Construction of reduced-order models for solving numerically linear and
nonlinear problems coming from transfer phenomenon.
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Geometry-dependent periodic homogenization Problem statement
Ap jependent transformation

Motivation
Early degradation of the buildings

@ Chloride CI~ penetration in the pores

@ Decrease of PH in the interstitial solution, ignition
of oxydo-reduction reactions

@ Swelling of the steel skeletton

Modelling chloride diffusion

e Reinforced concrete:
@ Nernst-Planck equation
@ Periodic homogenization : scale separation 00 m

@ Repetition of a Representative Element Volume

o

Multiscale heterogeneities

@ The VER varies inside the structure ...

Gapillary pore
Sl

@ ... which increases the computations complexity oty e

@ Aim: affording this variability o
R s
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Geometry-dependent periodic homogenization
ROM with additional p. eters

Problem statement

Per A parameter-dependent transformation

Modelling ionic diffusion in porous media

lonic diffusion : Nernst-Planck equations

%—Didiv(Vci—i—BciV\ll) = 0 inY:
—Dy (Vex +BcxVV)-n = 0 onlg

@ c+ VV : transport of ions by the electrical field E = — VW

Poisson equation

e AV = p inYs
eVV¥-n = o, onlg

o Charge density p = F(c; — c¢-) for a pair (¢cp, c-)

@ Electrochemical equilibrium : W =0 and VW = 0, we have the Fick law
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Geometry-dependent periodic homogenization

Influence of the electrical double layer (EDL)

épores > Ip :

Microstructure
e p~0
@ C+ = Cb

@ Purely geometric
effects

@ Poisson-Boltzmann
equation :

eyAp — 2F Cy, sinh (B )
Vo -n
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periodic homogenization

Periodic homogenization

Periodical microstructure Periodical Elementary Cell
L 4

Y4
@ Scale separation: € = n < 1.

@ Space variables x and y are independent
© Unknowns ct, Gy, 1 et o are developped in a formal series of the perturbation parameter €

@ Nested problems to solve: homogenized model
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Geometry-dependent periodic homogenization

Homogenized equation

A multiscale problem (Bourbatache et al., 2012)

0G, <e‘B*” >y
& ot

— dive (D" (V4G + B G Vatn)) =0
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A multiscale problem (Bourbatache et al., 2012)
Homogenized equation

0G, <e‘B“” >y
Ee ot

— divx (Dh°"‘ (VxCo + B cbvxzpb)) =0
Homogenized diffusion tensor

hom — i
1Yl

De 7 (1+V,xT)d h =
[ 0o )y where -
Y¢(p)
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Geometry-dependent periodic homogenization

Problem statement

XOM with additional parameters t ion

A multiscale problem (Bourbatache et al., 2012)

Homogenized equation

0G, <G_B¢>y
ot

& — divy (Dh"m (VxGo + B vawa)) =0
Homogenized diffusion tensor

hom __ 1

_ B F
=N / De ﬂ*(l—&-VyxT)dy where ﬁ=ﬁ

Yr(p)
Cell problem

Poisson-Boltzmann equations : Y

Y
N 2FC, sinh By on Y; f
e, Vy-n o on lgf
Local variable x : . ‘
{ DivyDe #*(I+V,xT) = 0 onY; Lt o

De #?(I+Vyx)-n = 0 onfly
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Compute D"™ for an elementary cell
coming from a real image
Computation of D"™™ for a great
number of geometries

@ Takes into account the multi-scale variability of
the material

Jewell et al., 2015

@ Resolution a great number of times with Finite
element Method very costly

@ Use model order reduction

Principle of model order reduction

x(pi; p2)
@ Computation of x and then D™ for (pl, p3), ..., (pf, p%)

ezl 2, 20



Geometry-dependent periodic homogenization

Problem statement

{01 v etifitenel | RN A parameter-dependent transformation

Compute D"™ for an elementary cell
coming from a real image
Computation of D"™™ for a great
number of geometries

@ Takes into account the multi-scale variability of
the material

Jewell et al., 2015

@ Resolution a great number of times with Finite
element Method very costly

@ Use model order reduction

Principle of model order reduction

x(pi, p3) x(pt, p5)
@ Computation of x and then D™ for (pl, p3), ..., (pf, p%)

ezl 2, 20



Geometry-dependent periodic homogenization

Problem statement

{01 v etifitenel | RN A parameter-dependent transformation

Compute D"™ for an elementary cell
coming from a real image
Computation of D"™™ for a great
number of geometries

