear Oldroyd B, obtained with
different flow rules

▽
σp = − 1

λ1µk
σk+1
p +

2ηp
λ1

d .

→ k = 0, µ0 = 1: traditional, linear Oldroyd B,
→ k = 1: quadratic Oldroyd B,

σ2−2ηs (σd+dσ)+µ1λ1
▽
σ=2(µ1ηpd−2η2s d

2+µ1λ1ηs
▽
d ).

if ηp = 0: Francfort & Lopez-Pamies (in fact a
homogeneous matrix Riccati equation).
2nd principle unconditional for k odd. For k even,
necessary that σp(0) positive semi-definite. Sufficient
for k even and > 0?

▶ Zaremba-Jaumann, Oldroyd A fluids: Lagrangian
formulation ok with different flow rules.
ZJ and Old A no 2nd principle with this free energy.



Fluide d’Oldroyd B
et second principe

de la
thermodynamique
The Oldroyd B
fluid and the

second principle of
thermodynamics

H. Le Dret1, A.
Raoult2

Objective
derivatives

The Oldroyd B
fluid

Viscoelastic
materials with
internal variables

Lagrangian
Oldroyd B

Oldroyd B and the
second principle

Oldroyd B-like
models

Conclusions

Oldroyd B-likes, same Lagrangian approach

▶ Compressible Oldroyd B w. Truesdell derivative. At least
one special case satisfies 2nd principle conditionally.

▶ Incompressible nonlinear Oldroyd B, obtained with
different flow rules

▽
σp = − 1

λ1µk
σk+1
p +

2ηp
λ1

d .

→ k = 0, µ0 = 1: traditional, linear Oldroyd B,
→ k = 1: quadratic Oldroyd B,

σ2−2ηs (σd+dσ)+µ1λ1
▽
σ=2(µ1ηpd−2η2s d

2+µ1λ1ηs
▽
d ).

if ηp = 0: Francfort & Lopez-Pamies (in fact a
homogeneous matrix Riccati equation).

2nd principle unconditional for k odd. For k even,
necessary that σp(0) positive semi-definite. Sufficient
for k even and > 0?

▶ Zaremba-Jaumann, Oldroyd A fluids: Lagrangian
formulation ok with different flow rules.
ZJ and Old A no 2nd principle with this free energy.



Fluide d’Oldroyd B
et second principe

de la
thermodynamique
The Oldroyd B
fluid and the

second principle of
thermodynamics

H. Le Dret1, A.
Raoult2

Objective
derivatives

The Oldroyd B
fluid

Viscoelastic
materials with
internal variables

Lagrangian
Oldroyd B

Oldroyd B and the
second principle

Oldroyd B-like
models

Conclusions

Oldroyd B-likes, same Lagrangian approach

▶ Compressible Oldroyd B w. Truesdell derivative. At least
one special case satisfies 2nd principle conditionally.

▶ Incompressible nonlinear Oldroyd B, obtained with
different flow rules

▽
σp = − 1

λ1µk
σk+1
p +

2ηp
λ1

d .

→ k = 0, µ0 = 1: traditional, linear Oldroyd B,
→ k = 1: quadratic Oldroyd B,

σ2−2ηs (σd+dσ)+µ1λ1
▽
σ=2(µ1ηpd−2η2s d

2+µ1λ1ηs
▽
d ).

if ηp = 0: Francfort & Lopez-Pamies (in fact a
homogeneous matrix Riccati equation).
2nd principle unconditional for k odd. For k even,
necessary that σp(0) positive semi-definite. Sufficient
for k even and > 0?

▶ Zaremba-Jaumann, Oldroyd A fluids: Lagrangian
formulation ok with different flow rules.
ZJ and Old A no 2nd principle with this free energy.



Fluide d’Oldroyd B
et second principe

de la
thermodynamique
The Oldroyd B
fluid and the

second principle of
thermodynamics

H. Le Dret1, A.
Raoult2

Objective
derivatives

The Oldroyd B
fluid

Viscoelastic
materials with
internal variables

Lagrangian
Oldroyd B

Oldroyd B and the
second principle

Oldroyd B-like
models

Conclusions

Oldroyd B-likes, same Lagrangian approach

▶ Compressible Oldroyd B w. Truesdell derivative. At least
one special case satisfies 2nd principle conditionally.

▶ Incompressible nonlinear Oldroyd B, obtained with
different flow rules

▽
σp = − 1

λ1µk
σk+1
p +

2ηp
λ1

d .

→ k = 0, µ0 = 1: traditional, linear Oldroyd B,
→ k = 1: quadratic Oldroyd B,

σ2−2ηs (σd+dσ)+µ1λ1
▽
σ=2(µ1ηpd−2η2s d

2+µ1λ1ηs
▽
d ).

if ηp = 0: Francfort & Lopez-Pamies (in fact a
homogeneous matrix Riccati equation).
2nd principle unconditional for k odd. For k even,
necessary that σp(0) positive semi-definite. Sufficient
for k even and > 0?

▶ Zaremba-Jaumann, Oldroyd A fluids: Lagrangian
formulation ok with different flow rules.

ZJ and Old A no 2nd principle with this free energy.



Fluide d’Oldroyd B
et second principe

de la
thermodynamique
The Oldroyd B
fluid and the

second principle of
thermodynamics

H. Le Dret1, A.
Raoult2

Objective
derivatives

The Oldroyd B
fluid

Viscoelastic
materials with
internal variables

Lagrangian
Oldroyd B

Oldroyd B and the
second principle

Oldroyd B-like
models

Conclusions

Oldroyd B-likes, same Lagrangian approach

▶ Compressible Oldroyd B w. Truesdell derivative. At least
one special case satisfies 2nd principle conditionally.

▶ Incompressible nonlinear Oldroyd B, obtained with
different flow rules

▽
σp = − 1

λ1µk
σk+1
p +

2ηp
λ1

d .

→ k = 0, µ0 = 1: traditional, linear Oldroyd B,
→ k = 1: quadratic Oldroyd B,

σ2−2ηs (σd+dσ)+µ1λ1
▽
σ=2(µ1ηpd−2η2s d

2+µ1λ1ηs
▽
d ).

if ηp = 0: Francfort & Lopez-Pamies (in fact a
homogeneous matrix Riccati equation).
2nd principle unconditional for k odd. For k even,
necessary that σp(0) positive semi-definite. Sufficient
for k even and > 0?

▶ Zaremba-Jaumann, Oldroyd A fluids: Lagrangian
formulation ok with different flow rules.
ZJ and Old A no 2nd principle with this free energy.



Fluide d’Oldroyd B
et second principe

de la
thermodynamique
The Oldroyd B
fluid and the

second principle of
thermodynamics

H. Le Dret1, A.
Raoult2

Objective
derivatives

The Oldroyd B
fluid

Viscoelastic
materials with
internal variables

Lagrangian
Oldroyd B

Oldroyd B and the
second principle

Oldroyd B-like
models

Conclusions

Concluding remarks

▶ Traditional Oldroyd B fluid recast as a viscoelastic
Lagrangian model w. internal variable, involving a
neo-Hookean “polymer” energy and a Newtonian
solvent.

▶ Cannot satisfy the 2nd principle in the sense of
Coleman-Noll.

▶ Nontrivially satisfies a conditional version of the 2nd
principle. Role of initial conditions.

▶ Fun compressible or nonlinear extensions, possibly of
limited modeling interest.

▶ Zaremba-Jaumann and Oldroyd A fluids likewise recast
but not thermodynamically sound.
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