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1 Introduction

Philosophie de ’adjonction symbolique : 22 = —1

La bonne question est : existe-t’il un corps commutatif contenant Q dans lequel
I’équation a des solutions ?

Qli] := Q[z]/{z* +1)

Deux systémes algébriques qui ont les mémes solutions dans C ont les mémes
solutions dans n’importe quel corps commutatif X' O Q; ils sont dits équivalents.

MEME PHILOSOPHIE AVEC LES SYSTEMES DIFFERENTIELS !



Faut t’il calculer en coordonnées locales ?
A LA MAIN OUI, A LA MACHINE CA SE DISCUTE !

L utilisation de fonctions spéciales (trigonométriques, hypergéométriques, Bessel
etc.) rend trés compliqué le test d’égalité a zéro.

Utilité de la géométrie algébrique en mécanique ?
Une variété algébrique est définie par son anneau de coordonnées. Pour la sphere :
2yt 42t =1, A:=Clz,y, 2]/ (x® + > + 22 - 1)

Un point est un Dirac : p(f) := f — f(P).



2 Systeme EDP associé a un systeme algébrique

2.1 Exemple élémentaire

Les solutions du systeme différentiel linéaire a coefficients complexes constants
ao f™(x) +ay fO V(@) + -4 an f(x) =0 (ag #0)

forment un C-espace vectoriel de dimension n associé aux n racines du polynéme
caractéristique
a A"+ a N+, =0

Toute racine A € C de multiplicité m correspond a la base de m solutions

{e”, ze™, 22 xmeAm} .



2.2 Généralisation

EXAMPLE : Au systéme algébrique, (z,y € C),

2
y—z°=0
{ v —a3 =0 (1
on associe le systeme EDP linéaire a coefficients constants
fy - fmc =0
2

Un ordre monomial (ranking) > est un ordre total sur les mondmes tel que si m
est divisible par m’, alors m > m/. A toute équation est associée une regle de
réécriture m — r ol r une combinaison linéaire de monOmes tous strictement
inférieurs & m pour le ranking choisi .



2.3 Résolution des paires critiques

Leranking plex (y, x) permetd’éliminer y, ce qui donne le systeme de réécriture

y—> a?
RO{ 2.2 3
Y-z
La paire de régles (m — ---, m’ — ---) est dite critique ssi gcd(m, m’) # 1.

On résout la paire critique en calculant la valeur de lem(m,m'), ce qui donne
y2 -1 22y, y2—25 2% d’ott le nouveau systéme
y—1> x?
R y2_2> a3 les régles 1 et 3 sont une nouvelle paire critique etc.

3
o2y 3



Théoreme 1 Si routes les paires critiques sont résolues, tout polynéme admet une
unique forme normale felle que

felssi NF(f)=0

Finalement, la base de Groebner est

2
—x
R { m%‘/‘—> x3 3)

On en déduit que 23(z — 1) = 0, ce qui donne deux points d’intersection dans C

(z = 0,y = 0) de multiplicité 3
(z =1,y = 1) de multiplicité 1

Remarque L’inférence (z® = 0) = (z = 0) fait perdre la multiplicité 3.



2.4 Analogie systeme algébrique v.s. systeme EDP

{ Fuy —3>f“1 = fyy = Jowy = foza

La résolution des paires critiques est en bijection avec le calcul précedent !

fy = foo

A la fin — voir (3), on obtient le systéme convergent

Donc tout polyndme différentiel dans C[0,, 0,]{f} admet une unique forme nor-
male dans C[f, f, fzx, fzzz)- La solution générale dépend de quatre constantes
arbitraires.



2.5 Les points sous I’escalier

X

FIGURE 1 — Escalier de la base de Groebner (3)

Théoreme Nombre de N-points sous 1’escalier = nombre de C-points de (1) (mul-
tiplicités comprises) = nombre de C-coefficients de Taylor arbitraires de (2).



2.6 Idéaux primaires et idéaux premiers

Soit un idéal I dans un anneau de polyndmes R et son radical

VIi={feR|In>1,frel}

L’idéal I est dit
radiciel ssil =1
premier ssi(abel,a¢l) = bel
primaire ssi(abel,a¢ ) = be I
Pour tout idéal I, il existe deux décompositions en intersection finie :

I =% a idéaux primaires

VIo= (;pis Pi=+/q; idéaux premiers )
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2.7

Appartenance au radical d’un idéal

Soit un idéal d’équations I := (p1,pa, ..., p,) inclus dans I’anneau de polyndmes
R :=Qlx1,...,z,] etun polyndme f € R. Comment tester si f € VI?

