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CONTEXT

Hyperelasticity is naturally formulated using an elastic energy. To treat a
full hyperelasticity problem as the minimization of a functional ℒ (Ball,
1977), each boundary term must also be recast using a potential energy.

For dead loads, more generally conservative loads, such potentials exist.

For prescribed pressure on the boundary, different expressions for such a
potential have been proposed (Pearson,1956, Ball, 1977).
But additional constraints are required for such a potential to exist
(Sewell,1965, Beatty, 1970, Podio-Giudugli, 1988).

Expressions given on a reference configuration Ω0, with lost information
(impossible to pull them back on the body ℬ, Truesdell and Noll, 1965,
Noll, 1972, 1978).
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A GENERAL SCHEME FOR POTENTIAL FORMULATIONS

OF BOUNDARY TERMS

We shall introduce a method to build a potential energy for surface forces.

when certain compatibility conditions are satisfied, concerning the
surface forces;

when these compatibility conditions are not satisfied, some
non-holonomic constraints are formulated to bypass these restrictions.
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THE CONTRIBUTION OF DIFFERENTIAL GEOMETRY

Classical differential geometry furnishes tools, like the Poincaré lemma

to decide if the problem admits a potential, and in that case, to calculate
such a potential;

otherwise, thanks to Poincaré integrator, it allows to formulate explicitly
the non-holonomic constraints under which a potential is defined.

These tools can be extrapolated to differential geometry in infinite dimension.

In infinite dimension
The approach is the same as the one adopted by Arnold (1965):

use classical results from finite dimensional differential geometry,

extrapolate them in this extended infinite dimensional setting,

and then check that they are still true.
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WHEN IS A VECTOR FIELD X
THE GRADIENT OF A FUNCTION f ?

A classical question is when a vector field

X = Pe1 + Qe2 + Re3,

defined on R3, is the gradient of a function f ?

A necessary condition is rotX = 0, or in other words(︂
𝜕R
𝜕y

− 𝜕Q
𝜕z

)︂
=

(︂
𝜕R
𝜕x

− 𝜕P
𝜕z

)︂
=

(︂
𝜕Q
𝜕x

− 𝜕P
𝜕y

)︂
= 0.
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A REFORMULATION OF THE PROBLEM

USING EXTERIOR CALCULUS

A necessary condition for a differential one-form

𝛼 = P(x, y, z)dx + Q(x, y, z)dy + R(x, y, z)dz

to be the differential of a function f , i.e. 𝛼 = df is

d𝛼 :=

(︂
𝜕R
𝜕y

− 𝜕Q
𝜕z

)︂
dy ∧ dz +

(︂
𝜕R
𝜕x

− 𝜕P
𝜕z

)︂
dx ∧ dz

+

(︂
𝜕Q
𝜕x

− 𝜕P
𝜕y

)︂
dx ∧ dy = 0.

Here dx ∧ dy := dx ⊗ dy − dy ⊗ dx and
d : Ωk(R3) → Ωk+1(R3) is the exterior derivative which satisfies

d ∘ d = 0.
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VOLUME FORMS

Definitions
A differential form 𝜔 of degree k on Rd (or more generally on a
manifold) is a tensor field of order k which is alternate,

𝜔r1···rj···ri···rk = −𝜔r1···ri···rj···rk .

A volume form on Rd (or more generally on a manifold of dimension d)
is a d-form (maximal degree) which vanishes nowhere.

Example: a volume form on R2 is written

f dx ∧ dy, where f (x, y) ̸= 0.

Example: a volume form on R3 is written

f dx ∧ dy ∧ dz, where f (x, y, z) ̸= 0.

dx ∧ dy = dx ⊗ dy − dy ⊗ dx, dx ∧ dy ∧ dz = (dx ⊗ dy ⊗ dz)a .
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THE RIEMANNIAN VOLUME FORM

On every (orientable) Riemannian manifold (M, g) there exists a unique
volume form, noted volg which is characterized that its value is 1 when
evaluated on every direct orthonormal basis.