@ Takes into account the multi-scale variability of
the material

Jewell et al., 2015

@ Resolution a great number of times with Finite
element Method very costly

@ Use model order reduction

Principle of model order reduction

x(pi, p3) x(pt, p5)
@ Computation of x and then D™ for (pl, p3), ..., (pf, p%)

ezl 2, 20



Geometry-dependent periodic homogenization

Problem statement

ROM v dditional para q
QU] wiid evlefiitorel] peren A parameter-dependent transformation

Compute D"™ for an elementary cell
coming from a real image
Computation of D"™™ for a great
number of geometries

peerdans wv x3Wepi 1o orm
™ >

@ Takes into account the multi-scale variability of

the material
. . . .. Jewell et al., 2015
@ Resolution a great number of times with Finite

element Method very costly
@ Use model order reduction

Principle of model order reduction

M ”j %”‘W" e

x(p1, p3) x(p1, p5) x (7, p5°)

@ Computation of x and then D™ for (pl, p3), ..., (pf, p%)
@ Fast computation of D™ (pe¥, p3e*)

ezt ), 20
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Objective : approximate u(x, p) on a reduced basis (¢;)

i=1
Nrom
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i=1
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is precomputed
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@ Coefficients (a;);(p) are solution of the ROM : <
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Objective : approximate u(x, i) on a reduced basis (¢;)"
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@ Coefficients (a;);(p) are solution of the ROM :
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Objective : approximate u(x, p) on a reduced basis (¢;)""

Nrom

u(x p) 2 D ai(w) 0(x)

@ Basis ()™ is precomputed )
@ Coefficients (a;);(p) are solution of the ROM : f(z ) 6i(x), m), oj> =0V
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Geometry-dependent periodic homogenization
ROM with additional f

Problem statement
p A parameter-dependent transformation

Objective : approximate u(x, p) on a reduced basis (¢;)""

Nrom

u(x p) 2 D ai(w) 0(x)

@ Basis ()™ is precomputed )
@ Coefficients (a;);(p) are solution of the ROM : f(z ) di(x), ), oj> =0V

Obtained from Galerkin projection of the full-order model (('),-)7;”1‘“
Algebraic equations system
Fast resolution

A construction method for the reduced basis (¢;)""

Choice of POD : basis (¢;)"5" is optimal
Snapshots method (POD) :

Particular solutions u(x, p1), ..., u(x, [LN“)
. 1 ’ Reduction (())
Correlations tensor  [C] W=, " (e, X Yu(pg, X ) dx ¢ = ()i
Y
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, y Problem statement
OM with additional parameters ) d

Perspectives P

transfa ion

Issue : ROM construction for the parametrized cell problem depending on p

Snapshots for two different cells : p; # p»

x(y, p2)

x(y, p1)
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Problem statement

(RO e crtiiionel i A parameter-dependent transformation

Per

Issue : ROM construction for the parametrized cell problem depending on p

Snapshots for two different cells : p; # p»

x(y, p1) oy, p1) - x(y,p2)
| == oIS
gl O %' @

Correlations tensor puisque p1 # p2 :

ezl 2, 20



Geometry-dependent periodic homogenization

Problem statement

ROM v dditional parameters q
QI wid edlififterel| PRt A parameter-dependent transformation

Perspectives

Issue : ROM construction for the parametrized cell problem depending on p

Snapshots for two different cells : p; # p»

x(y, p1) oy, p1) x(y, p2)

. » . @@ ® | \
o ©
i 06 O] w.

Correlations tensor puisque p1 # p2 :
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are not defined
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Geometry-dependent periodic homogenization

Problem statement

ROM v dditional parameters q
QI wid edlififterel| PRt A parameter-dependent transformation

Perspectives

Issue : ROM construction for the parametrized cell problem depending on p

Snapshots for two different cells : p; # p»

x(y, p1) oy, p1) x(y, p2)

. » . @@ ® | \
o ©
i 06 O] w.

