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Viscoelastic flows, Maxwell fluids & hyperbolic PDEs

To compute unequivocal solutions to Cauchy problems
we propose a symmetric-hyperbolic system of balance laws

that contains λ
3
τ +τ = 2µD(u), and that models

denoting D(u) = 1
2

(
∇u + ∇uT

)
≡ 1

2

(
L + LT

)
,
3
τ≡▽

τ := ∂tτ + (u · ∇)τ − (∇u)τ − τ (∇u)T

• Hookean solids when λ, µ ≡ Gλ→ ∞:
3
τ= 2GD(u)

where τ = G
(

FF T − I
)
, (∂t + u · ∇)F = L F ⇒ 3

τ≡▽
τ := ∂tτ + (u · ∇)τ − Lτ − τLT

• Newtonian fluids when λ, λ/µ ≡ 1/G → 0: τ = 2µD(u)
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Continuum Mechanics

We look for Rd = {x = ϕi
t(a)ei , a = aαeα} ∀t ∈ [0,T ), i.e.

velocity u ≡ ∂tϕt and deformation gradient F ≡ ∂αϕ
i
tei ⊗ eα

∂tF i
α − ∂αui = 0 (1)

∂t |F | − ∂α

(
F̂ i
α ui

)
= 0 (2)

∂t F̂ i
α + σijkσαβγ∂β

(
F j
γ uk

)
= 0 (3)

where |F | and F̂ denote determinant and cofactor matrix of F

while Piola’s identities hold (σαβγ is Levi-Civita’s symbol)

σαβγ∂βF i
γ = 0 = ∂αF̂ i

α ∀i (4)

(∂bF i
a = ∂aF i

b)



Newtonian physics

We require balance of energy using material coordinates i.e.

ρ̂∂t

(
|u|2

2
+ e
)

= ∂α

(
Sα

i ui
)
+ ρ̂fiui (5)

where stored energy e(F ) defines first Piola-Kirchoff stress S

Sα
i = ρ̂∂F i

α
e . (6)

We require momentum balance in fact, i.e. in Cartesian system

ρ̂∂tui = ∂αSα
i + ρ̂fi (7)

by Galilean invariance. Here, we also assume ρ̂ constant.



Lagrangian description

Then, computable motions ϕt(a) are defined on specifying
i) constitutive relations e(F ), strictly convex in F e.g. like

e(F ) =
c2

1
2
(F k

αF k
α − d) (8)

(c2
1 ≡ G > 0 is Lamé’s second coefficient or shear modulus)

hence S(F ) = c2
1F T in the (symmetric-hyperbolic) system

∂tF T = ∇au (9)
ρ̂∂tu = diva S + ρ̂f (10)

plus ii) initial conditions for (9–10), e.g. in [Hs(Rd)]3d

(whatever s ∈ R, ∀T > 0 here: (9–10) is linear !)



Neo-Hookean materials
A more realistic constitutive relation (for rubber, resine. . . ) is

e(F ) =
c2

1
2
(F : F − d)−

d2
1

1 − γ
|F |1−γ (11)

(where d2
1 is Lamé’s first coefficient). Properties of (11):

• e(F ) is polyconvex in F as soon as γ > 1

e(F ) ≡ ẽ(|F |,F ) convex in |F |,F

well defining solutions with Sα
i (F ) = ρ̂c2

1F i
α− ρ̂d2

1 |F |−γF̂ i
α to

∂tF T = ∇au (12)

∂t |F | = diva(u · F̂ ) (13)
∂tu = diva(S/ρ̂) + f (14)

• e(F ) is material-frame indifferent

e(F ) ≡ ē(C, |C|) where C = Cαβeα ⊗ eβ,Cαβ = F i
αF i

β,

ē is monotone convex in each argument for polyconvexity



Eulerian description

Smooth solutions to (11–14) preserving ∇a × F T = 0
are equivalently (smooth) solutions preserving div(ρF T ) = 0 to

∂t (ρu) + div (ρu ⊗ u − σ) = ρf (15)

∂t (ρF )−∇×
(
ρF T × u

)
= 0 (16)

∂tρ+ div (ρu) = 0 (17)

using mass density ρ = ρ̂/|F | and Cauchy stress

σij := |F |−1SiαF j
α ≡ ρc2

1F i
αF j

α − ρd2
1

(
ρ

ρ̂

)γ

δij .

It allows one to define isentropic, time-reversible motions of
“solids”, isotropic (motions depend only on c2

1 ,d
2
1 , not direction)



Fluid motions

Within liquids, stress are mostly spheric i.e. σ = −pI

like in the famous barotropic case e(F ) = C0
γ−1ρ

γ−1, p = C0ρ
γ

∂t (ρu) + div (ρu ⊗ u − σ) = ρf (18)
∂tρ+ div (ρu) = 0 (19)

well posed – though not in Lagrangian description.
Anyway, real liquids are also viscous, and flow non-reversibly.

