From Yang-Mills theory to Maxwell equations

Olga Chekeres

Institute for Theoretical and Mathematical Physcis
Lomonosov Moscow State University

Work in (beginning of) progress with Vladimir Salnikov

GdR-GDM,

Paris, 23 November 2023

Previous episodes

Gauged birds

${ }^{1}$ Most pictures credits: internet :-)

No birds were harmed in the making

of this presentation

The Standard Model

$$
G=S U(3) \times S U(2) \times U(1)
$$

General relativity

Pure Yang-Mills theory.
M - differentiable manifold (space-time)
G - compact connected Lie group
$\mathfrak{g}=\operatorname{Lie}(G)-$ its Lie algebra
T_{a} - generators (basis) of $\mathfrak{g} \leftrightarrow g=\exp \left(\theta_{a} T_{a}\right) \in G$

$$
\left[T_{a}, T_{b}\right]=f_{a b}^{c} T_{c}
$$

$f_{a b}^{c}$ - structure constants of \mathfrak{g}
Vector field (gauge potential): $A_{\mu}(x)=A_{\mu}^{a}(x) T_{a}$ Gauge transformation: $A_{\mu} \rightarrow A_{\mu}^{g}=g A_{\mu} g^{-1}+\partial_{\mu} g g^{-1}$

Field strength tensor:
$F_{\mu \nu}^{a}=\partial_{\mu} A_{\nu}^{a}-\partial_{\nu} A_{\mu}^{a}+f_{b c}^{a} A_{\mu}^{b} A_{\nu}^{c}$
$F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}+\left[A_{\mu}, A_{\nu}\right]$
Gauge transformation: $F_{\mu \nu} \rightarrow F_{\mu \nu}^{g}=g F_{\mu \nu} g^{-1}$

Pure Yang-Mills theory. Lagrangian description.

$$
\begin{aligned}
& L=-\frac{1}{2 g^{2}} \operatorname{Tr} F_{\mu \nu} F^{\mu \nu}=-\frac{1}{4 g^{2}} F_{\mu \nu}^{a} F_{a}^{\mu \nu} \\
& S_{Y M}=\int_{M} L=-\frac{1}{4 g^{2}} \int_{M} d^{4} \times F_{\mu \nu}^{a} F_{a}^{\mu \nu}
\end{aligned}
$$

Euler-Lagrange equations:

$$
\begin{gathered}
\partial_{\mu} F^{\mu \nu}+\left[A_{\mu}, F^{\mu \nu}\right]=0 \\
D_{\mu} F^{\mu \nu}=0
\end{gathered}
$$

Geometry of gauge theories. Principal bundles

Geometry of gauge theories. Principal bundles

Connection. Gauge field

Definition 1. A connection on the principal G-bundle is the choice of a horizontal subbundle $H P \hookrightarrow T P$, which is an invariant complement to the vertical subbundle $V P \subset T P$, such that
(i) $T P=V P \oplus H P$
(ii) $H_{g u} P=g_{*}\left(H_{u} P\right), u \in P, g \in G$,
g_{*} is a map induced by the action $G \times P \rightarrow P$.
Definition 2. A connection g-valued 1-form $A \in \Omega^{1}(P, \mathfrak{g})$ is a projection of $T_{u} P$ to the vertical subspace $V_{u} P \cong \mathfrak{g}$, satisfying the following conditions:
(i) $\iota_{\xi^{P}} A=\xi$ for all $\xi \in \mathfrak{g}$,
(ii) A is G-equivariant, i. e. $g^{*} A=g A g^{-1}, g \in G$.

Then the horizontal subspace is given by:
$H_{u} P=\left\{X \in T_{u} P \mid \iota_{X} A=0\right\}$.

Gauge transformation

Let U_{i} be an open cover of M and $\sigma_{i}: U_{i} \rightarrow \pi^{-1}\left(U_{i}\right)$ be a local section for each U_{i}. Then we can define a g-valued 1-form A_{i} on each U_{i} :

$$
A_{i}=\sigma_{i}^{*} A \in \Omega^{1}(M, \mathfrak{g})
$$

For a non-trivial bundle on the intersections $U_{i} \cap U_{j}$ the local forms agree in the following way:

$$
A_{j}=t_{i j} A_{i} t_{i j}^{-1}-d t_{i j} t_{i j}^{-1}
$$

where $t_{i j}: U_{i} \cap U_{j} \rightarrow G$ are the transition functions.
If we know a local section σ_{i} and a g-valued 1-form A_{i} on each U_{i} we can define a global connection 1-form $A \in \Omega^{1}(P, \mathfrak{g})$ on the bundle, such that $A_{i}=\sigma_{i}^{*} A$, by the formula

$$
\left.A\right|_{\pi^{-1}\left(U_{i}\right)}=g_{i} \pi^{*} A_{i} g_{i}^{-1}-d g_{i} g_{i}^{-1}
$$

where d is the exterior differentiation on P and g_{i} is the local trivialization defined by $\varphi_{i}(u)=\left(p, g_{i}\right)$ for $u=g_{i} \sigma_{i}(p)$ and $\varphi_{i}: P \rightarrow U_{i} \times G$.

