Wrinkling of epithelial shells: experiments
models, simulations
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Outline

Biological context
In vitro experiments
Vertex model

Continuum approximation



Mechanical instabilities as a driver of epithelial

morphogenesis
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Shyer et al., Nature, 2011
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Savin et al., Nature, 2011

-> fit as much surface area as possible in a confined space



Fig. 1 Schematic of three types of morphological instability: (a) wrinkling, (b) folding, and (c) creasing.

Li et al., Soft Matter, 2012
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Dynamical control of suspended
monolayers
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Buckling depends on hold time
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Buckling depends on deflation rate and hold time
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Symmetry-breaking and wrinkling pattern
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Buckling depends on the actomyosin cortex dynamics
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Actomyosin cortex

r Crosslinkers “' Myosin == Actin filaments

A\ A\ VA
e A~ &
viscoelasticity contractility tumover
Ouzeri et al., bioRxiv., 2025
Actin and myosin Il Adherens junctions

IF and desmosomes

MM -

Normalized fluorescence intensity

Khalilgharibi et al. Nat. Phys., 2019

Strain

Cortical Tension

Clark, Dierkes, Paluch, Biophys. J., 2013

oD P o

04r

02¢F

At

@ Resting area

O Real area
—— Resting strain

—— Applied strain

5 10 15 20
- Active tension, 7,

— Viscoelastic tension,7, ¢
— Total tension,ﬁ/t

5 10 15 20
t/r

ve

Chahare et al., bioRxiv., 2025



Geometric approach to elastic growth
(morphoelasticity)

B(t,) B't,)
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T=0

Rodriguez et al., J. Biomechanics, 1994
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-> Riemannian manifold whose metric is related to the growth and
with respect to which strains should be measured

-> Time-dependent stress-free configuration

-> Evolution law ?

Yavari, J. Nonllinear Sci., 2010



Onsager's variational principle

State and process variables

KCoupIing multiple physics at multiple \ X, V atX =V or atX — P(X)V

scales
Rate of change of free energy
e Applicable to a wide variety of
biological settings dF(j(t)) — DXf(X)P(X)V
t
Thermodynamically consistent models Dissipation potential D(X V)
]

\ by construction /

LIX;VA)=R(X;V)+A-C(X)V
{V, A} = argmax argmin [L(X; W, w)]
%1% w

Power input P(X;V)=—-F(X)V

1rst and 2nd order (necessary) optimality conditions {(91/73 = () 3‘2/72 = 6"2/2) > O}

governing equations 2nd law of thermodynamics

Mirza et al., New J. Phys., 2025



Gradient flows

A gradient system is a triple (Z, F,D) where Z is a manifold with a
differentiable structure, F : Z — R a functional driving the dynamics of
the system and D(z,-) : T.Z — R a non-negative convex dissipation
potential such that D(z,0) = 0.

A solution is a curve z : I C R — Z solving the following gradient flow
equation

G(z)z=—-DF(z) in T, Z
@ Z — state space
o F — (free) energy
o D(z,2) = $(G(2)z,2) where G(z) : T,Z — T} Z is symmetric positive
definite

- %F(Z) — <DF(Z)9 Z> — —(Q(z)z)z) — _QD(Zp Z) <0 /F;?rlc?;/igrétzgl.l,42018 14

o Ouzeri, GSI, 2025



Active-viscoelastic-gel description of the cortex
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Governing equations

Minimization of R(X;V) = DxF(X) - P(X)V+D(X;V)+P(X;V)

/~ Momentum balance in tangential direction I
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t =ononOdl'y
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o=v+o0o, active + elastic tension

Momentum balance in normal direction

8Un72:0__+ o:k=PFPonl

Evolution rule for rate of change of metric

. |
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Assuming Neo-hokkean material

Multidimensional extension of Maxwell
model :
* \Very short timescale : active
hyperelastic behaviour
* Longer timescales : active
viscoelastic behaviour
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Tissues as a collection of active gels
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Mesh generation and finite
element discretization
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implicit backward-Euler variational integrator
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Discrete governing equations

Active-viscoelastic gel Dynamic vertex model
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Tissue response under stretch

8
N5
Aab,O f % g g
Au 5 10 1 52
- — — < 0% J =z
g 0 510 15
< p
'% 2 ¢ Experiment —
@ = Model /9
- 0
c kS
o N 1 M 1.1
= £ 1
9 5 G =Gy —Gp
=} = 0 , 0.9} w
w 4
F 0 510 15 - : : - -
b Time [min] 0 4 8
N Time [min]
©
o ' ot
z iy
I 0 " o a Io Io Io Ten5|0n Lo
-100%! 0% 100% 200% 300%
' 0.5- K Areal strain

N/ Vab = 0.5 — SPTRS

| P
Idealized model cAGTM R (Rl I A
¢ . Y 0 ' T ' - ' Time
l b
o=2— [5ab - A .
v (Eap + 1)3/ ab.0 -
Ouzeri et al., bioRxiv., 2025




Mechanics of epithelial domes : CVM
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Continuum Kirchhoff theory for epithelial shells

Active gel model 3D vertex model Continuum surface model
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Continuum Kirchhoft theory for
epithelial shells ﬁ

s 1 .. o > |
Rlp. G5 G = f [—S‘f” C+m™ : k|dSy + [ T yp2 gmid g
[0 2 JTo 2
M e ame) oG SR S S R N
+ jl:[} Z (6@“’ & +DON(G )) QUE +L (a.ﬂ]— G + P& )) Qof{}(g)dﬁ dsSo.
a=+ SN

|
Jmid2

ST =8"+85 + %‘ (ST +S7): k]C" + fo (S';,,MM®M— SkNC‘l)fo(é))dé)

. h
eft _ " + Q-
m = 4(S S7)

24
Bal et al., bioRxiv., 2025



Buckling phase diagram
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Symmetry breaking and wrinkle-to-fold
transition
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Engineering folds
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Conclusion and further work

* Established mechanical rules for unsupported epithelial buckling (intrinsic
mechanical properties)

e Explored new regime of buckling dynamics across a broad range of time
scales, length scales, geometries, and mechanical properties of the
epithelium

Rational design of folds
Epithelial buckling as a stress-buffering and morphogenetic mechanism

* Analytical arguments for active wrinkles and folds
e “Geometrical morphogens”
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Extra slides



Images below: Li, Bo, Yan-Ping Cao, Xi-Qiao Feng, and Huajian Gao. Soft Matter
8, no. 21 (2012): 5728-5745

Three types of wrinkles ‘ ‘ ‘ . @

* Three ways wrinkles arise

» Constrained volume change
* Hard and soft layers

* Mismatched deformation systems

Decreasing internal volume

"".’ ' ""‘q"

r

—— — Orange rubber was stretched then
Multilayer system with hard attached to blue rubber
surface layer and soft interior

Slide from Alexander K Landauer, Surface Wrinkling: a brief introduction, 2015