Example: on R3, equipped with its natural Euclidean structure q, this
volume form is written

volq = dx ∧ dy ∧ dz = (dx ⊗ dy ⊗ dz)a ,

in any system of (direct) orthogonal coordinates (x, y, z).
Example: if Ω is a bounded domain in R3, the Riemannian volume form
on its boundary (area element), 𝜕Ω, is written

da = in volq = n · volq, n : outward normal

Example: if Σ is a bounded surface in R3, with area element da, then the
Riemannian volume form (length element) on 𝜕Σ is written

dℓℓℓ = in da = n · da, n : outward normal.
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THE CONFIGURATION SPACE IN FINITE STRAINS
TRUESDELL AND NOLL 1965

The material medium is parameterized by a three-dimensional compact
and orientable manifold with boundary, ℬ, the body.
A configuration is represented by a smooth orientation-preserving
embedding (particles cannot occupy the same point in space)

p : ℬ → ℰ ,

where ℰ is the three dimensional Euclidean space.

The configuration space
The configuration space is thus the (infinite dimensional) manifold of smooth
embeddings Emb(ℬ, ℰ).

Remark
Some authors consider embeddings of class Ck with k ≥ 1 rather smooth
embeddings (Segev 1986, Segev-Epstein 2020).
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THE TOPOLOGICAL STRUCTURE OF Emb(ℬ, ℰ)

Emb(ℬ, ℰ) is a subset of C∞(ℬ, ℰ), the space of smooth mappings from
ℬ to ℰ , which is an infinite dimensional affine space.

C∞(ℬ, ℰ) is not a Banach space, its topology is not defined by a norm
but by a countable family of semi-norms (the Ck semi-norms). For this
topology, Emb(ℬ, ℰ) is an open set.

Lemma
Let p0 ∈ Emb(ℬ, ℰ). The neighborhood of p0, defined by

𝒰p0 :=

{︂
p ∈ C∞(ℬ, ℰ); sup

X∈ℬ
‖F(X)− F0(X)‖ < 1

}︂
,

where F = Tp, F0 = Tp0 are the corresponding tangent linear maps,
is an open convex set of C∞(ℬ, ℰ), which is contained in Emb(ℬ, ℰ).
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THE PHASE SPACE IN FINITE STRAINS
THE TANGENT BUNDLE TO THE MANIFOLD OF EMBEDDINGS

The tangent space at a configuration p to Emb(ℬ, ℰ) is described as follows.
To each path of embedding p(s) with p(0) = p, we consider the variation

W := 𝛿p = 𝜕sp(0).

The tangent space TpEmb(ℬ, ℰ) is the space of all variations at p

TpEmb(ℬ, ℰ) := {𝛿p := 𝜕sp(0,X); p(0) = p} .

It is useful to introduce the vector field on Ω = p(ℬ),

w := 𝛿p ∘ p−1.

Remark
W := 𝛿p : a virtual Lagrangian velocity.

TpEmb(ℬ, ℰ): the space of virtual Lagrangian velocities.

w := W ∘ p−1: a virtual displacement on the deformed configuration.
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PULL-BACK AND PUSH-FORWARD
FROM LAGRANGIAN VARIABLES TO EULERIAN VARIABLES AND vice versa

These operations extend the following operations on functions
f ∈ C∞(Ω,R) and ℱ ∈ C∞(ℬ,R), where p : ℬ → ℰ ,

p*f = f ∘ p (pull-back), p*ℱ = ℱ ∘ p−1 (push-forward)

to any tensor fields.

Example: for velocity vector fields, we get

p*u = F−1.u ∘ p (pull-back), p*U = F.U ∘ p−1 (push-forward)

Tℬ F=Tp //

𝜋
��

Tℰ
𝜋
��

ℬ

U (real), W (virtual)

AA

p // ℰ

u (real), w (virtual)

]]
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MASS MEASURE AND MASS DENSITY

The 3-dimensional body is equipped with a volume form,

the mass measure 𝜇,

which encodes the distribution of mass in the material (Truesdell and
Noll, 1965).