Correlations tensor puisque p1 # p2 :
[C"]u:/ﬂsa(y:pl)s:(y:pz)dﬂ et [C"]lzZ/Qx(y:m)-x(y:pz)dQ
are not defined

POD basis (¢7) et (¢X); : cannot be built

ezl 2, 20
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Geometry-dependent periodic homogenization

Parametrized transformation 7,: Y* =Y

= P
Vi e
P N

/
A%
4 \
4 \
! \
\ |
\ /
\ /
\ /
N " 7/
A 4
N YC 7
~o -

3

Direct transformation : 7,, , (&) = 5,€ + o,

1€l

Antoine P. Moreau



Geometry-dependent periodic homogenization

Parametrized transformation 7,: Y* =Y

= ———
i -
e >,
4 \
A VAN
// A
\ k7
| i !
\ |
\ !
\ /
\ ’
\ . ’
\ ’
N Ye -
~_ -

Direct transformation : 7,, , (&) = 5,€ + o, £

. P = Px q—7
Dependency inp : o, =q———— et §, = ——
Y Tg—pe T a—ps

o F = DAl
Antoine P. Moreau 9/34



Geometry-dependent periodic homogenization

Parametrized transformation 7,: Y* =Y

= ===
Y: - ~
// D
/
AT
/ A
I ‘| o
I '
\ 1
\ /
\ /
\ /
N\ " /
\\ YC //
~ -

Direct transformation : 7,, , (&) = 5,€ + o, i g i

Dependency in p @ «, = qm et 3, = a-r

q — P« _q_p*

P _ _ S Y
Inverse transformation : 7,0, (y) =7, ,, (¥) = 1y -

Syl

=] Fr El= DA
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Cell problem (EDL neglected)
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Cell problem (EDL neglected)

° /Vyx:Vyvdyz—/v~ndy

Ye(p)

st
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Geometry-dependent periodic homogenization

Cell problem (EDL neglected)

Ye(p)

° / Vyx: Vyvdy = —/v~ndy
st
o D" (p) = Depl +

1
4 [ o

Yr(p)

o Fr El= DA
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Geometry-dependent periodic homogenization

Cell problem (EDL neglected)

Ye(p)

° /VyX:Vdey:—/V’ndy

st

1
[ oo
Yr(p)

Reformulation on the reference domain Y*

=] Fr El= DA
Antoine P. Moreau 10 / 34
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Cell problem (EDL neglected)

° /VyX:Vdey:—/V’ndy

Ye(p)

st

om 1
e D" (p):Dspl—l—m / DV, x" dy

Yr(p)

Reformulation on the reference domain Y*
o [ (Vex.s ) Vevde+ [ (Vex): Vewdg=— [
Y YZ

n-v,g,d§
r*
sf

=] Fr El= DA
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Geometry-dependent periodic homogenization

) Problem statement
OM with additional parameters A ) d

Perspectives

Cell problem (EDL neglected)

° / Vyx: Vyvdy = —/v~ndy
Ye(p) st
o D™™(p) = Depl + lYi' / DV, x"dy

Yr(p)

Reformulation on the reference domain Y*

° / (Vgx* szjp) Vv, d§+/ (Vex+) : Vevi d€ = —/ n-v, g, d§
Y Y :

i

o DMm()) = Dapl—i—/ (Vgx* J,flj,,)T d£+/ Vex! dé
Y Y

*
c
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Geometry-dependent periodic homogenization

) Problem statement
OM with additional parameters A ) d
Persy P

Cell problem (EDL neglected)
° / Vyx: Vyvdy = —/v~ndy
Ye(p) st

om 1
o D™™(p) = Depl + ] / DV, x"dy

Yr(p)

Reformulation on the reference domain Y*

o [ (exed i) iVewde+ [ (Vex): Vewede = [ movig de
v v x

i

o DMm()) = Dapl—i—/ (Vgx* J,ilj;,)T d£+/ Vex! dé
Y Y

*
c

Condition of ROM efficiency

Separate variables p and £ in J, 'j,, J, %), j, and g,

ezl 2, 20 TS



Geometry-dependent periodic homogenization

Differentiation of 7,

© Jy(&) = 1,1 + 0, Veu(€) ot Gye) = I — 2 €T

. =Lty

[} Jp (5) ‘ 1 ﬂp(ﬁp||€||+uﬂ) u(g)
[ o (o + 5, d—1

o (&) = o, Lot ulEl)

&1
B d—1
[+ = —
& (m)

o Fr El= DA
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Geometry-dependent periodic homogenization

Differentiation of 7,

o Jy(€) = 1.0 + 0, Veu(€) ob Gyey = 1 — &€ €T
—1 _ 1 ap
° (=1 ST,y Su®

o (&) = o ot 5,11€l)??

