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Viscoelastic flows, Maxwell fluids & hyperbolic PDEs

To compute unequivocal solutions to Cauchy problems
we propose a symmetric-hyperbolic system of balance laws
that contains \ 7 +7 = 2uD(u), and that models
denoting D(u) = } (Vu + VuT) = (L+ LT) == + (U V)T — (Vu)T — ~(Vu)T
e [Hookean solids when A\, u = G\ — oc: 7= 2GD(u)

where 7 = G (FFT — 1), (9 + u- V)F = LF = f=F= 0+ (u-V)r — Lr — LT

e Newtonian fluids when A, \/u=1/G — 0: T =2uD(u)
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@ Setting the constitutive modelling issue



Continuum Mechanics
We look for RY = {x = ¢/(a)e;, a= ae,} Vtc[0,T),ie.

velocity u = 0r¢; and deformation gradient F = 0, ¢\e; © €*

OFl, — 0,u' =0 (1)
OF| 0. (Fhu') =0 @
OFL + oipapn 0y (FL uF) = 0 (3)

where |F| and F denote determinant and cofactor matrix of F
while Piola’s identities hold (0,3, is Levi-Civita’s symbol)
TapndsFl = 0= 0, Vi 4)

(OpFh = DaF})



Newtonian physics

We require balance of energy  using material coordinatesi.e.

2 i .
20, (“;_,' + e) - (s,-au') . (5)

where stored energy e(F) defines first Piola-Kirchoff stress S

S = pog e. (6)

We require momentum balance in fact, i.e. in Cartesian system
potU; = 0o Si* + pf; (7)

by Galilean invariance. Here, we also assume j constant.



Lagrangian description

Then, computable motions ¢;(a) are defined on specifying
i) constitutive relations e(F), strictly convex in F e.g. like

2
ﬁ

e(F) = X (FKFf —a) (8)

(012 = G > 0is Lamé’s second coefficient or shear modulus)
hence S(F) = c12FT in the (symmetric-hyperbolic) system

OFT =V,u (9)
pOiu = diva S + pf (10)

plus ii) initial conditions for (9—10), e.g. in [HS(RY)]3?
(whatever s € R, VT > 0 here: (9—10) is linear !)



Neo-Hookean materials
A more realistic constitutive relation (for rubber, resine...) is

c2 d?

F) = F—d)— —|F'
o(F) = 5 (F:F—d)— :~L|F| (1)
(where d12 is Lamé’s first coefficient). Properties of (11):
* ¢(F)is in F as soon as vy > 1

e(F) = é(|F|,F) convexin |F|, F
well defining solutions with S2(F) = c2F!, — pd2|F|~"F to

HFT =Vau (12)
O¢|F| = diva(u - F) (13)
o = diva(S/p) + f (14)

® ¢(F)is
e(F) = &C, |C|) where C = C,pe” ® €, C,5 = F.F},

€ is monotone convex in each argument for polyconvexity



Eulerian description

Smooth solutions to (11-14) preserving Va x FT =0
are equivalently (smooth) solutions preserving div(pF ") = 0 to

Ot (pu) +div(pu @ u— o) = pf (15)
B (oF) — V x (pFTx u) —-0 (16)
Oip +div(pu) =0 (17)

using mass density p = p/|F| and Cauchy stress

ol = |F|7'S"F = pc2F.Fl — pd? <€> o7
p

It allows one to define isentropic, time-reversible motions of
“solids”, isotropic (motions depend only on c12, d2, not direction)



Fluid motions

Within liquids, stress are mostly spherici.e. o = —pl

like in the famous barotropic case e(F) = %;ﬂ—ﬂ p = Cop?
Ot (pu) + div (pu @ U — o) = pf (18)
dip +div(pu) =0 (19)

well posed — though not in Lagrangian description.

Anyway, real liquids are also viscous, and flow non-reversibly.

Newtonian fluids o = —pl + 7, = = 2uD(u) produce entropy,
but lack shear elasticity as in e.g. gels, letting alone that
shear then propagates at infinite speed and fails at =~ e



Fluids (micro-)structure

Rheology of solids & liquids depends on (micro-)structure
Use Maxwell constitutive relation with structural variable = ?

Objective suspension flow models where e.g.

F=t:= O + (u- V)T — (Vu)r — 7(Vu)T are not well-posed.