Covariant derivative and curvature

The covariant derivative is induced by the connection on the principal G-bundle.
Recall: a horizontal n-form with values in the Lie algebra $\varpi \in \Omega^{n}(P, g)$ is a form satisfying the condition $\iota_{\xi_{P}} \varpi$ for $\xi \in \mathfrak{g}$ and the fundamental vector field $\xi_{P} \in V P$.
The connection gives rise to a projection operator $P_{A}^{h}: \Omega^{n}(P, g) \rightarrow \Omega_{h o r}^{n}(P, g)$.
The covariant derivative is the following composition:

$$
\begin{gathered}
d_{A}=P_{A}^{h} \circ d: \Omega^{n}(P, g) \rightarrow \Omega_{h o r}^{n+1}(P, g) \\
d_{A}=d+A
\end{gathered}
$$

Definition 3. Let $A \in \Omega^{1}(P, \mathfrak{g})$ be a connection 1-form on the principal G-bundle $P \rightarrow M$. The curvature of the connection is the \mathfrak{g}-valued 2-form $F_{A} \in \Omega^{2}(P, \mathfrak{g})$ given by the covariant derivative of the connection:

$$
F_{A}=d_{A} A=d A+\frac{1}{2}[A, A] .
$$

Curvature. Interpretation.

The curvature F_{A} measures for how much the covariant differential fails to be a true differential:

$$
\left(d_{A}\right)^{2} \varpi=\left[F_{A}, \varpi\right]
$$

for $\varpi \in \Omega^{n}(P, \mathfrak{g})$.
The curvature is covariantly constant.
This important property is called the Bianchi identity:

$$
d_{A} F_{A}=0
$$

Local curvature on the base space: $F_{i}=\sigma_{1}^{*} F_{A} \in \Omega^{2}\left(U_{i}, \mathfrak{g}\right)$
Gauge transformation: $F_{A} \rightarrow F_{A}^{g}=g F_{A} g^{-1}$.

Yang-Mills theory

$$
S_{Y M}(A)=-\frac{1}{2 g^{2}} \int_{M} \operatorname{Tr} F_{A} \wedge * F_{A}
$$

Euler-Lagrange equations:

$$
d_{A} * F_{A}=d * F_{A}+\left[A, * F_{A}\right]=0
$$

Bianchi identity:

$$
d_{A} F_{A}+\left[A, F_{A}\right]=0
$$

Electromagnetism

$$
G=U(1)
$$

Electromagnetism

$$
\begin{aligned}
& \text { Electromagnetism } \\
& F_{\mu \nu}^{a}=\partial_{\mu} A_{\nu}^{a}-\partial_{\nu} A_{\mu}^{a} \quad A_{\mu}(x)=A_{\mu}^{a}(x) T_{a} \\
& F^{o i}=-E^{i} \\
& F^{i j}=-\epsilon^{i j k} B^{k} \\
& L=-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}=\frac{1}{2}\left(E^{2}-B^{2}\right) \\
& \begin{array}{ll}
\partial_{\mu} F^{\mu \nu}=0 & \vec{\nabla} \cdot \vec{E}=0 \\
A_{\mu} \rightarrow A_{\mu}-\partial_{\mu} \theta \\
\partial_{\mu} F^{\mu \nu}=0 & \vec{\nabla} \times \vec{B}=\partial_{0} E \\
\tilde{F}^{\mu \nu}=\frac{1}{2} E^{\mu \nu \rho \sigma} F_{\rho \sigma} & \vec{B}=0 \\
\end{array}
\end{aligned}
$$

Beginning of work in progress

- First discussion on interactions. e.g. minimal coupling to a scalar field

$$
S_{Y M}(A)=-\frac{1}{2 g^{2}} \int_{M} \operatorname{Tr}\left(F_{\mu \nu} F^{\mu \nu}+\left(D_{\mu} \varphi\right)^{2}-m^{2} \varphi^{2}\right)
$$

\rightarrow Bosonic and fermionic variables

Actual work in progress

- Homogeneous Maxwell \leftarrow Pure Yang-Mills with $f_{a b}^{c}=0$
- Real-life Maxwell: i.e. inhomogeneous, eventually with charges, in anisotropic continuous media with varying electromagnetic parameters \leftarrow several options:

Merci pour l'attention!

