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1.1 La mécanique du contact

* Nécessaire de prendre en compte les phénomeénes
d’impact afin de pour garantir la fiabilité et la sécurité
des équipements

* Disposer de méthodes numeériques fiables, robustes et
physiguement cohérentes pour simuler correctement
les phénomenes d’impact

* Pour les composants assimilables a des structures
minces : il est essentiel de disposer de méthodes de
contact capables de traiter correctement ces
géomeétries particulieres.

Image — Grappes de controle © Framatome
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1.1 La mécanique du contact

* Conditions de contact formulées par des inégalités et des équations non-linéaires

—dive(u) =b dans Q°,

c(un=2~¢ surly, I
u=20

sur I'p,

-—— e——
Probleme statique d’élasticité linéaire

 Cadre mathématique des inéquations variationnelles

framatome

Conditions de contact (sans frottement)
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1.1 La mécanique du contact

J Problémes ouverts (sauf cas particuliers) :

* Existence

* Unicité

e Stabilité et convergence des schémas numeériques

S’assurer de la convergence du probleme discrétisé vers le probleme continu
d Méthodes de simulation numérique du contact :

 La méthode de pénalité

 Les méthodes Lagrangiennes
 Les méthodes de Nitsche

These Matthieu SCHORSCH - 18 novembre 2025
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1.1 Les méthodes pour simuler numériguement le contact

up < g (D) e
o, () < 0 (if) remplacées par
. — — _K -
0 () (ty, — ) = 0 (i) ) = THlg Tl
or(u) = 0 (iv)
Autorise I.’intet—pénétration: | s\ \\\\:\3\\\\%1
Introduction d’un « ressort » de rappel de raideur Ky Wﬁw,

 Méthodes Lagrangiennes :

« Méthode de pénalité :

N’autorise pas d’inter-pénétration :
Introduction d’un multiplicateur de Lagrange qui représente la réaction de contact

e Lagrangien pur : une inconnue supplémentaire

e Lagrangien augmenté : algorithme itératif sur le multiplicateur de Lagrange pour faire
respecter la contrainte de non-pénétration

These Matthieu SCHORSCH - 18 novembre 2025
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[a]g- = min(a, 0)

1.2 La méthode de Nitsche

Autre méthode : La méthode de Nitsche

u, <0 (i) Vr > 0, les conditions de contact (i) — (iii) sont équivalentes a

<0 (ii
an(u)(un — g) = 0 (iit) Théoreme Chouly-Hild [1] Chouly, Hild, 2013

o.(u) =0 (iv)

Avantages : Consistance, indépendance au parameétre r et convergences optimales :
Quand h — 0, h la taille de maille :

Pénalité Nitsche

Contact élastique/rigide convergence au mieux en O (h) convergence en O (h)
avec h = 1/KN I [1] Chouly, Hild, 2013
[2] Chouly, Hild, 2012

Contact élastique/élastique convergence au mieux 0(\/%) convergence en O(h)
[3] Stenberg, 2024 [3] Stenberg, 2024

These Matthieu SCHORSCH - 18 novembre 2025
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[a]g- = min(a, 0)

1.2 La méthode de Nitsche

Formulation variationnelle du probleme 3D :
V= {v = (HI(QE))3 | v=0sur FD}

(Trouver u € V, tel que pour tout ve V

® |
/ o(u):g(v)dQf— = [ o,(u)o,(v)dl'c+= [ [o,(u)+ru,lp (©c,(v)—rv,)dl¢| Contact de Nitsche
E F JI'¢ F JI'¢

P

= [ bvdQf+ [ £vdly.
\ Q¢ I,

Ou O € R est un parametre fixé utilisé pour obtenir différentes variantes (Chouly et Al. [5])

e O =1:méthode symétrique qui dérive d’'un potentiel d’énergie
e O = 0:Méthode simple proche de la pénalité et du lagrangien augmenté
e © = —1:Version antisymétrique. Une unique solution et méthode qui converge V r.

These Matthieu SCHORSCH - 18 novembre 2025
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1.2 La méthode de Nitsche

Pourguoi n’est-elle pas plus utilisée dans les modeles numériques de calculs industriels ?

