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1.1 La mécanique du contact

• Nécessaire de prendre en compte les phénomènes
d’impact afin de pour garantir la fiabilité et la sécurité
des équipements

• Disposer de méthodes numériques fiables, robustes et
physiquement cohérentes pour simuler correctement
les phénomènes d’impact

• Pour les composants assimilables à des structures
minces : il est essentiel de disposer de méthodes de
contact capables de traiter correctement ces
géométries particulières.

Image – Grappes de contrôle © Framatome



• Conditions de contact formulées par des inégalités et des équations non-linéaires

• Cadre mathématique des inéquations variationnelles

1.1 La mécanique du contact

+
Problème statique d’élasticité linéaire Conditions de contact (sans frottement)



1.1 La mécanique du contact 

❑ Problèmes ouverts (sauf cas particuliers) :

• Existence
• Unicité
• Stabilité et convergence des schémas numériques

S’assurer de la convergence du problème discrétisé vers le problème continu

❑ Méthodes de simulation numérique du contact :

• La méthode de pénalité
• Les méthodes Lagrangiennes
• Les méthodes de Nitsche



• Méthode de pénalité :

• Méthodes Lagrangiennes : 

N’autorise pas d’inter-pénétration :
Introduction d’un multiplicateur de Lagrange qui représente la réaction de contact

• Lagrangien pur : une inconnue supplémentaire  

• Lagrangien augmenté : algorithme itératif sur le multiplicateur de Lagrange pour faire 
respecter la contrainte de non-pénétration

𝑢𝑛 ≤ 𝑔 𝑖

𝜎𝑛 𝑢 ≤ 0 𝑖𝑖

𝜎𝑛 𝑢 𝑢𝑛 − 𝑔 = 0 𝑖𝑖𝑖

𝜎𝑡 𝑢 = 0 𝑖𝑣

𝜎𝑛 𝑢 = −𝐾𝑁 𝑔 − 𝑢𝑛 +

1.1 Les méthodes pour simuler numériquement le contact 

remplacées par

Autorise l’inter-pénétration : 
Introduction d’un « ressort » de rappel de raideur 𝐾𝑁



1.2 La méthode de Nitsche

Autre méthode : La méthode de Nitsche

𝑢𝑛 ≤ 0 𝑖

𝜎𝑛 𝑢 ≤ 0 𝑖𝑖

𝜎𝑛 𝑢 𝑢𝑛 − 𝑔 = 0 𝑖𝑖𝑖

𝜎𝑡 𝑢 = 0 𝑖𝑣

𝜎𝑛 𝑢 = 𝜎𝑛 𝑢 − 𝑟𝑢𝑛 ℝ−

Avantages : Consistance, indépendance au paramètre 𝑟 et convergences optimales :
Quand ℎ → 0, ℎ la taille de maille :

Théorème Chouly-Hild

∀𝑟 > 0, les conditions de contact 𝑖 − (𝑖𝑖𝑖) sont équivalentes à

Pénalité Nitsche

Contact élastique/rigide convergence au mieux en 𝑂(ℎ)
avec ℎ = 1/𝐾𝑁 ! 
[2] Chouly, Hild, 2012

convergence en 𝑂(ℎ)
[1] Chouly, Hild, 2013

Contact élastique/élastique convergence au mieux 𝑂 ℎ
[3] Stenberg, 2024

convergence en 𝑂(ℎ)
[3] Stenberg, 2024

[1] Chouly, Hild, 2013

𝑎 ℝ− ≔ min(𝑎, 0)



1.2 La méthode de Nitsche
𝑎 ℝ− ≔ min(𝑎, 0)

Formulation variationnelle du problème 3D :

Où Θ ∈ ℝ est un paramètre fixé utilisé pour obtenir différentes variantes (Chouly et Al. [5])

• Θ = 1 : méthode symétrique qui dérive d’un potentiel d’énergie
• Θ = 0 : Méthode simple proche de la pénalité et du lagrangien augmenté
• Θ = −1 : Version antisymétrique. Une unique solution et méthode qui converge ∀ 𝐫.

Contact de Nitsche



Pourquoi n’est-elle pas plus utilisée dans les modèles numériques de calculs industriels ?

• Besoin de précision → dilemmes liés aux temps de calculs prohibitifs
• Recours à des modèles de structures élancées (poutres, plaques, coques)

Problème : les grandeurs d’intérêt (déplacements, contraintes) que la méthode de Nitsche délivre
proviennent de l’utilisation d’un tenseur de contraintes 3D

avec 𝜎𝑛 𝑢 = 𝜎 𝑢 𝑛 ⋅ ത𝑛 la composante normale des densités
de forces

En structures élancées :
pas de notion d’épaisseur !

1.2 La méthode de Nitsche

𝜎𝑛 𝑢 = 𝜎𝑛 𝑢 − 𝑟𝑢𝑛 ℝ−



2. Objectifs de la thèse

Objectif : Réaliser l’extension des méthodes de Nitsche aux structures minces

Travaux préliminaires sur les plaques (Fabre et al, 2021 [4])

Travail à réaliser pour les poutres et pour les coques

Méthodologie :

• Appliquer les hypothèses cinématiques de différents modèles de structures élancées
→ Richesse du contact de Nitsche conservée ?