Newtonian fluids σ = −pI + τ , τ = 2µD(u) produce entropy,
but lack shear elasticity as in e.g. gels, letting alone that

shear then propagates at infinite speed and fails at

A universal time scale for vortex ring formation 125

(a)

(b)

(c)

Figure 3. Visualization of vortex rings at X/D ≈ 9 for (a) Lm/D = 2, Re ≈ Γ/ν ≈ 2800;
(b) Lm/D = 3.8, Re ≈ 6000; and (c) Lm/D = 14.5. Picture is taken at Ūpt/D = L/D = 8. All three
cases were generated by an impulsive piston velocity depicted in figure 2.

4. Flow visualization
Figures 3(a), 3(b) and 3(c) show three vortex rings generated by three different

maximum stroke ratios (Lm/D). The vortex rings shown in these pictures are at an
approximate axial position of X ≈ 9D from the nozzle exit. In figure 3(a), Lm/D = 2,
while in figure 3(b), Lm/D ≈ 3.8. For the case in figure 3(c), the piston was passing
through the position L/D ≈ 8 at the time the picture was taken. The piston motion
was only stopped later at Lm/D = 14.5. In all cases, vortices were generated with
similar impulsive piston motion to that depicted in figure 2.

One striking feature in these pictures is the existence of a trailing jet of fluid behind
the leading vortex ring in figure 3(c) and lack of it in figures 3(a) and 3(b). It appears
that in figures 3(a) and 3(b) almost all of the discharged fluid has been entrained
into the vortex ring. However, for the case in figure 3(c), the vortex ring shows a
clear separation from the active trailing jet-like region behind it. It is apparent that
the formation of the vortex ring has been completed and the vorticity is no longer
entrained from the shear layer region of the trailing jet. It is interesting to note that the
size of the leading vortex ring in figure 3(c) is approximately the same as that of the
vortex ring in figure 3(b) and is larger than that depicted in figure 3(a). Considering
that the pictures are taken at the same downstream position of X ≈ 9D, this variation



Fluids (micro-)structure

Rheology of solids & liquids depends on (micro-)structure

Use Maxwell constitutive relation with structural variable τ ?

Objective suspension flow models λ
3
τ +τ = 2µD(u) where e.g.

3
τ≡▽

τ := ∂tτ + (u ·∇)τ − (∇u)τ − τ (∇u)T are not well-posed.

The linearized system is hyperbolic if c := I + λ
µτ > 0,

but the nonlinear system has no conservative formulation.

Let’s use a structural tensor A = AT > 0 (like in plastic solids !)
modelling anisotropy in stored energy through tr(AC).
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Anisotropic elastodynamics
Defects inducing anisotropy in solids can be modelled on
modifying elastodynamics system preserving div(ρF ) = 0

∂t (ρu) + div (ρu ⊗ u − σ) = ρf

∂t (ρF )−∇×
(
ρF T × u

)
= 0

∂tρ+ div (ρu) = 0

(20)

where σ := ρ (∂F e) · F T is given by
e(F ) = ē(C, |C|) material-frame indifferent, polyconvex in F .

Introducing a structure parameter A = F−1
p · F−T

p > 0 in e.g.

e(F ) =
c2

1
2 (tr(F · A · F T )− d)− d2

1
1−γ |F |1−γ (21)

(still polyconvex in F !) yields σ = ρc2
1F · A · F T − pI

with strain F · A · F T like in [Green, Naghdi 1965] [Lee, Liu 1967]



Maxwell fluids with hyperbolic PDEs
Assuming (20) and a modified neo-Hookean stored energy
with structure parameter A(t ,x) as in (21),
Maxwell fluids λ

3
τ +τ = 2µD(u) result from requiring µ = λc2

1

τ = ρc2
1(F · A · F T − I)

λ(∂t + u ·∇)A + A = F−1F−T (22)
3
τ= ∂tτ + (u ·∇)τ −∇u · τ − τ ·∇uT + (divu) τ . (23)

Theorem (Lieb, 1973)
(F ,Y ) ∈ Rd×d × SDPd×d → tr

(
FY− 1

2 F T
)

is convex

By Godunov-Mock theorem, the system of conservation laws
(20–22) is symmetric hyperbolic when div(ρF ) = 0 [Boyaval M2AN 2021]



Thermodynamics consistency
The solutions preserving div(ρF ) = 0 to

∂t (ρu) + div (ρu ⊗ u − σ) = ρf

∂t (ρF )−∇×
(
ρF T × u

)
= 0

∂tρ+ div (ρu) = 0

∂tA + u ·∇A = 1
λ(F

−1F−T − A)

