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Gauged birds

1
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No birds were harmed

in the making

of this presentation



The Standard Model

G = SU(3)× SU(2)× U(1)



General relativity

G = Diff (M)



Pure Yang-Mills theory.

M – differentiable manifold (space-time)
G – compact connected Lie group
g = Lie(G ) – its Lie algebra
Ta – generators (basis) of g ↔ g = exp(θaTa) ∈ G

[Ta,Tb] = f cabTc

f cab – structure constants of g

Vector field (gauge potential): Aµ(x) = Aa
µ(x)Ta

Gauge transformation: Aµ → Ag
µ = gAµg

−1 + ∂µgg
−1

Field strength tensor:
F a
µν = ∂µA

a
ν − ∂νA

a
µ + f abcA

b
µA

c
ν

Fµν = ∂µAν − ∂νAµ + [Aµ,Aν ]
Gauge transformation: Fµν → F g

µν = gFµνg
−1



Pure Yang-Mills theory. Lagrangian description.

L = − 1

2g2
TrFµνF

µν = − 1

4g2
F a
µνF

µν
a

SYM =

∫
M
L = − 1

4g2

∫
M
d4x F a

µνF
µν
a

Euler–Lagrange equations:

∂µF
µν + [Aµ,F

µν ] = 0

DµF
µν = 0



Geometry of gauge theories. Principal bundles



Geometry of gauge theories. Principal bundles



Connection. Gauge field

Definition 1. A connection on the principal G-bundle is the choice
of a horizontal subbundle HP ↪→ TP, which is an invariant
complement to the vertical subbundle VP ⊂ TP , such that
(i) TP = VP ⊕ HP
(ii) HguP = g∗(HuP) ,u ∈ P, g ∈ G ,
g∗ is a map induced by the action G × P → P.

Definition 2. A connection g-valued 1-form A ∈ Ω1(P, g) is a
projection of TuP to the vertical subspace VuP ∼= g, satisfying the
following conditions:
(i) ιξPA = ξ for all ξ ∈ g,
(ii) A is G-equivariant, i. e. g∗A = gAg−1, g ∈ G .
Then the horizontal subspace is given by:
HuP = {X ∈ TuP|ιXA = 0}.



Gauge transformation

Let Ui be an open cover of M and σi : Ui → π−1(Ui ) be a local
section for each Ui . Then we can define a g-valued 1-form Ai on
each Ui :

Ai = σ∗
i A ∈ Ω1(M, g).

For a non-trivial bundle on the intersections Ui ∩Uj the local forms
agree in the following way:

Aj = tijAi t
−1
ij − dtij t

−1
ij ,

where ti j : Ui ∩ Uj → G are the transition functions.
If we know a local section σi and a g-valued 1-form Ai on each Ui

we can define a global connection 1-form A ∈ Ω1(P, g) on the
bundle, such that Ai = σ∗

i A, by the formula

A|π−1(Ui ) = giπ
∗Aig

−1
i − dgig

−1
i ,

where d is the exterior differentiation on P and gi is the local
trivialization defined by φi (u) = (p, gi ) for u = giσi (p) and
φi : P → Ui × G .



Covariant derivative and curvature
The covariant derivative is induced by the connection on the
principal G-bundle.
Recall: a horizontal n-form with values in the Lie algebra
ϖ ∈ Ωn(P, g) is a form satisfying the condition ιξPϖ for ξ ∈ g and
the fundamental vector field ξP ∈ VP.
The connection gives rise to a projection operator
Ph
A : Ωn(P, g)→ Ωn

hor (P, g).
The covariant derivative is the following composition:

dA = Ph
A ◦ d : Ωn(P, g)→ Ωn+1

hor (P, g).

dA = d + A

Definition 3. Let A ∈ Ω1(P, g) be a connection 1-form on the
principal G-bundle P → M. The curvature of the connection is the
g-valued 2-form FA ∈ Ω2(P, g) given by the covariant derivative of
the connection:

FA = dAA = dA+
1

2
[A,A].



Curvature. Interpretation.

The curvature FA measures for how much the covariant differential
fails to be a true differential:

(dA)
2ϖ = [FA, ϖ]

for ϖ ∈ Ωn(P, g).
The curvature is covariantly constant.
This important property is called the Bianchi identity:

dAFA = 0.

Local curvature on the base space: Fi = σ∗
1FA ∈ Ω2(Ui , g)

Gauge transformation: FA → F g
A = gFAg

−1.



Yang–Mills theory

SYM(A) = − 1

2g2

∫
M
Tr FA ∧ ∗FA

Euler–Lagrange equations:

dA ∗ FA = d ∗ FA + [A, ∗FA] = 0

Bianchi identity:
dAFA + [A,FA] = 0.



Electromagnetism

G = U(1)



Electromagnetism



Beginning of work in progress

▶ First discussion on interactions.
e.g. minimal coupling to a scalar field

SYM(A) = − 1

2g2

∫
M
Tr

(
FµνF

µν + (Dµφ)
2 −m2φ2

)
→ Bosonic and fermionic variables



Actual work in progress

▶ Homogeneous Maxwell ← Pure Yang–Mills with f cab = 0

▶ Real-life Maxwell: i.e. inhomogeneous, eventually with
charges, in anisotropic continuous media with varying
electromagnetic parameters ← several options:

▶
non-abelian gauge
group (f cab ̸= 0)

▶ Yang-Mills with inter-
action terms

Lie algebroid
Yang–Mills



Merci pour l’attention!