* Besoin de précision — dilemmes liés aux temps de calculs prohibitifs
* Recours a des modeles de structures élancées (poutres, plaques, coques)

Probleme : les grandeurs d’intérét (déplacements, contraintes) que la méthode de Nitsche délivre
proviennent de 'utilisation d’un tenseur de contraintes 3D

avec g,(u) = (c(u)n) - n la composante normale des densités

On (u) — [Un(u) - run][R_
de forces

ffffffffffffffffffffffffff mid-plane © En structures élancées :

L pas de notion d’épaisseur !
lower boundary I'=.

/ """
n p
These Matthieu SCHORSCH - 18 novembre 2025 10
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2. Objectifs de la these

Objectif : Réaliser I'extension des méthodes de Nitsche aux structures minces
Travaux préliminaires sur les plaques (Fabre et al, 2021 [4])

Travail a réaliser pour les poutres et pour les coques

Méthodologie :

* Appliguer les hypotheses cinématiques de différents modeles de structures élancées
- Richesse du contact de Nitsche conservée ?

* Le cas échéant = enrichir la cinématique des modeles de structures minces

These Matthieu SCHORSCH - 18 novembre 2025
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2.1 Modele de Timoshenko

Hypotheses cinématiques :

Uz(Z,Y, 2) = wa(z) + 204(z) — y0(x),
uy (2, y, ) = wy (x) — 0,(x),
uz(x,y,2) = wy(x) + yb(x).

Hypotheése sur le tenseur des contraintes :

Tenseur anti-plan :

Pas de contraintes dans I'épaisseur de la structure

framatome

O-x X

| Oxz

Oxy Oxz|
0 0
0 0

z Euler-Bernoulli

Timoshenko

C1

These Matthieu SCHORSCH - 18 novembre 2025
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2.1 Modele de Timoshenko

Principe variationnel d’Hellinger-Reissner :

framatome

HR1(o;j,u;) = L(

1

0ij€ij — 5 04 Ciji1 Ok

) dQ — f b,-u,-dﬂ — liuida.Q
Q aQ

Table 1: Equations for Timoshenko beam theory

Type Momentum balance  Strain-displacement  Constitution
. ON dw,
1. Axial: —+q, =0; £ = : N = FAe
ox dx
2. Torsion: 0 ai M, =G (I, +I,)
. Torsion: a%if + my = 0; Xm—ddmj r =G Iy + 1) Xz
. w
3. Bending: a—; + gy = 0; Yy = d—; —0.; Qy = GAyyy
oM, Q 0 49: M, = EI
8%17 + y+mz— ; Xz—ddm: z = 2 Xz
w
a:: q. = 0; Yz = dﬂ: + gya Q. =G.A.y.
oM, df,
S~ Qatmy =0, xy=—5 M, = EI,x,

These Matthieu SCHORSCH - 18 novembre 2025
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2.1 Modeles classiques de poutres avec Nitsche

Formulation variationnelle d’'une poutre de Timoshenko avec contact de Nitsche :

Vr:={ (8w,80) € (H'(Q,R))° | (8w,80) = (0,0) on I'p }

(Trouver (w,0) € V7 tel que pour tout (w,30) € V7
L dow, doo doe doo,
| (v
0

M, (8) —— + M, (8) —= + M,

N

ds ddw.
+Qy(w,e)( d;"yaez) +Qz(w,6)( dlf —I—Bey))dx

fre, / [yl - Swydlc
I'c

Contact pénalisé

L
- /0 W+ qySwy + g 3w, + m, 88, + m. 36, + m,36,] dx

Le modele n’est pas cinématiquement suffisamment riche (0, = g,, = 0) pour appliquer la
méthode de Nitsche

framatome



2.2 Modele de « Timoshenko-enrichi »

Proposition : enrichir le modele avec une notion de « pincement »

* Ajout de déplacements dans la section

* — Deéformations ¢y, et €,, non nulles (dans I'épaisseur)

Uz (2, Yy, 2) = wy(x) — yb, () + 20, (x),
uy(xayaz) — wy(x) _ ngc(w) o

Uz(xaya Z) — 'wz(x) + y@m(.’l?) -

yo(z),

 Hypothese supplémentaire : le tenseur des contraintes n’est plus anti-plan

framatome

Jx X

| Oxz

Oxy Oxz |
0 0
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2.2 Modele de « Timoshenko-enrichi »