The linearized system is hyperbolic if ¢ := I+ 47 > 0,
but the nonlinear system has

Let’s use a A= AT > 0 (like in plastic solids )
modelling anisotropy in stored energy through tr(AC).
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@® From anisotropic elastodynamics to viscoelastic fluids



Anisotropic elastodynamics

Defects inducing anisotropy in solids can be modelled on
modifying elastodynamics system preserving div(pF) = 0

Ot (pu) +div(pu @ U — o) = pf
9t (pF) — V x (pFT x u) —0 (20)
Otp + div (pu) =0

where is given by
e(F) = e(C, |C|) material-frame indifferent, polyconvex in F.

Introducing a structure parameter A = F;1 . F;T >0ine.g.
e(F) = S(wr(F-A-FT)—d)— % |F— (21)
=2 T—

(still polyconvex in F!) yields o = pC12F -A-FT —pl
with strain F - A- FT like in [Green, Naghdi 1965] [Lee, Liu 1967]



Maxwell fluids with hyperbolic PDEs

Assuming (20) and a modified neo-Hookean stored energy
with structure parameter A(t, x) as in (21),

Maxwell fluids \ 7 +7 = 2uD(u) result from requiring p = Ac12
T=pcH(F-A-FT -1
MO+ u-V)A+A=F'FT (22)
F=Or+(U-V)r—Vu-T—7-Vu +(divu)r. (23)

Theorem (Lieb, 1973)
(F,Y) € RI%d 5 SDPI*T _, ¢ (FY*%FT) is convex

By Godunov-Mock theorem, the system of conservation laws
(20—22) is symmetric hyperbolic when div(pF) = O goyaval M2an 2021)



Thermodynamics consistency

The solutions preserving div(pF) = 0 to
ot (pu) +div(pu @ U — o) = pf
0t (pF) — V x <pFT X u) =0

Otp +div(pu) =0
HA+u-VA=LF'FT_A)

(24)

o =pc?F-A-FT — pl = v — pl satisfy the energy balance
HE +div(Eu—o - u) = pf - u+”c1( —c N:(c—1) (25
using ¢ = FAFT € S™*, E = p (}|uf? + &), p=p+cip

3(F)= 3(tr(F-A-FT)—d—log|F-A-FT|) — 2 |F|'™



Linking solids with fluids

Standard comparison tools for systems of balance laws
rigorously link the fluid model (24)

with (neo-Hookean) elastic solid bodies when 1 — 0
i.e. when no energy is dissipated oyaval 2023)

Whenever 0 < A < oo, flows dissipate and
one is considering non-ideal fluids with extra-stress

/\<3tT+(U-V)T—VU-T—T-VUT ) =2uD(u)—T1
When )\ — 0, fluids memory is fading infinitely fast and

fluids become formally Newtonian, with non-zero
viscosity = Ac? if ¢ — oo at the same time



Entropy and temperature

Thermal influences on mechanics were neglected so far
(=) (e~ 1) = pB(Or+ u- V)n = p(0r + u- V)es(n)

= let e depend on n and preserve entropy production ?

If we assume K(0) affine in a §-convex Helmholtz free energy

&*(F.0) = “CL&a(F) + vo(IF.0) (26)

where 4(F) =tr(F-A-FT) —d —log|F-A-FT|, then

e(F,n) = *=52K@,(F) + e (|F|,n + 9K &a(F))

after Legendre transform of (26) is jointly convex in (|F|, F,n),
Whlle g = pK(H)F . A . FT — ﬁ(p, 0)’ like [Dressler-Edwards-Ottinger 1999]



Adding heat transfer by conduction

Heat conduction at finite-speed can be added using

e(F,n, p) = K=%%Kg,(F) + ey (|F|,n + 0gK 8a(F)) + 5|p|?

7p(Ot + U9 + div(¢(0)pF) = pbIC'(0)1%R " p
as in pioneering works of Cattaneo,

with an additional heat flux in energy balance (25)

HE + div (I::u —o-u+ 0(’(9)p> =pf-u

where E = p (1|ul? + e(F,n, p))



Compatibility with Fourier’s law

First, balance of energy po:e + 9,Q* = pr for e(n, p)
is compatible with second law 5001 + 00,9 — pr = pD > 0
when Q% = 0q®, p(Ope€)otp™ + q*0.0 = —pD < 0 and

pC1(8r + U'8;)p0 + 8; (engqa) — ) (ﬁD + F;;qaa,-e) 27)
where 0 := d,e, C{(0) := 0(92,e)", r = 0 implies Fourier's law
OpF.q* — —rk;j00  and  FLq*0i0 + D = q*0,0 + D — 0,

i.e.0pq — —~A" Va0, pD = 0pq i 'q>0 (#:=F 'kF")
e.g. if



Extensions possible

One can change the stored energy
and introduce :