Given a configuration p : ℬ → ℰ , the push-forward of 𝜇 by p defines a
mass measure p*𝜇 on Ω = p(ℬ).
p*𝜇 is necessarily proportional to the volume form volq on ℰ

p*𝜇 = 𝜌 volq,

which defines the mass density 𝜌.
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THE METRIC 𝛾 AND CAUCHY–GREEN TENSORS

By pull-back of q on ℰ , we get a Riemannian metric 𝛾 on the Body ℬ

𝛾 = p*q = F⋆q F, F = Tp =

(︂
𝜕pi

𝜕XJ =
𝜕xi

𝜕XJ

)︂
.

Choose a reference configuration p0 and introduce the deformation 𝜙:

p0 : ℬ → Ω0, 𝜙 = p ∘ p−1
0 .

I The right Cauchy–Green tensor is defined on Ω0 = p0(ℬ) as

C := 𝜙*q = F⋆
𝜙q F𝜙 = qFt

𝜙F𝜙. F𝜙 = T𝜙 =

(︂
𝜕xi

𝜕xJ
0

)︂
.

I The metrics C (on Ω0 = p0(ℬ)) and 𝛾 (on ℬ) are related as

p*0 C = 𝛾.

I 𝛾 ≡ C when the the body ℬ is identified with a reference configuration Ω0.
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STRAIN RATE

The strain rate is often defined as

̂︀d :=
1
2
(︀
∇u + (∇u)t)︀ , ̂︀d = (di

j).

Its covariant version d = q̂︀d writes as

d =
1
2
ℒu q, d = (dij)

where ℒu is the Lie derivative with respect to u (Eulerian velocity).

The covariant version d of the strain rate seems to have more geometric
meaning than its mixed form ̂︀d.
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THE METRIC AS THE PRIMITIVE OF THE STRAIN RATE

WHEN PULLED BACK ON THE BODY

Theorem (Rougée, 1991, generalizing 𝜕tC = 2𝜙*d)
Along a path of embeddings p(t) (a loading), the metric 𝛾(t) = p(t)*q on the
body, satisfies the evolution equation

𝜕t𝛾 = 2p*d,

where d is the covariant form of the strain rate.

This result is a direct consequence of the more general formula

𝜕t(p*t) = p* (𝜕tt + ℒu t) ,

for any tensor field t defined on Ω.
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STRESSES – DUAL CONCEPT OF STRAINS

Mathematically, they are distribution-tensors (virtual works).

Cauchy stress tensor : it is the special case when this tensor-distribution
has a density 𝜎 (on the deformed configuration)

𝒫 int(𝜖) = −
∫︁
Ω
(𝜎 : 𝜖) volq.

We can rewrite this expression on the body, using the change of variables
formula

𝒫 int(𝜖) = −
∫︁
Ω
(𝜏 : 𝜖) 𝜌volq = −

∫︁
ℬ
(𝜃 : p*𝜖)𝜇.

where
I 𝜏 = 𝜎/𝜌 is the Kirchhoff stress tensor (on Ω)
I and 𝜃 = p*𝜏 is the Rougée stress tensor (on ℬ).
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THE SET OF STRAIN VARIABLES
AFTER THE WORK OF PAUL ROUGÉE

Besides the configuration space Emb(ℬ, ℰ) it is important to describe the
space Met(ℬ) of all Riemannian metrics 𝛾 on the body (strains variables).

Met(ℬ) is an open convex set of the infinite dimensional vector space of
second-order covariant vector fields on ℬ.

The tangent space T𝛾Met(ℬ) (of metrics variations 𝛿𝛾) corresponds to
virtual linearized strains 𝜖 at p

𝛿𝛾 = 2p*𝜖.

The cotangent space T⋆
𝛾Met(ℬ) corresponds to the space

of virtual powers of stresses (with or without densities).
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ROUGÉE METRIC ON STRAIN VARIABLES
A RIEMANNIAN METRIC ON THE SPACE OF RIEMANNIAN METRICS

Rougée has introduced the following Riemannian metric on Met(ℬ)
(slightly different from Ebin’s one):

G𝜇
𝛾(𝛿1𝛾, 𝛿2𝛾) :=

∫︁
ℬ
tr
(︀
𝛾−1(𝛿1𝛾)𝛾

−1(𝛿2𝛾)
)︀
𝜇, 𝛿k𝛾 ∈ T𝛾Met(ℬ)