Principe variationnel d’Hellinger-Reissner

Table 4: Equations for pinch-informed Timoshenko beams with constant pinch stresses hypothesis

Type

Momentum balance

Strain-displacement

Constitution

1. Axial:
2. Torsion:

3. Bending:

4. Pinching:

gg =Y
oM., 0
8%{: + My 3
Y _

dx ey =0;
OM.
6%{; +Q, +m; = 0;
8%3} + qZ - 0:

6;’” P, + my, = 0;
oM,

E Py, +my, = 0;

dw,
T dz
df.,
Xz = dd—m;
Yy — % - 925
df.,
Xz = E;
dw.
V= = (Ciig Oy;
Xy = d_ﬂ?;
dp
XB = E;
do
Xa = a7

N =(A+2u)Ae — MN(a+ f)

M, =G, +1.) Xz

Qy = GAyvy

M, = EILX:

Q: = GAzv,

M, = El,x,

Mpy = =Glyxp

Aol = —(AN+2u)AB + N\A(e — )
M,. = —GI;Xxa

0 _
Aoy, = —(A+2p)Aa + NA(e — B)

framatome
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2.2 Modele de « Timoshenko-enrichi »

Principe variationnel d’Hellinger-Reissner

framatome

Table 4: Equations for pinch-informed Timoshenko beams with constant pinch stresses hypothesis

Type Momentum balance Strain-displacement  Constitution
1. Axial: 8N+ =0 _ W N=(\+2u)Ac — \A(a+ 7
. Axial: 5y T =0; e= 5 = (A +2p)Ae — AA(a + )
_ oM, dé..
2. Torsion: 92 +m, = 0; Xz = . M, =G, +1.) Xz
d dw
3. Bending: % +qy = 0; Yy = d—; —0:; Qy = GAyyy
oM, do,
Or + Qy +m, = 0; Xz = E; M, = EIzXz
0Q. dw.,
O + q: = 0: Yz = dr eyE Qz = GAZ"YZ
oM, df,
P Qz + My, = 0: Xy = E; My — EIyXy
oM d
4. Pinching: 6mpy P, +mp =0; xs= £; M,, = —GI,xz
Adl, = —(A+2u)AB + M(e — o)
oM, do
B P, +mp. =0; xo= s M,. = —GI.Xxa

0 _
Aoy, = —(A+2p)Aa + NA(e — B)

Deux nouvelles équations d’équilibre

These Matthieu SCHORSCH - 18 n
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2.2 Modele de « Timoshenko-enrichi »

Principe variationnel d’Hellinger-Reissner

framatome

Table 4: Equations for pinch-informed Timoshenko beams with constant pinch stresses hypothesis

Couplage di aux

effets de Poisson

Type Momentum balance Strain-displacement  Constitution
. ON dw,
1. Axial: 2 +q. = 0; €= N =(A+2u)Ae — A(a + B)
2. Torsion: O 4, =0 _ = M, =G (I,+1
. Torsion: 8%’3 My : Xz = dd—m, : =Gy + 1) Xa
: w
3. Bending: 6—; +qy = 0; Yy = d—; — 0 Qy = GAyyy
6UM""+Q +m, =0 _ 4 M, = EI
8%]9 Yy m; = Ui Xz = 5{—371 z = zXz
zZ wz
aﬂ: + (Iz 0: ’YZ - d’l,' + Qy: QZ - GAZF}(Z
oM, df,
P Qz + My, = 0: Xy = I; My — EIyXy
oM d
4. Pinching: 6.ﬁcpy P, +mp =0; xs= £; M,, = —GI,xz
Adl, = —(A+2u)AB + N(e — )
oMy _ 0 do M,. = —GI
6:1: Y + Mp 7 Xa = E: pz — — z X

0 _
AcS = —(A+2u)Aa + NA(e — B)

Deux nouvelles équations d’équilibre

These Matthieu SCHORSCH - 18 novembre 2025
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2.2 Modele de « Timoshenko-enrichi »

En réalité, il est nécessaire de faire une hypothese supplémentaire sur les contraintes dans
I’épaisseur :

0 0 :
dyy et g, constantes dans la section

e Sans cette hypothése = méthode de Galerkin pure qui sous-estime |'énergie de déformation
Raideur du modele trop élevée

* Avec cette hypothese : on récupere les bonnes raideurs du modele de Timoshenko et on valide
les benchmarks : traction pure, flexion pure, torsion pure ET pincement pur

Conclusion :

* Enrichissement cinématique seul - raideurs théoriques surestimées

* Nécessaire de considérer une formulation mixte (primale—duale) afin de retrouver les bonnes
raideurs.