(24)

σ = ρc2
1F · A · F T − pI = τ − p̃I satisfy the energy balance

∂tE + div (Eu − σ · u) = ρf · u +
ρc2

1
2λ (I − c−1) : (c − I) (25)

using c = FAF T ∈ S+,∗, E = ρ
(1

2 |u|
2 + ẽ

)
, p̃ = p + c2

1ρ

ẽ(F ) =
c2

1
2 (tr(F · A · F T )− d − log |F · A · F T |)− d2

1
1−γ |F |1−γ



Linking solids with fluids

Standard comparison tools for systems of balance laws
rigorously link the fluid model (24)
with (neo-Hookean) elastic solid bodies when 1

λ → 0
i.e. when no energy is dissipated [Boyaval 2023]

Whenever 0 < λ <∞, flows dissipate and
one is considering non-ideal fluids with extra-stress

λ
(
∂tτ + (u ·∇)τ −∇u · τ − τ ·∇uT+(divu) τ

)
= 2µD(u)−τ

When λ→ 0, fluids memory is fading infinitely fast and
fluids become formally Newtonian, with non-zero
viscosity µ = λc2

1 if c2
1 → ∞ at the same time



Entropy and temperature

Thermal influences on mechanics were neglected so far

−ρc2
1

2λ (I − c−1) : (c − I) ≡ ρθ(∂t + u ·∇)η =: ρ(∂t + u ·∇)es(η)

⇒ let e depend on η and preserve entropy production ?

If we assume K (θ) affine in a θ-convex Helmholtz free energy

e⋆(F , θ) = K (θ)
2 ēA(F ) + ψ0(|F |, θ) (26)

where ēA(F ) = tr(F · A · F T )− d − log |F · A · F T |, then

e(F , η) = K−θ∂θK
2 ēA(F ) + e0 (|F |, η + ∂θK ēA(F ))

after Legendre transform of (26) is jointly convex in (|F |,F , η),
while σ = ρK (θ)F · A · F T − p̃(ρ, θ)I like [Dressler-Edwards-Öttinger 1999]



Adding heat transfer by conduction

Heat conduction at finite-speed can be added using

e(F , η,p) = K−θ∂θK
2 ēA(F ) + e0 (|F |, η + ∂θK ēA(F )) + τ

2 |p|
2

τρ(∂t + ui∂i)p + div(ζ(θ)ρF ) = ρθ|ζ ′(θ)|2κ̂−1p

as in pioneering works of Cattaneo,

with an additional heat flux in energy balance (25)

∂t Ẽ + div
(

Ẽu − σ · u + θζ ′(θ)p
)
= ρf · u

where Ẽ = ρ
(1

2 |u|
2 + e(F , η,p)

)



Compatibility with Fourier’s law

First, balance of energy ρ̂∂te + ∂αQα = ρ̂r for e(η,p)
is compatible with second law ρ̂θ∂tη + θ∂αqα − ρ̂r = ρ̂D ≥ 0
when Qα = θqα, ρ̂(∂pαe)∂tpα + qα∂αθ = −ρ̂D < 0 and

ρC1(∂t + ui∂i)ρ̂θ + ∂i

(
θρF i

αqα
)
= ρ

(
ρ̂D + F i

αqα∂iθ
)

(27)

where θ := ∂ηe, C1(θ) := θ(∂2
ηηe)−1, r = 0 implies Fourier’s law

θρF i
αqα → −κij∂jθ and F i

αqα∂iθ +D ≡ qα∂αθ +D → 0 ,

i.e. θρq → −κ̂−1∇aθ , ρ̂D → θρqT κ̂−1q > 0 (κ̂ := F−1κF T )
e.g. if τ ρ̂∂tpα + ∂αζ(θ) = −ρθ|ζ ′(θ)|2[κ̂−1]αβpβ ,p = Q/(θζ ′(θ))



Extensions possible

One can change the stored energy
and introduce finite-extensibility:

ψ = ψ0+K (θ)b2 log

(
1 −

F i
αF i

βAαβ

b2

)
−kBθ log |F i

αF i
βAαβ|+ τ

2
|p|2

or add a term function of F̂ for 3D flows. . .
or let λ vary
(as a function of θ, A, F ... or yet another structure parameter)
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Saint-Venant for shallow flows:viscous?

