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1 Introduction

Philosophie de l’adjonction symbolique : x2 = −1

La bonne question est : existe-t’il un corps commutatif contenant Q dans lequel
l’équation a des solutions?

Q[i] := Q[x]/⟨x2 + 1⟩

Deux systèmes algébriques qui ont les mêmes solutions dans C ont les mêmes
solutions dans n’importe quel corps commutatif K ⊃ Q ; ils sont dits équivalents.

MÊME PHILOSOPHIE AVEC LES SYSTÈMES DIFFÉRENTIELS !
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Faut t’il calculer en coordonnées locales?

A LA MAIN OUI, À LA MACHINE ÇA SE DISCUTE !

L’utilisation de fonctions spéciales (trigonométriques, hypergéométriques, Bessel
etc.) rend très compliqué le test d’égalité à zéro.

Utilité de la géométrie algébrique en mécanique?

Une variété algébrique est définie par son anneau de coordonnées. Pour la sphère :

x2 + y2 + z2 = 1, A := C[x, y, z]/⟨x2 + y2 + z2 − 1⟩

Un point est un Dirac : δP (f) := f 7→ f(P ).
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2 Système EDP associé à un système algébrique

2.1 Exemple élémentaire

Les solutions du système différentiel linéaire à coefficients complexes constants

a0 f
(n)(x) + a1 f

(n−1)(x) + · · ·+ an f(x) = 0 (a0 ̸= 0)

forment un C-espace vectoriel de dimension n associé aux n racines du polynôme
caractéristique

a0 λ
n + a1 λ

n−1 + · · ·+ an = 0

Toute racine λ ∈ C de multiplicité m correspond à la base de m solutions{
eλx, xeλx, x2eλx, . . . , xmeλx

}
.
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2.2 Généralisation

EXAMPLE : Au système algébrique, (x, y ∈ C),{
y − x2 = 0
y2 − x3 = 0

(1)

on associe le système EDP linéaire à coefficients constants{
fy − fxx = 0

fyy − fxxx = 0
(2)

Un ordre monomial (ranking) ⪰ est un ordre total sur les monômes tel que si m
est divisible par m′, alors m ⪰ m′. A toute équation est associée une règle de
réécriture m → r où r une combinaison linéaire de monômes tous strictement
inférieurs à m pour le ranking choisi .
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2.3 Résolution des paires critiques

Le ranking plex(y,x) permet d’éliminer y, ce qui donne le système de réécriture

R0

{
y

1−→x2

y2
2−→x3

La paire de règles (m → · · · , m′ → · · · ) est dite critique ssi gcd(m,m′) ̸= 1.
On résout la paire critique en calculant la valeur de lcm(m,m′), ce qui donne
y2

1−→x2y, y2
2−→x3 d’où le nouveau système

R1


y

1−→x2

y2
2−→x3

x2y
3−→x3

les règles 1 et 3 sont une nouvelle paire critique etc.
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Théorème 1 Si toutes les paires critiques sont résolues, tout polynôme admet une
unique forme normale telle que

f ∈ I ssi NF(f) = 0

Finalement, la base de Groebner est

R2

{
y−→x2

x4−→x3 (3)

On en déduit que x3(x− 1) = 0, ce qui donne deux points d’intersection dans C

(x = 0, y = 0) de multiplicité 3
(x = 1, y = 1) de multiplicité 1

Remarque L’inférence (x3 = 0) ⇒ (x = 0) fait perdre la multiplicité 3.
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2.4 Analogie système algébrique v.s. système EDP

{
fy

1−→ fxx

fyy
3−→ fxxx

=⇒ fyy = fxxy = fxxx

La résolution des paires critiques est en bijection avec le calcul précèdent !