These Matthieu SCHORSCH - 18 novembre 2025
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2.2 Modele de « Timoshenko-enrichi » avec Nitsche

Formulation variationnelle d’'une poutre de Timoshenko-enrichi avec contact de Nitsche :

Verr == { (8w,50,8p) € (H'(Q,R))* | (dw,58,5p) = (0,0,0) on [ }
[ Trouver (w,0,p) € Vpyr tel que pour tout (dw,30,0p) € Vpyr

L dow, doe, dde de,
/ (N(w) S ML(0) M) — 7+ M,(0)

dw, dw,
+Qy(Wp 9) E — Sez + QZ(W, 9) a_’_ Bey
dda dsp
Oe,,
— = |, O (w.6.p)o,(8w, 30, 3p)dlc

Contact de Nitsche

Ew
+ 2 [ (o0 (w,0,p) 4wy + %a)]_(@)csyy(aw, 56,3p) + r(dwy + %Soc)) dr'c
C

L
_ /0 (G SWs + Gy Sy + GO, + 1,00, -+ 1m0, -+ 11,80, + 1 S+ 1,y O] dx

\

These Matthieu SCHORSCH - 18 novembre 2025
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2.3 Résultats numériques

Pour comparer les modeles :
—>Reconstruction sur le maillage 3D d’une solution référence 3D (Lagrangien augmenté proximal / P2)

1. Erreur relative sur les composantes de déformations décrites par le modele de Timoshenko

\/u — 512 gy 2 (Il — 1 + ke — €522

|2+ 2 (1) + 21 )

2. Erreur relative sur la densité linéique de contact

| rel

le]

e Résultats avec la méthode de Nitsche : ® = —1
. ’7 ’I L . Vd .
» Différents rapports d’élancement = (poutre mince / poutre épaisse)
t

These Matthieu SCHORSCH - 18 novembre 2025
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2.3 Résultats numériques — Appui / obstacle parabolique

Structure en appui simple sur un obstacle parabolique
Force surfacique sur la face supérieure. Ici [, = —10?% MPa

— =10

Thése Matth ieu SCHORSCH — 18 novembre 2025
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2.3 Résultats numériques — Appui / obstacle parabolique

Structure en appui simple sur un obstacle parabolique () ——
Force surfacique sur la face supérieure. Ici [, = —10% MPa /_\
I'c

Déformations :
16.6 % - e 12.7 % >z — X
15.8 7 | 500K 3¢+ Hms =" il [ o
%'
e . 1 2000¢ 3=
L - —a =>(= TB, r = 0.1E /=, = 11.5 % alake
o 10 =X “©= PLTB, r = 0.1E/e; || 22
2 W W
10.1 % cE@eee—/ 9.9 % -
10"

101 10° 101
Mesh size [m]

framatome



2.3 Résultats numériques — Appui / obstacle parabolique

Structure en appui simple sur un obstacle parabolique
Force surfacique sur la face supérieure. Ici [, = —10?% MPa

Densité linéique de contact :

34.9 % PPOCHE - HH=HK=-=-X

L
L ok
o=
— =10 =
gt ,...é‘

14.4 % _WGW

=>(= TB, r = 0.1E /&4
“S= PI-TB, r = 0.1E/=¢

0.1

framatome

5-107"
Mesh size [m]

16.6 % 20X D6+ ===+
R (= TB, r = E/&;
= -S= PI-TB, r = E/=¢
~
11.4 % | |
0.1 5-1071

Mesh size [m]

These Matthieu SCHORSCH - 18 novembre 2025
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2.3 Résultats numériques — Appui / obstacle parabolique