• Le cas échéant→ enrichir la cinématique des modèles de structures minces



2.1 Modèle de Timoshenko

Hypothèses cinématiques :

Hypothèse sur le tenseur des contraintes :

Tenseur anti-plan :

𝜎 =

𝜎𝑥𝑥 𝜎𝑥𝑦 𝜎𝑥𝑧
𝜎𝑥𝑦 0 0

𝜎𝑥𝑧 0 0

Pas de contraintes dans l’épaisseur de la structure



2.1 Modèle de Timoshenko

Principe variationnel d’Hellinger-Reissner :

𝑯𝑹𝟏 𝝈𝒊𝒋, 𝒖𝒊 = න
𝛀

𝝈𝒊𝒋𝜺𝒊𝒋 −
𝟏

𝟐
𝝈𝒊𝒋ℂ𝒊𝒋𝒌𝒍𝝈𝒌𝒍 𝒅𝛀 −න

𝛀

𝒃𝒊𝒖𝒊𝒅𝛀−න
𝝏𝛀

𝒍𝒊𝒖𝒊𝒅𝝏𝛀



2.1 Modèles classiques de poutres avec Nitsche

Formulation variationnelle d’une poutre de Timoshenko avec contact de Nitsche :

Le modèle n’est pas cinématiquement suffisamment riche (𝜎𝑦𝑦 = 𝜎𝑧𝑧 = 0) pour appliquer la

méthode de Nitsche

Contact pénalisé



2.2 Modèle de « Timoshenko-enrichi »

Proposition : enrichir le modèle avec une notion de « pincement »

• Ajout de déplacements dans la section

• → Déformations 𝜀𝑦𝑦 et 𝜀𝑧𝑧 non nulles (dans l’épaisseur)

• Hypothèse supplémentaire : le tenseur des contraintes n’est plus anti-plan

𝜎 =

𝜎𝑥𝑥 𝜎𝑥𝑦 𝜎𝑥𝑧
𝜎𝑥𝑦 0 0

𝜎𝑥𝑧 0 0
𝜎 =

𝜎𝑥𝑥 𝜎𝑥𝑦 𝜎𝑥𝑧

𝜎𝑥𝑦 𝜎𝑦𝑦
0 0

𝜎𝑥𝑧 0 𝜎𝑧𝑧
0



2.2 Modèle de « Timoshenko-enrichi »
Principe variationnel d’Hellinger-Reissner



2.2 Modèle de « Timoshenko-enrichi »
Principe variationnel d’Hellinger-Reissner

Deux nouvelles équations d’équilibre



2.2 Modèle de « Timoshenko-enrichi »
Principe variationnel d’Hellinger-Reissner

Deux nouvelles équations d’équilibre

Couplage dû aux 
effets de Poisson



2.2 Modèle de « Timoshenko-enrichi »

En réalité, il est nécessaire de faire une hypothèse supplémentaire sur les contraintes dans
l’épaisseur :

𝜎𝑦𝑦
0 et 𝜎𝑧𝑧

0 constantes dans la section

• Sans cette hypothèse → méthode de Galerkin pure qui sous-estime l’énergie de déformation
Raideur du modèle trop élevée

• Avec cette hypothèse : on récupère les bonnes raideurs du modèle de Timoshenko et on valide
les benchmarks : traction pure, flexion pure, torsion pure ET pincement pur

Conclusion :
• Enrichissement cinématique seul → raideurs théoriques surestimées
• Nécessaire de considérer une formulation mixte (primale–duale) afin de retrouver les bonnes

raideurs.



Formulation variationnelle d’une poutre de Timoshenko-enrichi avec contact de Nitsche :

2.2 Modèle de « Timoshenko-enrichi » avec Nitsche

Contact de Nitsche



2.3 Résultats numériques

Pour comparer les modèles : 

→Reconstruction sur le maillage 3D d’une solution référence 3D (Lagrangien augmenté proximal / P2)

1. Erreur relative sur les composantes de déformations décrites par le modèle de Timoshenko

2. Erreur relative sur la densité linéique de contact 

• Résultats avec la méthode de Nitsche : Θ = −1

• Différents rapports d’élancement 
𝐿

𝜀𝑡
(poutre mince / poutre épaisse)



2.3 Résultats numériques – Appui / obstacle parabolique

Structure en appui simple sur un obstacle parabolique
Force surfacique sur la face supérieure. Ici 𝑙𝑦 = −102 𝑀𝑃𝑎

𝐿

𝜀𝑡
= 10



2.3 Résultats numériques – Appui / obstacle parabolique

Structure en appui simple sur un obstacle parabolique
Force surfacique sur la face supérieure. Ici 𝑙𝑦 = −102 𝑀𝑃𝑎

Déformations :

𝐿

𝜀𝑡
= 10



2.3 Résultats numériques – Appui / obstacle parabolique

Structure en appui simple sur un obstacle parabolique
Force surfacique sur la face supérieure. Ici 𝑙𝑦 = −102 𝑀𝑃𝑎