A la fin – voir (3), on obtient le système convergent
{

fy −→ fxx
fxxxx −→ fxxx

Donc tout polynôme différentiel dans C[∂x, ∂y]{f} admet une unique forme nor-
male dans C[f, fx, fxx, fxxx]. La solution générale dépend de quatre constantes
arbitraires.
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2.5 Les points sous l’escalier

y

x

FIGURE 1 – Escalier de la base de Groebner (3)

Théorème Nombre de N-points sous l’escalier = nombre de C-points de (1) (mul-
tiplicités comprises) = nombre de C-coefficients de Taylor arbitraires de (2).
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2.6 Idéaux primaires et idéaux premiers

Soit un idéal I dans un anneau de polynômes R et son radical
√
I := {f ∈ R | ∃n ≥ 1, fn ∈ I}

L’idéal I est dit
radiciel ssi I =

√
I

premier ssi (ab ∈ I, a /∈ I) =⇒ b ∈ I

primaire ssi (ab ∈ I, a /∈ I) =⇒ b ∈
√
I

Pour tout idéal I , il existe deux décompositions en intersection finie :

I =
⋂

i qi, qi idéaux primaires√
I =

⋂
i pi, pi =

√
qi idéaux premiers

(4)
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2.7 Appartenance au radical d’un idéal

Soit un idéal d’équations I := ⟨p1, p2, . . . , pr⟩ inclus dans l’anneau de polynômes
R := Q[x1, . . . , xn] et un polynôme f ∈ R. Comment tester si f ∈

√
I ?

Point clé : Les conditions suivantes sont équivalentes (nullstellensatz) :

1) f ∈
√
I

2) L’implication {p1 = 0, . . . , pr = 0} =⇒ (f = 0) est toujours vraie
3) Le système {p1 = 0, . . . , pr = 0, f ̸= 0} n’a pas de solutions dans C
4) 1 appartient à l’idéal J := ⟨p1, p2, . . . , pr, fq − 1⟩
5) La base de Groebner de J se réduit à 1 → 0

Conclusion : On sait rigoureusement se débarrasser des inéquations f ̸= 0 en
ajoutant une indéterminée q !
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2.8 Solutions du système EDP associé à un système algébrique

Soit λ := (λ1, . . . , λn) ∈ Cn solution d’un idéal d’équations I ⊂ Q[x1, . . . , xn]
supposé de dimension 0. Alors la fonction

f(x1, x2, . . . , xn) := exp(λ1x1 + λ2x2 + · · ·+ λnxn) (5)

est solution du système EDP linéaire associé à I car ∂if = λi f .

La décomposition primaire I = q1∩q2 de (1) est définie par les bases de Groebner

q1

{
x3 −→ 0
y −→x2 q2

{
x −→ 1
y −→ 1

Au point (1, 1) est associé l’exponentielle ex+y . La base de Groebner du système
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EDP associé à q1) est
{

fxxx −→ 0
fy −→ fxx

. Le développement de Taylor des solu-

tions est un polynôme qui dépend de 3 constantes arbitraires.

La solution générale de (2), comme prévu grâce à l’escalier (1), dépend bien de
quatre constantes complexes arbitraires :

f(x, y) = C1 + C2x+ C3

(
1

2
x2 + y

)
+ C4 e

x+y (6)

Autre exemple : Le système EDP linéaire associé au système algébrique{
x3 = yz, y3 = zx, z3 = xy

}
possède 27 solutions linéairement indépendantes.

Parmi celles-ci, onze sont polynomiales, associées au point (0, 0, 0) de multiplicité
11.
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2.9 Voisinages infinitésimaux d’une variété

On interprète une décomposition primaire comme un ensemble de voisinages in-
finitésimaux. Exemple : modulo l’idéal primaire ⟨x3, y4⟩, une série de Taylor au
point (0, 0) est tronquée à l’ordre 3 en x et 4 en y.

y

x

(a) ⟨x2, y⟩

y

x

(b) ⟨x2, xy, y2⟩

y

x

(c) ⟨x2⟩

y

x

(d)
⟨x⟩ ∩ ⟨x2, xy, y2⟩
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3 L’approche algébrique des EDP

3.1 La théorie des modèles

J.F. Ritt, vers 1930 aborde les systèmes différentiels par la théorie du 1er ordre
des corps différentiels commutatifs de caractéristique nulle. Dans l’implantation
en Maple, on se rend compte du lien entre trois théories décidables :

1. La théorie des corps clos initiée par D. Hilbert
2. La théorie des corps ordonnés clos par A. Tarski
3. La théorie des corps différentiels clos initiée par J.F. Ritt

L’étude des développements asymptotiques relève de la théorie des corps différen-
tiels ordonnés.
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3.2 Définitions de base