2 F FéAaﬁ igi paB1 L7 12
Y = o+K(0)b log | 1 - —k59|og|FaFBA |+§|p|
or add a term function of F for 3D flows. ..

or let A vary
(as a function of 0, A, F... or yet another structure parameter)
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® Applications & Conclusion



Saint-Venant for shallow flows:viscous?

Saint-Venant [1871]: free-surface gravity flows of depth
H(t, x,y) > 0 are governed by hydrostatic pressure P = gH/2

OiH + div(HU) = 0 (28)
O1(HU) + div(HU @ U + H(P + S ;)1 — HEp) = —kHU  (29)

and , or



2D shallow elastodynamics

A — oo: elastodynamics for thin layers H = FZ = |[Fp|~' > 0
of hyperelastic materials with deformation F = 0, ¢(X, y, 2)

OF + (u-V)F = (VU)F

and with a Hookean stress function of B = FF'

G G

in fact is as symmetric hyperbolic system of conservation laws
with polyconvex energy e := Z|Fp|~' + S(Fp: Fn+|Fn|72)



2D shallow elastodynamics SCL

When A\ — oo, SV-UCM should be

O(HF.) + 8,(HUF, — HFL.U") =0
O (HU") + &j(HUU' + gH? /2 + GH® — GHF.F.)) = —KHU'

as long as (0 FX) = 0, 9;(HF) = 0 (Piola) so e.g.
OtH + 0(HU') = 0.

It is possible accomodate viscosity using “memory” variables.



2D viscoelastic Saint-Venant

Adding A, 3 to the usual dependent variables yields
OH + 9j(HU) = 0
O(HF.) + 9,(HUF. — HFL.U") = 0

Oi(HU') + 8j(HUU' + gH? /2 + GHPA.. — GHF} A, F,FL) = —KHU'
01(HA3) + 0j(HU Aog) = H(IF | "2 00a0ss F Fl — Aag) /A
Ot(HAce) + 9(HU Age) = H(H™2 — Acc) /A

i.e. a system of conservation laws, with companion law

+0y (HEV — HS )y U + H(P + £, — £,,)V) < —KH|U|?— HD



Computing solutions
T = o + p J satisfies a compressible UCM eq.

using 7:= O + (u-V)yr—vur—rvu’

Assuming 1D flow, one retrieves the damped-wave equation

AT (L, y) + 0T (t,y) = nd3,T(t,y)

with shear-wave solution to Stokes first-problem in {y > 0}

But beyond ?



Perspectives

¢ Vorticity generated locally in an initially-quiescent fluid
¢ Fluid-Solid contact “seamlessly” modelled (discontinuity)
¢ Rheology: local re-structuration under shear
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1D case (Stoker): h; ;= 1 and 10,
A =00




1D case (Stoker): 7y, 75 ;
=1, A=00




1D case (Stoker): 7y, 72z When ;1 = 10,
A =00




Stoker “dam-break” benchmark test
case

Compute a solution for t € (0,.2) in (x, y) € [0, 1]? starting from

(3,0,0,1,1,0,1) x+y<1

H,U,V, By, By, By, Bss) =
( v By, By, Bzz) {(1,0,0,1,1,0,1) X+y>1

SV-UCM Depth H
T=.2

Froude g='/2 = .3
Elasticity G=10~ g
Weissenberg A =1> T




Varying elasticity G = .1,1,10 at
g=10

Depth H (top) and strain By (bottom) at T = .2 for A = .01,.1, 1
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Varying Froude g = 1,10,100

Depth Hat T = .2 for A = .01 (top) and .1 (bottom)
with elasticity G = 1 (left) and 10 (right)
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2D column “circular dam-break”
benchmark

Solution at T = .2in (x, y) € [0, 1]? starting from
X myy oy pzzy ) (3,0,0,1,1,0,1) (x — 52 4 (y — .5)? < .2
(H,U, V.87, B7. 5 ’BZ)’{(1,0,0,1,1,0,1) (x— 52+ (y— 52> .2
N
\




g=10,G=001,\=1atT=.2
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