Point clé : Les conditions suivantes sont équivalentes (nullstellensatz) :

1y
2)
3)
4)
5)

fevi

Limplication {p; =0,...,p, =0} = (f = 0) est toujours vraie
Le systeme {p; = 0,...,p. = 0, f # 0} n’a pas de solutions dans C
1 appartient a I'idéal J := (p1,p2,...,pr, fg— 1)

La base de Groebner de J se réduita 1 — 0

Conclusion : On sait rigoureusement se débarrasser des inéquations f # 0 en
ajoutant une indéterminée ¢ !
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2.8 Solutions du systeme EDP associé a un systeme algébrique

Soit A := (A1,...,A,) € C” solution d’un idéal d’équations I C Q[z1,...,zy]
supposé de dimension 0. Alors la fonction

flxi,xa, ... xy) = exp(A121 + Aawo + - -+ + Ay (5)
est solution du systeme EDP linéaire associé a [ car 0;f = \; f.
La décomposition primaire I = q; Nqs de (1) est définie par les bases de Groebner
> —0 z —1
ql{ y — 2 Clz{y —1

Au point (1, 1) est associé I’exponentielle e**¥. La base de Groebner du systéme
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EDP associé 2 q1) est { faze —0 . Le développement de Taylor des solu-

tions est un polyndéme qui dépend de 3 constantes arbitraires.

La solution générale de (2), comme prévu grace a I’escalier (1), dépend bien de
quatre constantes complexes arbitraires :

1 n
f(-ray):C1+CQ$—|—03 (2x2+y)+c4el+y (6)

Autre exemple : Le systeme EDP linéaire associé au systeme algébrique

{23 = yz, y® = za, 2° = wy} possede 27 solutions linéairement indépendantes.
Parmi celles-ci, onze sont polynomiales, associées au point (0, 0,0) de multiplicité
11.
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2.9 Voisinages infinitésimaux d’une variété

On interprete une décomposition primaire comme un ensemble de voisinages in-
finitésimaux. Exemple : modulo 1’idéal primaire (22, y*), une série de Taylor au
point (0, 0) est tronquée a I’ordre 3 en z et 4 en y.

(@ (z2,y) ) (@2, zy,y?) (©) (z?) (d
(z) N {22, zy, y?)
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3 L’approche algébrique des EDP

3.1 La théorie des modeles

J.E. Ritt, vers 1930 aborde les systemes différentiels par la théorie du ler ordre
des corps différentiels commutatifs de caractéristique nulle. Dans 1’implantation
en Maple, on se rend compte du lien entre trois théories décidables :

1. La théorie des corps clos initiée par D. Hilbert

2. La théorie des corps ordonnés clos par A. Tarski

3. La théorie des corps différentiels clos initiée par J.F. Ritt

L’étude des développements asymptotiques releve de la théorie des corps différen-
tiels ordonnés.
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3.2 Définitions de base

Définition 2 (systéme différentiel) Un systeme différentiel (F, 0) est la donnée
d’une formule du ler ordre construite a partir

— de polynomes différentiels a coefficients dans Q

— des connecteurs logiques A, V, =, =, - -

— des signes d’égalité = et d’inégalité #

— des quantificateurs 3, V
en respectant la syntaxe usuelle des expressions mathématiques.

idée : Remplacer la notion de solution par celle de modele et préciser les régles
d’inférence permettant de prouver que deux systemes sont équivalents.
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Exemple : théorie du contr6le (Fliess 1990)

Les deux systemes différentiels (Fy, ) et (Fb, %) ont mémes solutions dans

" di
n’importe quel corps différentiel commutatif (K, 4 ) contenant Q :
T, = T1+r9+u Ty =y
Fi$ iy = x*+1 Fo 20 = y—y— u (7N
y = m w = j-y-y*-1

Utilité : calcul d’une entrée u(t) permettant d’obtenir une sortie y(t) fixée arbi-
trairement, i.e. étudier la formule Yy, Ju, F(x1,x2,u,y).

Algorithme : Rosenfeld—Groebner (F. Boulier & co 1995)

17



Un anneau différentiel (A, 0) est un anneau commutatif contenant Q muni de dé-
rivations 0 := (04, ..., 0y) qui commutent entre elles. On a 9;(a,b) = 0;(a) b +
a0;(b) pourtouta,b € A, (i =1,...n).

Un corps différentiel (K, 0) est un anneau différentiel dont tout élément non nul
est inversible.

Un modeéle différentiel de (F,d) est la donnée d’un corps différentiel abstrait
(K, 0) contenant une valeur (pour chacune des variables non quantifiées) rendant
la formule (F, 0) vraie.