Définition 2 (système différentiel) Un système différentiel (F, ∂) est la donnée
d’une formule du 1er ordre construite à partir

— de polynômes différentiels à coefficients dans Q
— des connecteurs logiques ∧, ∨, ¬, =⇒ , · · ·
— des signes d’égalité = et d’inégalité ̸=
— des quantificateurs ∃, ∀

en respectant la syntaxe usuelle des expressions mathématiques.

idée : Remplacer la notion de solution par celle de modèle et préciser les règles
d’inférence permettant de prouver que deux systèmes sont équivalents.
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Exemple : théorie du contrôle (Fliess 1990)

Les deux systèmes différentiels (F1,
d
dt ) et (F2,

d
dt ) ont mêmes solutions dans

n’importe quel corps différentiel commutatif (K, d
dt ) contenant Q :

F1

 ẋ1 = x1 + x2 + u
ẋ2 = x1

2 + 1
y = x1

F2

 x1 = y
x2 = ẏ − y − u
u̇ = ÿ − ẏ − y2 − 1

(7)

Utilité : calcul d’une entrée u(t) permettant d’obtenir une sortie y(t) fixée arbi-
trairement, i.e. étudier la formule ∀y, ∃u, F1(x1, x2, u, y).

Algorithme : Rosenfeld–Groebner (F. Boulier & co 1995)
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Un anneau différentiel (A, ∂) est un anneau commutatif contenant Q muni de dé-
rivations ∂ := (∂1, . . . , ∂n) qui commutent entre elles. On a ∂i(a, b) = ∂i(a) b +
a ∂i(b) pour tout a, b ∈ A, (i = 1, . . . n).

Un corps différentiel (K, ∂) est un anneau différentiel dont tout élément non nul
est inversible.

Un modèle différentiel de (F, ∂) est la donnée d’un corps différentiel abstrait
(K, ∂) contenant une valeur (pour chacune des variables non quantifiées) rendant
la formule (F, ∂) vraie.

Deux systèmes différentiels (F1, ∂) et (F2, ∂) sont dits équivalents ssi ils ont les
mêmes modèles différentiels.
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Notations

— Q[x1, . . . , xp] anneau des polynômes à coefficients dans Q.
— Q[[x1, . . . , xp]] anneau des séries formelles.
— Q((x1, . . . , xp)) corps des séries de Laurent 1.
— Q[x1, . . . , xp]{y1, . . . , yq} anneau des polynômes différentiels.

Tous ces anneaux sont fermés pour les dérivations partielles
(

∂
∂x1

, · · · , ∂
∂xp

)
et

l’égalité des objets y est syntaxique i.e. deux éléments sont égaux ssi leurs coeffi-
cients (dans Q) sont égaux.

1. Une série de Laurent est le quotient de deux séries formelles. L’inverse d’une série formelle est
une série formelle ssi son terme constant est non nul, sinon c’est une série de Laurent.
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3.3 L’algorithme Rosenfeld–Groebner

Un ordre total (ranking) ≺ sur l’ensemble des dérivées est dit admissible ssi (v ≺
v′) et (v ≺ w =⇒ v′ ≺ w′) où v et w sont des dérivées, le caractère prime
désignant une des dérivations

(
∂

∂x1
, · · · , ∂

∂xp

)
.

Un polynôme f ∈ R est un polynôme univarié en sa dérivée principale v

f = a0 v
d + a1 v

d−1 + · · ·+ ad︸ ︷︷ ︸
restf

, ai ∈ R, d := deg(f, v) (8)

A l’équation f = 0, on associe la règle vd−→ − (a0)
−1 restf , valable dans tous

les modèles où le coefficient initial a0 ̸= 0.
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Lemme 3 Soit f ∈ R. Pour tout xi, le polynôme ∂f
∂xi

est linéaire en sa variable
principale ∂v

∂xi
avec coefficient initial ∂f

∂v appelé séparant de f .

f := xy′
2 − y′

f ′ := (2xy′ − 1) y′′ + y′
2

f ′′ := (2xy′ − 1) y′′′ + 2xy′′
2
+ 4 y′y′′

y′
2 −→x−1y′

y′′ −→ − (2xy′ − 1)
−1

y′
2

y′′′ −→ − (2xy′ − 1)
−1

(· · · )

Définition 4 (chaîne différentielle régulière) Une chaîne différentielle régulière
(RDC) est un système différentiel Σ

(i) de la forme (A = 0, B ̸= 0) avec A,B ⊂ R.
(ii) Les initiaux et les séparants de tous les éléments de A sont inclus dans B.