This metric induces an injective (but not surjective) linear mapping

T𝛾Met(ℬ) → T⋆
𝛾Met(ℬ), 𝜂 ↦→ G𝜇

𝛾(𝜂, ·);

The range of this mapping in T⋆
𝛾Met(ℬ) corresponds exactly

to virtual works with densities

𝒲𝛾(𝛿𝛾) =

∫︁
ℬ
(𝜃 : 𝛿𝛾)𝜇, 𝜃 = 𝛾−1𝜂𝛾−1.
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ELASTIC CONSTITUTIVE LAWS
A GEOMETRIC POINT OF VIEW

An elastic constitutive law (in the sense of Cauchy) can be interpreted
(Rougée) as a vector field on the manifolfd of the Riemannian metrics

S : 𝛾 ↦→ S(𝛾) on Met(ℬ) TMet(ℬ) G𝜇
//

𝜋

��

T⋆Met(ℬ)

Met(ℬ)

S

DD

𝜃=𝛾−1S(𝛾)𝛾−1

88

In this framework, an hyperelastic law (elasticity in the sense of Green)
corresponds to a vector field S which is the gradient (for the metric G𝜇)
of a functional H ∈ C∞(Met(ℬ))

(d𝛾H).𝛿𝛾 = G𝜇
𝛾(S(𝛾), 𝛿𝛾) =

∫︁
ℬ
tr(𝛾−1S(𝛾)𝛾−1𝛿𝛾)𝜇.

H/2 is the called the elastic energy.
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ISOTROPIC HYPERELASTICITY ON THE BODY
AN INTRINSIC REFORMULATION OF ISOTROPIC HYPERELASTICITY ON THE BODY

Theorem
Given a reference configuration p0 and 𝛾0 = p*0 q, local isotropic
hyperelasticity recasts on the body using the functional

H𝛾0(𝛾) =

∫︁
ℬ

2𝜓(𝛾)𝜇,

where 𝜓(𝛾) = ̃︀𝜓(I1, I2, I3) and Ik = tr(𝛾−1
0 𝛾)k. We have then

dℋ𝛾0 .𝛿𝛾 = G𝜇
𝛾(𝛾

−1𝜃𝛾−1, 𝛿𝛾) =

∫︁
ℬ
(𝜃 : 𝛿𝛾)𝜇,

where
𝜃 = 2

𝜕𝜓

𝜕𝛾
.
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RECOVERING HYPERELASTICITY ON A CONFIGURATION

On the reference configuration (Ω0 = p0(ℬ) = 𝜙−1(Ω))

S = 2
𝜕𝜓

𝜕C

{︃
S = p*𝜃 = 𝜙*𝜏 = F−1

𝜙 (𝜏 ∘ 𝜙)F−⋆
𝜙

C = p*𝛾 = 𝜙*q = F⋆
𝜙qF𝜙

(S: second Piola–Kirchhoff stress tensor, C: right Cauchy–Green tensor)

On the deformed configuration (Ω = p(ℬ)) – Doyle–Ericksen formula

𝜏 = 2
𝜕𝜓

𝜕q

{︃
𝜏 = p*𝜃
q = p*𝛾

(𝜏 = 𝜎/𝜌: Kirchhoff stress tensor, q: Euclidean metric)
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DIFFERENTIAL FORMS ON THE CONFIGURATION SPACE

A zero-form on Emb(ℬ, ℰ) is a smooth functional

ℒ : p ↦→ ℒ(p), p ∈ Emb(ℬ, ℰ).

A one-form on Emb(ℬ, ℰ) is a continuous linear functional

𝒲p(𝛿p), p ∈ Emb(ℬ, ℰ), 𝛿p ∈ C∞(ℬ, ℰ)

depending smoothly on p.

A two-form on Emb(ℬ, ℰ) is a skew-symmetric continuous bilinear
functional

𝒦p(𝛿1p, 𝛿2p), p ∈ Emb(ℬ, ℰ), 𝛿kp ∈ C∞(ℬ, ℰ)

depending smoothly on p.
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VIRTUAL WORK PRINCIPLE AS THE VANISHING OF A ONE-FORM

Virtual work principle (no dynamics) states that

𝒫 int(w) + 𝒫ext(w) = 0,

for all kinematic admissible virtual displacement w.