Deux systemes différentiels (F,0) et (Fy, ) sont dits équivalents ssi ils ont les
mémes modeles différentiels.
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Notations

— Qlz1, ..., zp] anneau des polyndmes a coefficients dans Q.
— Q|[#1, ..., zp]] anneau des séries formelles.
— Q((x1, .. .,xp)) corps des séries de Laurent !
— Qlz1,...,zp{®1, ...,y } anneau des polyndmes différentiels.
Tous ces anneaux sont fermés pour les dérivations partielles (6%1’ Sy %) et

I’égalité des objets y est syntaxique i.e. deux éléments sont égaux ssi leurs coeffi-
cients (dans Q) sont égaux.

1. Une série de Laurent est le quotient de deux séries formelles. L’inverse d’une série formelle est
une série formelle ssi son terme constant est non nul, sinon ¢’est une série de Laurent.
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3.3 L’algorithme Rosenfeld—-Groebner

Un ordre total (ranking) < sur I’ensemble des dérivées est dit admissible ssi (v <
v)et (v < w = v < w') ol wvetw sont des dérivées, le caractere prime

L. L. . ) )
désignant une des dérivations (871, " By )
Un polyndme f € R est un polyndme univarié en sa dérivée principale v

f=apvi4+a v+ +ayq, a; €R,d:=deg(f,v) 8)

rest f

A I’équation f = 0, on associe la régle v — — (ag)~! rest f, valable dans tous
les modeles ou le coefficient initial ag # 0.
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Lemme 3 Soit f € R. Pour tout x;, le polynéme % est linéaire en sa variable

principale (%Ji avec coefficient initial % appelé séparant de f.

fo=ay? -y y?: ——aly
o=y - Dy +y? Yy — = Qay —1) "y
f// — (2 xy’ _ 1) y/// + 2337//2 + 4y/y// y/// S (2 Iy/ - 1)—1 ( . )

Définition 4 (chaine différentielle réguliere) Une chaine différentielle réguliere
(RDC) est un systeme différentiel >

(i) delaforme (A =0,B # 0) avec A, B C R.
(i1) Les initiaux et les séparants de tous les éléments de A sont inclus dans B.
(iii) Le systeme de réécriture associé a A est convergent. Pour tout p € R,

NF(p) = 0 ssi p = 0 dans tous les modeles différentiels de X .
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Spécification: ROSENFELD-GROEBNER prend en entrée un systeme différentiel
¥ = (A =0, B # 0) et un ranking admissible sur les dérivées.

1l calcule une disjonction finie 37 V X9 V - - - V X,, de RDC équivalente a X i.e.

Mod(%) = CJ Mod (%) .

Un exemple : dans R := Q[z, y|{u, v}.

U —0
by * 9 = Ugyy =200, =0
Uyy —V
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Il'y a deux cas disjoints v = 0 et (v # 0, v, = 0), ce qui donne les 2 RDC

u, —0

Uyy — V> e 0

3 vy ou ¥oQ uy, —0
Us 0 v —0
v #0

331 : Escaliers de u et v.
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3.4 Une théorie décidable
L’algorithme ROSENFELD-GROEBNER rend effectif le

Théoreme 5 La théorie du premier ordre des corps différentiels commutatifs clos
(contenant Q) est décidable i.e. la validité d’une formule quelconque du premier
ordre est décidable.

E. Kolchin a passé beaucoup de temps pour construire une cloture différentielle
universelle U qui n’est pas utilisable en pratique.

Théoreme 6 Tout systeme différentiel comportant des quantificateurs est équi-
valent a un systeme sans quantificateurs.
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3.5 Développement en séries formelles

Théoreme 7 (J. Denef and L. Lipshitz) L’existence de solutions d’un systéme dif-
férentiel dans I’anneau différentiel Q[[x1, . . ., xp|] est indécidable lorsque p > 6.

PREUVE — On se ramene au probleme (indécidable) de I’existence de solutions
dans Z d’un systeme algébrique (Matiiaisevitch). O

Théoreme 8 (Seidenberg) Tout corps différentiel finiment engendré comportant
p dérivations est isomorphe a un corps de fonctions méromorphes définies dans un
ouvert de CP.

EXEMPLE — L’équation xy’ — 1 est une RDC. Il n’y a pas de développement de
Taylor de In(x) en = 0 mais cette fonction est holomorphe dans un petit ouvert
qui ne contient pas 0. (]
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4 Approche géométrique des EDP

Cette approche basée sur le calcul tensoriel a été initiée par S. Lie vers 1870 et E.
Cartan a partir de 1900. Cette démarche, essentiellement calculatoire considere des
objets définis géométriquement.

C. Ehresmann vers 1950, a conceptualisé les structures géométriques (fibrés, G-
structures, connexions, groupoides) en vue de justifier rigoureusemet la méthode
d’équivalence de E. Cartan. Il a été suivi par 1’école américaine (S.S. Chern, P.
Olver, etc.) a partir de 1945.