(iii) Le système de réécriture associé à A est convergent. Pour tout p ∈ R,

NF(p) = 0 ssi p = 0 dans tous les modèles différentiels de Σ .
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Spécification : ROSENFELD-GROEBNER prend en entrée un système différentiel
Σ = (A = 0, B ̸= 0) et un ranking admissible sur les dérivées.

Il calcule une disjonction finie Σ1 ∨ Σ2 ∨ · · · ∨ Σn de RDC équivalente à Σ i.e.

Mod(Σ) =

n⋃
i=1

Mod(Σi) .

Un exemple : dans R := Q[x, y]{u, v}.

Σ

{
ux −→ 0
uyy −→ v2

=⇒ uxyy = 2vvx = 0
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Il y a deux cas disjoints v = 0 et (v ̸= 0, vx = 0), ce qui donne les 2 RDC

Σ1


ux −→ 0
uyy −→ v2

vx −→ 0
v ̸= 0

ou Σ2

 ux −→ 0
uyy −→ 0
v −→ 0

x

y

x

y

Σ1 : Escaliers de u et v.

23



3.4 Une théorie décidable

L’algorithme ROSENFELD-GROEBNER rend effectif le

Théorème 5 La théorie du premier ordre des corps différentiels commutatifs clos
(contenant Q) est décidable i.e. la validité d’une formule quelconque du premier
ordre est décidable.

E. Kolchin a passé beaucoup de temps pour construire une clôture différentielle
universelle U qui n’est pas utilisable en pratique.

Théorème 6 Tout système différentiel comportant des quantificateurs est équi-
valent à un système sans quantificateurs.
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3.5 Développement en séries formelles

Théorème 7 (J. Denef and L. Lipshitz) L’existence de solutions d’un système dif-
férentiel dans l’anneau différentiel Q[[x1, . . . , xp]] est indécidable lorsque p ≥ 6.

PREUVE – On se ramène au problème (indécidable) de l’existence de solutions
dans Z d’un système algébrique (Matiiaisevitch). □

Théorème 8 (Seidenberg) Tout corps différentiel finiment engendré comportant
p dérivations est isomorphe à un corps de fonctions méromorphes définies dans un
ouvert de Cp.

EXEMPLE – L’équation xy′ → 1 est une RDC. Il n’y a pas de développement de
Taylor de ln(x) en x = 0 mais cette fonction est holomorphe dans un petit ouvert
qui ne contient pas 0. □
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4 Approche géométrique des EDP

Cette approche basée sur le calcul tensoriel a été initiée par S. Lie vers 1870 et E.
Cartan à partir de 1900. Cette démarche, essentiellement calculatoire considère des
objets définis géométriquement.

C. Ehresmann vers 1950, a conceptualisé les structures géométriques (fibrés, G-
structures, connexions, groupoides) en vue de justifier rigoureusemet la méthode
d’équivalence de E. Cartan. Il a été suivi par l’école américaine (S.S. Chern, P.
Olver, etc.) à partir de 1945.

Je pense qu’il est possible d’unifier les approches algébriques et géométriques dans
le cadre de la géométrie algébrique, ce que cherchait à faire A. Grothendieck dans
sa théorie des topos.
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4.1 Le problème d’équivalence sur un exemple

Soit la famille d’équations différentielles

(Ef ) : y
′′ = f(x, y, y′)

et le D-groupe Φ des transformations φ : (x, y) 7→ (x, y) qui vérifient le système
différentiel :

xx = 1, xy = 0, yy ̸= 0 .

C’est bien un groupe car x = x+C, y = η(x, y) et la matrice jacobienne de φ est
inversible, mais comment le savoir en général ?

Problème : décider si deux équations Ef et Ef données se ramènent l’une à l’autre
par une transformation φ ∈ Φ et si possible, la calculer.
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Remarque : Le groupe de symétries de Ef est le problème de self–équivalence.