Both
𝒫 int = −𝒲 int and 𝒫ext = −𝒲ext

may involve various one-forms 𝒲k.

Once recast on the body, using pull-back, each work 𝒲k is interpreted as
a one-form on Emb(ℬ, ℰ) and the Virtual work principle recast as∑︁

k

𝒲k
p(𝛿p) = 0, W = 𝛿p,

for all (p, 𝛿p) satisfying certain non-holonomic conditions.
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VIRTUAL WORK PRINCIPLE AS THE VANISHING OF A ONE-FORM

Virtual work principle (no dynamics) states that

𝒫 int + 𝒫ext = 0.

Both
𝒫 int = −𝒲 int and 𝒫ext = −𝒲ext

may involve various one-forms 𝒲k.

Once recast on the body, using pull-back, each work 𝒲k is interpreted as
a one-form on Emb(ℬ, ℰ) and the Virtual work principle recast as∑︁

k

𝒲k
p = 0,

for all (p, 𝛿p) satisfying certain non-holonomic conditions.
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POTENTIAL FORMULATION
WHEN VIRTUAL WORKS CORRESPOND TO EXACT ONE-FORMS

Virtual work principle, once recast on the body, involves various
differential one-forms

𝒲k defined on Emb(ℬ, ℰ),

If each involved one-form 𝒲k is exact, meaning that

𝒲k = dℒk,

then, each solution of the mechanical problem is a critical point of the
functional

ℒ :=
∑︁

k

ℒk.
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VIRTUAL WORK OF INTERNAL FORCES
FOR HYPERELASTICITY

𝒫 int(w) = −𝒲 int(w) = −
∫︁
Ω
(𝜎 : 𝜖) volq, 𝜖 :=

1
2
ℒw q

= −
∫︁
ℬ
(𝜃 :

1
2
𝛿𝛾)𝜇, p*𝜖 =

1
2
𝛿𝛾

= −1
2

dℋ𝛾0 .𝛿𝛾

Internal forces virtual work
𝒲 int recast on the body as the exact one-form

𝒲 int
p (𝛿p) =

1
2
𝛿H = 𝛿

∫︁
ℬ
𝜓 𝜇,

i.e., as the variation of the so-called hyperelastic energy.
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VIRTUAL WORK OF EXTERNAL FORCES

It has for general expression

𝒫ext = −𝒲ext = −𝒲ext,v −𝒲ext,s.

Here:

No exterior volume forces (gravitation/electromagnetism) involved.

We assume 𝒲ext,v = 0: we shall consider only boundary terms 𝒲ext,s.

Surface forces term: dead load DL + prescribed pressure P

𝒲ext,s(w) = −
∫︁
Σ

(DL)
0

(ttt0 · 𝛿𝜙) da0 +

∫︁
Σ(P)

P (w · n) da, (𝛿𝜙 = w ∘ 𝜙)

where

ttt0 (for dead load): a vector valued function defined on Σ
(DL)
0 ⊂ 𝜕Ω0,

P : pressure, a scalar function defined on Σ(P) ⊂ 𝜕Ω.
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PRESSURE VIRTUAL WORK

A prescribed pressure P is defined on the boundary part Σ(P) ⊂ 𝜕Ω and
induces the boundary condition

̂︀𝜎n|Σ(P) = −Pn.

Prescribed pressure virtual work

The virtual work of the pressure corresponds to the one-form −𝒲(P), where

𝒲(P)
p (𝛿p) =

∫︁
Σ(P)

P (w · n) da =

∫︁
Σ(P)

P iwvolq =

∫︁
Σ

(P)
ℬ

(P ∘ p)𝜔,

where 𝜔 is the two-form defined by

𝜔 = volq(𝛿p,F·,F·) i.e. 𝜔(A,B) = volq(𝛿p,FA,FB),

F = Tp, 𝛿p = w ∘ p and Σ
(P)
ℬ := p−1(Σ(P)) ⊂ 𝜕ℬ.
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REMARK : PRESSURE BOUNDARY TERMS ON Ω0

If we identify the body ℬ with a reference configuration Ω0, we have

p0 ≡ Id, p ≡ 𝜙, Σ
(P)
ℬ ≡ Σ

(P)
0 ⊂ 𝜕Ω0, F ≡ F𝜙, and 𝛿𝜉 ≡ 𝛿𝜙,

and thus∫︁
Σ

(P)
ℬ

(P ∘ p) volq(𝛿p,F·,F·) =
∫︁
Σ

(P)
0

(P ∘ 𝜙) volq(𝛿𝜉,F𝜙·,F𝜙·).