Structure en appui simple sur un obstacle parabolique
Force surfacique sur la face supérieure. Ici [, = —103 MPa

— =10

Thése Matth ieu SCHORSCH — 18 novembre 2025
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2.3 Résultats numériques — Appui / obstacle parabolique

Structure en appui simple sur un obstacle parabolique () ——
Force surfacique sur la face supérieure. Ici [, = —103 MPa /_\
I'c

Déformations :

54.4 Yo THOOEIEIE D= H(==)mr ===+ X 49.4 Y0 )00EIE€ D= H(=-=)r == X
L ET, >(= TB, r = 0.1E/e¢ ;\1 =>(= TB, r = E/e¢
o 10 =S -©= PLTB, r = 0.1E /e || 25 =6~ PL.TB, r = E/e;
t W W
13.4 % W 12.2 % _@999‘9‘9"9—9/@
107? 10° 107" 10°

Mesh size [m)] Mesh size [m]

Thése Matt hieu SCHORSCH - 18 novembre 2025
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2.3 Résultats numériques — Appui / obstacle parabolique

Structure en appui simple sur un obstacle parabolique
Force surfacique sur la face supérieure. Ici [, = —103 MPa

Densité linéique de contact :

13.1 % 1 2000€3€ 3¢ - =(=-=) == x
L Bh (= TB, r = 0.1E /ey
— =10 — -== PI-TB, r = 0.1E /ey
gt ’éf
7.0 % 1GE0000-6—6—6—96

10~1 10

Mesh size [m)]

framatome

6.8 % -

Al ]

1

45%'%/

DOOHHEH N3 = ="

=>(= TB, r = E/e4
-~ PI-TB, r = E /e

0™+ 10°
Mesh size [m]

These Matthieu SCHORSCH - 18 novembre 2025
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2.3 Résultats numériques — Appui / obstacle para

Conclusions : Q
I'c
Plus le pincement est sollicité, plus I'intérét du modele enrichi est

oolique

visible
® = —1 : Tres faible dépendance au parametre r # pénalité

Cohérent avec la littérature sur la méthode de Nitsche [1,5]

Avec ® = 1, pour un r suffisamment grand, on trouve les mémes
résultats qu’avec la variante antisymétrique

framatome

These Matthieu SCHORSCH - 18 novembre 2025

28



2.3 Résultats numériques — Poutre encastrée / obstacle plan

Structure bi-encastrée en contact avec un obstacle plan
* Force surfacique sur la face supérieure tres importante

* Poutre épaisse

framatome

0.00

0.1
— 02
— 03

— 04

Displacement Y

— 05
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-0.70
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2.3 Résultats numériques — Poutre encastrée / obstacle plan

UL

Structure bi-encastrée en contact avec un obstacle plan

* Force surfacique sur la face supérieure tres importante Tc
* Poutre épaisse ‘ / J
Déformations : /
296.9 Y0 XM =pe 2 N X 91.8 % 1[3¢ 1B, = B/<, X
7
L i C
— =10 o =>(= TB, r =0.1E/e¢ ol
Et e -©= PLTB, r = 0.1E /e, || 25
il = 52.6 % -
42.2 % 40.2 % -
e UL LR T LR Tt
10~7 10~ 10° 107 10~ 10°
Mesh size [m)] Mesh size [m)]

framatome



2.3 Résultats numériques — Poutre encastrée / obstacle plan

Structure bi-encastrée en contact avec un obstacle plan Ql 1 l l l l l 1 l
/. —X

* Force surfacique sur la face supérieure tres importante

* Poutre épaisse ‘ % /IFC
Densité linéique de contact : /
25.0 % - k] M —o X
U] 5960 3¢ 3603 K= 0 il
L - -
— =10 o =>(= TB, r=0.1E /e o
Et — == PI-TB, r = 0.1E /e, —
= =
9.0 % E SH—@_ 6.0 % TARNIEIXIE-X

| |
1072 107" 10° 1072 107" 10°
Mesh size [m] Mesh size [m]

framatome Thése Matthieu SCHORSCH - 1 31



2.3 Résultats numériques — Poutre encastrée / obstacle plan

Structure bi-encastrée en contact avec un obstacle plan

* Force surfacique sur la face supérieure modérée
* Poutre mince

£:100 2 R}

framatome
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2.3 Résultats numériques — Poutre encastrée / obstacle plan