Densité linéique de contact :

𝐿

𝜀𝑡
= 10



2.3 Résultats numériques – Appui / obstacle parabolique

Structure en appui simple sur un obstacle parabolique
Force surfacique sur la face supérieure. Ici 𝑙𝑦 = −103 𝑀𝑃𝑎

𝐿

𝜀𝑡
= 10



2.3 Résultats numériques – Appui / obstacle parabolique

Structure en appui simple sur un obstacle parabolique
Force surfacique sur la face supérieure. Ici 𝑙𝑦 = −103 𝑀𝑃𝑎

Déformations :

𝐿

𝜀𝑡
= 10



2.3 Résultats numériques – Appui / obstacle parabolique

Structure en appui simple sur un obstacle parabolique
Force surfacique sur la face supérieure. Ici 𝑙𝑦 = −103 𝑀𝑃𝑎

Densité linéique de contact :

𝐿

𝜀𝑡
= 10



2.3 Résultats numériques – Appui / obstacle parabolique

Conclusions :

Plus le pincement est sollicité, plus l’intérêt du modèle enrichi est 
visible

𝚯 = −𝟏 : Très faible dépendance au paramètre 𝑟 ≠ pénalité

Cohérent avec la littérature sur la méthode de Nitsche [1,5]

Avec Θ = 1, pour un 𝑟 suffisamment grand, on trouve les mêmes 
résultats qu’avec la variante antisymétrique



2.3 Résultats numériques – Poutre encastrée / obstacle plan

Structure bi-encastrée en contact avec un obstacle plan
• Force surfacique sur la face supérieure très importante
• Poutre épaisse

𝐿

𝜀𝑡
= 10



2.3 Résultats numériques – Poutre encastrée / obstacle plan

Structure bi-encastrée en contact avec un obstacle plan
• Force surfacique sur la face supérieure très importante
• Poutre épaisse

Déformations :

𝐿

𝜀𝑡
= 10



2.3 Résultats numériques – Poutre encastrée / obstacle plan

Structure bi-encastrée en contact avec un obstacle plan
• Force surfacique sur la face supérieure très importante
• Poutre épaisse

Densité linéique de contact :

𝐿

𝜀𝑡
= 10



2.3 Résultats numériques – Poutre encastrée / obstacle plan

Structure bi-encastrée en contact avec un obstacle plan
• Force surfacique sur la face supérieure modérée
• Poutre mince

𝐿

𝜀𝑡
= 100



2.3 Résultats numériques – Poutre encastrée / obstacle plan

Structure bi-encastrée en contact avec un obstacle plan
• Force surfacique sur la face supérieure modérée
• Poutre mince

Déformations :

𝐿

𝜀𝑡
= 100



2.3 Résultats numériques – Poutre encastrée / obstacle plan

Structure bi-encastrée en contact avec un obstacle plan
• Force surfacique sur la face supérieure modérée
• Poutre mince

Densité linéique de contact :

𝐿

𝜀𝑡
= 100



2.3 Résultats numériques – Poutre encastrée / obstacle plan

Conclusions :

Si le rapport d’élancement augmente → le modèle de Timoshenko 
tend vers le modèle de Timoshenko enrichi (cohérent et attendu)

Toujours faible dépendance des résultats au paramètre 𝑟 pour Θ = −1



2.3 Résultats numériques – Conclusions

❑ Rapports d’élancement faibles, pincement sollicité
→ Intérêt du modèle enrichi

❑ Poutres minces, peu sollicitées en pincement,
deux modèles très proches si :
• 𝐫 est bien choisi : la pénalité donne de bons

résultats en déformations
• Même si les déformations sont très proches,

le modèle enrichi est plus précis sur la densité
linéique de contact

❑ Θ = −1 : les résultats dépendent très peu de 𝑟
contrairement à la pénalité

Objectifs :

• développer des modèles qui tiennent
compte de l’élasticité de la structure
« intrinsèquement »

• Qui dépendent peu du choix de
paramètres numériques

• Ou qui, le cas échéant, soient plus
précis sur les grandeurs d’intérêt



2.3 Résultats théoriques

Objectifs : retrouver les avantages théoriques / numériques de la méthode de Nitsche

• Consistance 
• Aspect bien-posé

• Convergences optimales 

Travail en cours… 



2.3 Conclusion et perspectives

Perspectives :

Chez Framatome :
les poutres sont des tubes !
→ Nécessaire de prendre en

compte les phénomènes
d’ovalisation

Réaliser le même travail sur
des modèles de coques
enrichis avec pincement ?

Conclusions :

• Notre modèle enrichi permet de retrouver la richesse du contact de Nitsche
• Modèle enrichi particulièrement pertinent lorsque le pincement est sollicité
• Faible dépendance au paramètre 𝑟 en accord avec la littérature sur Nitsche

Thèse Youri Pascal-Abdellaoui  
« Modèles mécaniques de 

poutre enrichis pour la 
simulation de tubes minces 

sous pression »
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