Now, since
volq(𝛿𝜉,F𝜙·,F𝜙·) = J𝜙F𝜙

−1𝛿𝜉 · n0 da0,

we recover the well-known expression of the pressure virtual work on Ω0,

−
∫︁
Σ(P)

P (w · n) da = −
∫︁
Σ

(P)
0

(P ∘ 𝜙) J𝜙F−1
𝜙 𝛿𝜉 · n0 da0, J𝜙 = detF𝜙.
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POINCARÉ LEMMA
An exact differential form 𝛼 = d𝛽 on U is always closed d𝛼 = 0 (d ∘ d = 0),
but the converse is false in general.
Poincaré lemma asserts that the converse is true when U is convex.

Lemma (Poincaré)

Let U ⊂ R3 be a convex open set. If 𝛼 ∈ Ωk(U) is closed (d𝛼 = 0),
then 𝛼 is exact (𝛼 = d𝛽 for some 𝛽 ∈ Ωk−1(U)).

The proof of Poincaré lemma is constructive. It relies on the explicit definition
of a linear operator K : Ωk+1(U) → Ωk(U), the Poincaré integrator, such that

Kd + dK = id.

Explicit solution of the problem
An explicit primitive 𝛽 of 𝛼 is then 𝛽 = K𝛼 since

d𝛽 = d(K𝛼) = 𝛼− K(d𝛼) = 𝛼, if d𝛼 = 0.

K(d𝛼) is called the obstruction for 𝛽 to be a primitive of 𝛼.
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POINCARÉ LEMMA IN INFINITE DIMENSION

The Poincaré integrator K is still meaningful in infinite dimension, in
particular, for variational problems in finite strains.
In this setting

I f is replaced by a functional ℒ and its exterior derivative

(df )i = 𝜕i f ,

corresponds to the first variation of ℒ

(dℒ)p(𝛿p) = 𝛿ℒ.

I 𝛼 is replaced by a virtual work 𝒲 and its exterior derivative

(d𝛼)ij = 𝜕i𝛼j − 𝜕j𝛼i

corresponds to the skew symmetric part of the first variation of
𝒲 = 𝒲p(𝛿p)

(d𝒲)p(𝛿1p, 𝛿2p) = 𝛿1(𝒲p(𝛿2p))− 𝛿2(𝒲p(𝛿1p)).
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THE POINCARÉ INTEGRATOR K

The Poincaré integrator for a one-form 𝒲 (virtual work) is defined as

(K𝒲)(p) =
∫︁ 0

−∞
et𝒲𝜑t(p)(𝜉(p)) dt

on the convex set 𝒰p0 , and where

𝜑t(p) = etp + (1 − et)p0

is the flow of the radial field 𝜉(p) = p − p0 (the displacement).

The obstruction for ℒ to be a primitive of 𝒲 is

K(d𝒲)(𝛿p) =
∫︁ 0

−∞
e2t(d𝒲)𝜑t(p)(𝜉(p), 𝛿p) dt ̸= 0.
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THE TWO CASES: d𝒲 = 0 OR d𝒲 ≠ 0

If 𝒲 is closed (d𝒲 = 0), then, a potential for 𝒲

ℒ(p) = (K𝒲)(p) =
∫︁ 0

−∞
et𝒲𝜑t(p)(𝜉(p)) dt

is obtained locally, using the Poincaré integrator.