UL

Structure bi-encastrée en contact avec un obstacle plan

* Force surfacique sur la face supérieure modérée

* Poutre mince

Déformations :

66.5 % -

L
— =100

=>(= TB, r=0.1E/e4
== PI-TB, r = 0.1E /&4

framatome

Mesh size [m]

I'c

Z

=

*- TB' r = E/Ei
-S= PI-TB, r = E /=4

Mesh size [m]
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2.3 Résultats numériques — Poutre encastrée / obstacle plan

. ol LTI
Structure bi-encastrée en contact avec un obstacle plan R

* Force surfacique sur la face supérieure modérée I,

e Poutre mince ‘ s /l
IS

Densité linéique de contact :

152.7 % == TB, r = 0.1E /et 551.1 % - =>(= TB, r = E/eq
=== PI-TB, r = 0.1E /e == PI-TB, r = E/=¢
L .
— =100 ==
€t ‘__é-"'
1 | 12‘6 % i | |
102 1071 1072 10!
Mesh size [m)] Mesh size [m]
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2.3 Résultats numériques — Poutre encastrée / obstacle plan

ol LT
-

Si le rapport d’élancement augmente = le modele de Timoshenko
tend vers le modele de Timoshenko enrichi (cohérent et attendu)

Toujours faible dépendance des résultats au parametre r pour ® = —1

framatome Thése Matthieu SCHORSCH - 18 no e 2025 35



2.3 Résultats numériques — Conclusions

d Rapports d’élancement faibles, pincement sollicité

- Intérét du modele enrichi

O Poutres minces, peu sollicitées en pincement,
deux modeles tres proches si :
* 1 est bien choisi : la pénalité donne de bons
résultats en déformations
e Méme si les déformations sont tres proches,
le modele enrichi est plus précis sur la densité
linéique de contact

d ©® = —1 : les résultats dépendent trés peu de r

Objectifs :

* développer des modeles qui tiennent
compte de l'élasticité de la structure
« intrinsequement »

e Qui dépendent peu du choix de
parametres numériques

* Ou qui, le cas échéant, soient plus
précis sur les grandeurs d’intérét

contrairement a la pénalité

framatome
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2.3 Résultats théoriques

Obijectifs : retrouver les avantages théoriques / numériques de la méthode de Nitsche

e Consistance Theorem 3.3 Suppose that one of the following assumptions holds:

e Aspect bien-posé
1. ©® # —1 and rog > 0 s sufficiently large,
2. ©=—1and ro > 0.

Then problem (2.6) admits one unique solution (w™, 8", p") in \%3

e Convergences optimales

Theorem 3.5 Suppose that the solution (w,0,p) of problem (1.11) belongs to (H™1(Q))%,
with m < k (k= 1,2 is the degree of the finite element method given in (2.1)).

1, m
lu—u"|lv, + EII[PM(U"’“)]— +on (W) 2rey < Ch™|[uflm+10 (3.37)

Travail en cours...
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2.3 Conclusion et perspectives

Conclusions :

 Notre modele enrichi permet de retrouver la richesse du contact de Nitsche
 Modele enrichi particulierement pertinent lorsque le pincement est sollicité
* Faible dépendance au parametre r en accord avec la littérature sur Nitsche

Perspectives :

Initial
epx - PTSD: non linear 6 Fourier's modes beam FE

CheZ Framatome . 0.751 : epx - PTSD: non linear 4 Fourier's modes beam FE
| —— epx - PTSD: non linear 2 Fourier's modes beam FE
les poutres sont des tubes | 0] — Thése Youri Pascal-Abdellaoui
—> Nécessaire de prendre en 025 « Modeles mécani
: gues de
compte les phénomenes  : .. poutre enrichis pour la
d’ovalisation A simulation de tubes minces

Sous pression »

—0.50 1

Réaliser le méme travail sur
des modeles de coques -
enrichis avec pincement ? s o s % o o s

Y-axis (m)
Figure 2.16 - Comparaison de la solution selon le nambre de modes de Fourieren X = 0.5L

—0.75 4
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