Saint-Venant [1871]: free-surface gravity flows of depth
H(t , x , y) > 0 are governed by hydrostatic pressure P = gH/2

∂tH + div(HU) = 0 (28)
∂t(HU) + div(HU ⊗ U + H(P +Σzz)I − HΣh) = −kHU (29)

and Σ = 0, or Σh = 2νD(U), Σzz = −(Σxx +Σyy )



2D shallow elastodynamics

λ→ ∞: elastodynamics for thin layers H ≡ F z
c = |F h|−1 > 0

of hyperelastic materials with deformation F = ∂a,b,c(x , y , z)

∂tF + (u ·∇)F = (∇U)F

and with a Hookean stress function of B = FF T

Σh = ∂F h

(
G
2

F h : F h

)
F T

h , Σzz = ∂F z
c

(
G
2
|F z

c |2
)

F z
c

i.e. Σh − Σzz I ≡ G(Bh − Bzz I) = (∂F he)F T
h ;

in fact is as symmetric hyperbolic system of conservation laws
with polyconvex energy e := g

2 |F h|−1 + G
2 (F h : F h + |F h|−2)



2D shallow elastodynamics SCL

When λ→ ∞, SV-UCM should be

∂t(HF i
α) + ∂j(HU jF i

α − HF j
αU i) = 0

∂t(HU i) + ∂j(HU jU i + gH2/2 + GH3 − GHF i
αF j

α) = −KHU i

as long as ∂α(σαβF k
β ) = 0, ∂j(HF j

α) = 0 (Piola) so e.g.

∂tH + ∂j(HU j) = 0.

It is possible accomodate viscosity using “memory” variables.



2D viscoelastic Saint-Venant

Adding Aαβ to the usual dependent variables yields

∂tH + ∂j(HU j) = 0

∂t(HF i
α) + ∂j(HU jF i

α − HF j
αU i) = 0

∂t(HU i) + ∂j(HU jU i + gH2/2 + GH3Acc − GHF i
αAαβF j

βF j
α) = −KHU i

∂t(HAαβ) + ∂j(HU jAαβ) = H(|F h|−2σαα′σββ′F k
α′F k

β′ − Aαβ)/λ

∂t(HAcc) + ∂j(HU jAcc) = H(H−2 − Acc)/λ

i.e. a system of conservation laws, with companion law

∂t(HE) + ∂x (HEU + H(P +Σzz − Σxx)U − HΣxyV )

+∂y (HEV − HΣyxU + H(P +Σzz − Σyy )V ) ≤ −KH|U|2−HD



Computing solutions
τ := σ + p δ satisfies a compressible UCM eq.

λ
▽
τ +τ (divu) + τ = 2µD(u)

using
▽
τ := ∂tτ + (u ·∇)τ −∇u τ − τ ∇uT

Assuming 1D flow, one retrieves the damped-wave equation

λ∂2
ttτ(t , y) + ∂tτ(t , y) = µ∂2

yyτ(t , y)

with shear-wave solution to Stokes first-problem in {y > 0}

But beyond ?



Perspectives

• Vorticity generated locally in an initially-quiescent fluid
• Fluid-Solid contact “seamlessly” modelled (discontinuity)
• Rheology: local re-structuration under shear
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1D case (Stoker): h ; µ = 1 and 10,
λ = ∞



1D case (Stoker): τxx , τzz ;
µ = 1, λ = ∞



1D case (Stoker): τxx , τzz when µ = 10,
λ = ∞



Stoker “dam-break” benchmark test
case

Compute a solution for t ∈ (0, .2) in (x , y) ∈ [0,1]2 starting from

(H,U,V ,Bxx ,Byy ,Bxy ,Bzz) =

{
(3,0,0,1,1,0,1) x + y < 1
(1,0,0,1,1,0,1) x + y > 1

SV-UCM Depth H
T = .2
Froude g−1/2 = .3
Elasticity G = 10 ≈ g
Weissenberg λ = 1 ≫ T



Varying elasticity G = .1,1,10 at
g = 10

Depth H (top) and strain Bxx (bottom) at T = .2 for λ = .01, .1,1



Varying elasticity G = .1,1,10 at
g = 10

Strain Bxx (top) and Bzz (bottom) at T = .2 for λ = .01, .1,1



Varying Froude g = 1,10,100

Depth H at T = .2 for λ = .01 (top) and .1 (bottom)
with elasticity G = 1 (left) and 10 (right)



2D column “circular dam-break”
benchmark

Solution at T = .2 in (x , y) ∈ [0,1]2 starting from

(H, U, V , Bxx
, Byy

, Bxy
, Bzz ) =

{
(3, 0, 0, 1, 1, 0, 1) (x − .5)2 + (y − .5)2 < .2
(1, 0, 0, 1, 1, 0, 1) (x − .5)2 + (y − .5)2 > .2



g = 10, G = 0.01, λ = 1 at T = .2



g = 10, G = 1, λ = 1 at T = .2
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