If 𝒲 is not closed (d𝒲 ≠ 0), then,

dℒ = 𝒲 − K(d𝒲),

and the condition

K(d𝒲)(𝛿p) =
∫︁ 0

−∞
e2t(d𝒲)𝜑t(p)(𝜉(p), 𝛿p) dt = 0,

is a non-holonomic constraint required for 𝒲 = dℒ.
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DEAD LOADS VIRTUAL WORK IS CLOSED

The corresponding one-form defined on Emb(ℬ, ℰ) is written

𝒲(DL)
p (𝛿p) = −

∫︁
Σ

(DL)
ℬ

(𝛿p · ttt0 ∘ p0) da𝛾0 .

This form is obviously closed, since it does not depend explicitly on p.

A potential for dead loads

A potential ℒ(DL)(p) exists always for dead loads and is given by

ℒ(DL)(p) = −
∫︁
Σ

(DL)
ℬ

((p − p0) · ttt0 ∘ p0) da𝛾0 .
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PRESSURE VIRTUAL WORK IS NOT CLOSED
Assuming P = 1, we get

𝒲(P)
p (𝛿p) =

∫︁
Σ(P)

(w · n) da =

∫︁
Σ

(P)
ℬ

volq(𝛿p,F·,F·)

Lemma
The differential form

𝒲(P)
p (𝛿p) =

∫︁
Σ

(P)
ℬ

volq(𝛿p,F·,F·)

defined on Emb(ℬ, ℰ) is not closed. Its exterior derivative is written(︁
d𝒲(P)

)︁
p
(𝛿p1, 𝛿p2) =

∫︁
𝜕Σ

(P)
ℬ

(𝛿p2 × 𝛿p1) · F dℓℓℓℬ,

where dℓℓℓℬ = p*0 dℓℓℓ0 is the oriented length element on 𝜕Σ(P)
ℬ .
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A PRESSURE POTENTIAL UNDER NON-HOLONOMIC CONSTRAINTS

Theorem
Let us consider the functional

ℒ(P)(p) =
1
6

∫︁
Σ

(P)
ℬ

2 volq(𝜉,F·,F·) + 2 volq(𝜉,F0·,F0·)

+ (volq(𝜉,F·,F0·) + volq(𝜉,F0·,F·))

where 𝜉(p) := p − p0 is the displacement field. Then(︁
dℒ(P)

)︁
p
(𝛿p) = 𝒲(P)

p (𝛿p) +
1
6

∮︁
𝜕Σ

(P)
ℬ

(𝜉 × 𝛿𝜉) · (2F + F0)dℓℓℓℬ.

In particular, the condition for the functional ℒ(P) to be a primitive of 𝒲(P) is
thus ∮︁

𝜕Σ
(P)
ℬ

(𝜉 × 𝛿𝜉) · (2F + F0)dℓℓℓℬ = 0.
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PEARSON–SEWELL POTENTIAL AND BEATTY CONDITIONS
ON THE REFERENCE CONFIGURATION

First formulation (in components) of a pressure potential: Pearson (1956)
(then Sewell (1965, 1967)). Intrinsic expression (with typos): Beatty (1970).

Corrected expression

ℒ(P)(𝜙) =
P
3

∫︁
Σ0

(︂
J𝜙F𝜙

−1 𝜉 +
1
2

(︁
(trF𝜙)𝜉 − F𝜙𝜉

)︁
+ 𝜉

)︂
· n0 da0,

where 𝜉 = 𝜙− Id.

This expression corresponds to the case of the body ℬ identified with a
reference configuration Ω0, embedded in Euclidean space ℰ ,

Σℬ = Σ0, p ≡ 𝜙, F0 ≡ Id, F ≡ F𝜙, 𝜉 ≡ 𝜙− Id.
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NON-HOLONOMIC CONSTRAINTS
ON THE REFERENCE CONFIGURATION

Optimal non-holonomic constraints
When formulated on the body ℬ, our constraint recasts on Ω0 as∮︁

𝜕Σ
(P)
0

(𝜉 × 𝛿𝜉) · (2F𝜙 + Id)dℓℓℓ0 = 0, 𝜉 = 𝜙− Id. (1)

This is an improvement compared to the two Beatty conditions∮︁
𝜕Σ

(P)
0

(𝜉 × 𝛿𝜉) · dℓℓℓ0 = 0 and
∮︁
𝜕Σ

(P)
0

(𝜉 × 𝛿𝜉) · F𝜙dℓℓℓ0 = 0, (2)

which are stronger since (2) implies (1), but the converse does not hold.
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SUMMARY