Je pense qu’il est possible d’unifier les approches algébriques et géométriques dans

le cadre de la géométrie algébrique, ce que cherchait a faire A. Grothendieck dans
sa théorie des topos.
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4.1 Le probleme d’équivalence sur un exemple

Soit la famille d’équations différentielles

(Ey):y" = flz,y,9)

et le D-groupe ® des transformations ¢ : (x,y) — (T,7) qui vérifient le systeme
différentiel :
T, =1, =0,7,#0.

C’est bien un groupe car T = = + C, § = n(x, y) et la matrice jacobienne de ¢ est
inversible, mais comment le savoir en général ?

Probleme : décider si deux équations £y et E7 données se ramenent 1’une a 1’ autre
par une transformation ¢ € P et si possible, la calculer.
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Remarque : Le groupe de symétries de E est le probleme de self~équivalence.

Idée : La transformation  est solution d’un systeme différentiel que 1’on écrit en
spécialisant les formes de contact du J? avec v = f

dp — f(%,7,p) dz ar(z,y,p) az(z,y,p) O\ [dp— f(z,y,p) dx
dy —pdz = 0 az(z,y,p) O dy — p dz )
dz 0 0 1 da

w:

7 S(a) wf

E. Cartan symétrise ce systeme différentiel sous la forme

@ ax 0 dp—f ai az 0 dp— f
0 a O dg—pdz | =10 a3 O dy —pdx (10)
0 0 1 dz 0O 0 1 dx

6 9
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4.2 Le calcul des invariants différentiels

Définition 9 (invariant) Soit o un changement de coordonnées locales d’une va-
riété M. Un p-invariant est un objet géométrique défini sur M (forme, champ de
vecteur, connexion etc.) qui est défini par la méme formule dans les anciennes et
les nouvelles coordonnées.

Le systeme différentiel (10) montre que le vecteur de 1-formes 6 := (01,602, 63)
est p-invariant pour toute transformation ¢ € ®.

Les contraintes d’intégrabilité du systeme (10) obtenues par dérivation extérieure
sont présentées sous forme d’égalité entre fonctions invariantes. Il faut tenir compte
de I’indépendance des coordonnées locales (z,y,p :=y'), i.e. 01 A 62 A 62 # 0.
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4.3 L’algebre des invariants

Sur I’exemple, 1’algebre des invariants est engendrée par 3 fonctions invariantes

1 1
L= 1 (fp)2 - fy + §Dmfp

— Joop _ 0 9 o
I := 92 avec D, = e eray Jrf(x,y,]?)ap

fyp — Drfpp

I3 :=
3 2a

sous I’action de 3 champs de vecteurs invariants.

Probléme : Il reste une coordonnée a sur les 3 coordonnées du groupe structural
de départ.
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4.4 La composition des développements de Taylor

Le développement de Taylor d’une fonction Y = f(X) au point x est de la forme

Y —yi= 3 @) (X 0" avecy = f(2)

n>1

C’est donc un triplet (y, S¢,z) ol la source est z, le but y et Sy une série entiere
sans terme constant. Le développement de Taylor de g o f au point = est

(Z7Sgof7x) = (Zu Sgay) o (y,Sf,x)

La série Sy au point x est invertible (pour la composition) ssi la matrice jacobienne
de f en z est invertible.
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4.5 La notion de groupe chez S. Lie

Définition 10 Un D-groupe est défini par un systéme différentiel dont les solu-
tions, sous forme de développements de Taylor, forment un groupoide.

Rac. cubiques de I'unité 73 = 23

Groupe affine Tpe =0, T, #£0

Transf. homographiques T, Tppr — %(fm)2 =0,7,#0

Difféos de la droite affine 7, # 0

Cauchy-Riemann Ty =Y, =0,2y +Y, =0, 7y, — Ty, #0

L algebre de Lie s’obtient par un calcul en 1* variation T = = + X (z). Pour le

groupe T Z;_ts, on obtient X, = 0.
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5 Conclusion

— On a explicité le lien : décomposition primaire v.s. multiplicité des points
v.s. voisinages infinitésimaux d’une variété 2.

— Lathéorie des modeles (corps, corps ordonnés, corps différentiels etc.) sim-
plifie et unifie les raisonnements.

— La construction de systemes de réécriture convergents est I’outil de base en
calcul formel.

— Les escaliers (voir la série rationnelle de Hilbert—Poincaré associée) per-
mettent de compter les coefficients de Taylor arbitraires.

— Les D-groupes de Lie sont définis par des EDP, donc méme la définition de
I’isomorphisme de 2 D-groupes est délicate.

2. Comment distinguer la déformation des spaghettis et des tagliatelles ?
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