Idée : La transformation φ est solution d’un système différentiel que l’on écrit en
spécialisant les formes de contact du J2 avec y′′ = f :dp − f(x, y, p) dx

dy − p dx
dx


︸ ︷︷ ︸

ω
f

=

a1(x, y, p) a2(x, y, p) 0
0 a3(x, y, p) 0
0 0 1


︸ ︷︷ ︸

S(a)

dp − f(x, y, p) dx
dy − p dx

dx


︸ ︷︷ ︸

ωf

(9)

E. Cartan symétrise ce système différentiel sous la formea1 a2 0
0 a3 0
0 0 1

 dp− f
dy − p dx

dx


︸ ︷︷ ︸

θ̄

=

a1 a2 0
0 a3 0
0 0 1

 dp− f
dy − p dx

dx


︸ ︷︷ ︸

θ

(10)
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4.2 Le calcul des invariants différentiels

Définition 9 (invariant) Soit φ un changement de coordonnées locales d’une va-
riété M . Un φ-invariant est un objet géométrique défini sur M (forme, champ de
vecteur, connexion etc.) qui est défini par la même formule dans les anciennes et
les nouvelles coordonnées.

Le système différentiel (10) montre que le vecteur de 1-formes θ := (θ1, θ2, θ3)
est φ-invariant pour toute transformation φ ∈ Φ.

Les contraintes d’intégrabilité du système (10) obtenues par dérivation extérieure
sont présentées sous forme d’égalité entre fonctions invariantes. Il faut tenir compte
de l’indépendance des coordonnées locales (x, y, p := y′), i.e. θ1 ∧ θ2 ∧ θ3 ̸= 0.
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4.3 L’algèbre des invariants

Sur l’exemple, l’algèbre des invariants est engendrée par 3 fonctions invariantes

I1 := −1

4
(fp)

2 − fy +
1

2
Dxfp

I2 :=
fppp
2a2

avec Dx :=
∂

∂x
+ p

∂

∂y
+ f(x, y, p)

∂

∂p

I3 :=
fyp −Dxfpp

2a

sous l’action de 3 champs de vecteurs invariants.

Problème : Il reste une coordonnée a sur les 3 coordonnées du groupe structural
de départ.
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4.4 La composition des développements de Taylor

Le développement de Taylor d’une fonction Y = f(X) au point x est de la forme

Y − y :=
∑
n≥1

1

n!
f (n)(x) (X − x)n avec y = f(x)

C’est donc un triplet (y, Sf , x) où la source est x, le but y et Sf une série entière
sans terme constant. Le développement de Taylor de g ◦ f au point x est

(z, Sg◦f , x) := (z, Sg, y) ◦ (y, Sf , x)

La série Sf au point x est invertible (pour la composition) ssi la matrice jacobienne
de f en x est invertible.
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4.5 La notion de groupe chez S. Lie

Définition 10 Un D-groupe est défini par un système différentiel dont les solu-
tions, sous forme de développements de Taylor, forment un groupoide.

Rac. cubiques de l’unité x3 = x3

Groupe affine xxx = 0, xx ̸= 0
Transf. homographiques xx xxxx − 3

2 (xxx)
2 = 0, xx ̸= 0

Difféos de la droite affine xx ̸= 0
Cauchy-Riemann xx − yy = 0, xy + yx = 0, xxyy − xyyx ̸= 0

L’algèbre de Lie s’obtient par un calcul en 1re variation x = x + εX(x). Pour le
groupe x 7→ ax+b

cx+d , on obtient Xxxx = 0.
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5 Conclusion

— On a explicité le lien : décomposition primaire v.s. multiplicité des points
v.s. voisinages infinitésimaux d’une variété 2.

— La théorie des modèles (corps, corps ordonnés, corps différentiels etc.) sim-
plifie et unifie les raisonnements.

— La construction de systèmes de réécriture convergents est l’outil de base en
calcul formel.

— Les escaliers (voir la série rationnelle de Hilbert–Poincaré associée) per-
mettent de compter les coefficients de Taylor arbitraires.

— Les D-groupes de Lie sont définis par des EDP, donc même la définition de
l’isomorphisme de 2 D-groupes est délicate.

2. Comment distinguer la déformation des spaghettis et des tagliatelles ?
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