Solutions of the full mechanical problem (hyperelasticity + dead loads +
prescribed pressure) have been recast as critical points of the functional

ℒ(p) =
∫︁
ℬ
𝜓 𝜇−

∫︁
Σ

(DL)
ℬ

(𝜉 · ttt0 ∘ p0) da𝛾0 +
∑︁

k

ℒ(Pk)(p),

where

ℒ(Pk)(p) =
Pk

6

∫︁
Σ

(Pk)
ℬ

2 volq(𝜉,F·,F·) + 2 volq(𝜉,F0·,F0·)

+ (volq(𝜉,F·,F0·) + volq(𝜉,F0·,F·)) ,

under non-holonomic constraints (kinematic admissible virtual displacements)∮︁
𝜕Σ

(Pk)
ℬ

(𝜉 × 𝛿𝜉) · (2F + F0)dℓℓℓℬ = 0.
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CONCLUSION

We have formulated directly on the body ℬ, a three-dimensional compact
and orientable manifold with boundary (equipped with a mass measure),
and not necessarily embedded as a reference configuration in space,

I hyperelasticity as a variational problem,
I the dead load and pressure types boundary conditions on 𝜕ℬ.

The Poincaré lemma (extended to infinite dimension) has allowed us to
obtain in a straightforward manner both the pressure potential and
optimal non-holonomic constraints for such a potential to exist.

The proposed methodology is based on the interpretation of virtual
works as one-forms on the configuration space Emb(ℬ, ℰ). It is general
and can be applied to many others situations.
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INTÉGRATION DU PROBLÈME D’HYPO-ÉLASTICITÉ

Interprétation géométrique
Le problème d’hypo-élasticité se reformule (sur le body ℬ) sous la forme
géométrique

(∇𝜕t𝛾𝒫) (𝜖) = ℋ(𝜕t𝛾, 𝜖), où

𝒫(𝜖) =

∫︁
ℬ
(p*𝜏 : 𝜖)𝜇, et ℋ(𝜕t𝛾, 𝜖) =

∫︁
ℬ
(𝜖 : H : 𝜕t𝛾)𝜇,

𝒫 désignant la puissance virtuelle des efforts intérieurs et H, un champ de
tenseurs covariants d’ordre 2 sur Met(ℬ).

La question posée se résume donc à savoir

si le champ de tenseurs ℋ correspond
à la dérivée covariante d’une 1-forme 𝒫𝛾

(i.e. une loi de comportement élastique).
Les conditions d’intégrabilité sont connues.
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INTÉGRATION DU PROBLÈME D’HYPO-ÉLASTICITÉ
INTERPRÉTATION GÉOMÉTRIQUE

On peut étudier numériquement la dépendance de l’intégration au
chemin de chargement. Il est clair que si cette intégration dépend du
chemin, alors 𝒫 n’existe pas !
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Mécanique des grandes transformations.
Springer-Verlag, Berlin, 1997.

W. Noll
A general framework for problems in the statics of finite elasticity.
Int. Symp. on Continuum Mechanics & Partial Differential Equations, Elsevier, 363–387, 1978.

M. Epstein & R. Segev.
Differentiable manifolds and the principle of virtual work in continuum mechanics.
Journal of Mathematical Physics, 21(5):1243–1245, 1980.

P. Rougée.
An intrinsic Lagrangian statement of constitutive laws in large strain.
Computers & Structures, 84(17-18):1125–1133, 2006.

B. Kolev & R. Desmorat.
An intrinsic geometric formulation of hyperelasticity, pressure potential and non-holonomic
constraints.
Journal of Elasticity, 146:29-63, 2021.

B. Kolev & R. Desmorat (LMPS) Pressure Potential and Non-Holonomic ConstraintsRencontres du GDR GDM Paris, 22 février 2023 50 / 50


	Introduction
	The geometric framework of finite strains
	Intrinsic Geometric Formulation of Hyper-Elasticity
	Virtual works as one-forms on the configuration space
	Existence of potentials and non-holonomic constraints
	Appendix
	Appendix
	Lectures complémentaires