&1
B d—1
o = —_—
& (m)

=T
Issue : J, 7,

=] Fr El= DA
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Differentiation of 7,

° Jy(€) = 0,1 + 0, Veu(€) obt Gue) = | — g€ €7

)= L - ——

-] Jp (ﬁ) - 3,7’ f'ﬂ,({i/)||é”+”/’) GU(&)
i o (o + 5, d—1

o (&) = o, Lot ulEl)

&1
B d—1
o = —_—
& (m)

=T
Issue : J, 7,

Dimension 3 : J, %), = (1’,7 +

20, a,’ ) 20,
T+ - I - =1G,
len o111

2
_ _ %
€] G = 7 e So

=] Fr El= DA
Antoine P. Moreau WED



Geometry-dependent periodic homogenization

ROM with additional parameters [Glem SR

Perspectives P

Differentiation of 7,
o Jy(€) = 1l + 0, Veu(&) ob Gyey = I — A& €T

(o, + 0, l1ED*

e J =3,
JP(&) f ||£||d—1

Issue : J, %),
20,
€Il

Dimension 2 : No exact formula, we develop

2 2
. . iy , 20, )
Dimension 3 : J, %j, = (ui,, + + o ) [ Gue) % Gue)

JlErR) el AT

in a power series

1
(FolI€lN + )

ezl 2, 20 Y



Geometry-dependent periodic homogenization

Reduced Order Model

X-(&p) = XX ap)di(8),
AP a(p) = CP )

() = 0w+ 500K (9)

u]
uj}
tht
ul
N ©
~ B
N ©

Antoine P. Moreau



Geometry-dependent periodic homogenization

Reduced Order Model

X-(&p) = XX ap)di(8),
AP a(p) = CP )
B""(s) = D (spl + S 30K, (@))

ROM coefficients

Matrix A, : A, = A+ Zo(p) Ao+ Z1(p) A1 + ...
Vector ¢, : ¢, =g, ¢C

Tensor K, : K, = K(¢;) + ©0(p) K(¢)), + ©1(p) K(bj); + ...

=} = == DA
Antoine P. Moreau 12/ 34



Geometry-dependent periodic homogenization

XOM with additional parameters

Problem statement
Perspectives A

Reduced Order Model

xX+(&p) = XX ai(p)9i(8),
Acalp) = cp,

5" = 0 (s + a0k (6)

ROM coefficients
Matrix A, : A, = A+ Zo(p) Ao+ Z1(p) AL + - ..
Vector ¢, : ¢, =g,C
Tensor K, : K, = K(¢;) + ©0(p) K(¢)), + ©1(p) K(bj); + ...
4] [ZLK = /Y* Vgcﬁk: v€¢j dy™*, ... [Alek = /Y* V€¢k Gu(g): V§¢j dY*'
° e, = /r* n- g dly

sf

(juj /ngbde K(9j), /ngbde K(o)), /ngj),

ezl 2, 20 YD



Geometry-dependent periodic homogenization

Cell Problem taking into account the electrical double layer (EDL)

o Fr El= DA
Antoine P. Moreau 13 /34



Geometry-dependent periodic homogenization

Cell Problem taking into account the electrical double layer (EDL)
. [ DivyDe 7 (1+V,x") = dans Y
Equation of x : { DeB7 (I+Vx).n = 0

sur g

0

o Fr El= DA
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Geometry-dependent periodic homogenization

Cell Problem taking into account the electrical double layer (EDL)
i —Be T
Equation of x : { DivyD e (I +VyXT)

De 7 (I +Vyx)-n
Poisson-Boltzmann : {

0

dans Y¢

= 0 sur gt
evAyp —2F Cysinh(By) = 0 dans Ys
e,Vyp-n = 0o sur g

=] Fr El= DA
Antoine P. Moreau 13 / 34



Cell Problem taking into account the electrical double layer (EDL)
Equation of x : {

DivyDe "7 (I + V,x™) =
De 7 (I +Vyx)-n

0
Poisson-Boltzmann : {

dans Y¢
= 0 sur gt
evAyp —2F Cysinh(By) = 0 dans Ys
e,Vyp-n = 0o sur g
Issue for POD-ROM

=] Fr El= DA
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Geometry-dependent periodic homogenization

XOM with additional parameters

Problem statement
Perspectives A

t fi ion

Cell Problem taking into account the electrical double layer (EDL)
DivyDe ™ ?* (I +V,x") = 0 dansY;
De P*(I+Vyx)-n = 0 sur gt

evAyp — 2F Gy, sinh (B p) 0 dans Yt
eVyp - n = o sur [g¢

Equation of x : {

Poisson-Boltzmann : {

Issue for POD-ROM

Galerkin projection : must be perfomed at each p pour sinh (B }75™ bi(p) ¢/ (£))
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Geometry-dependent periodic homogenization

XOM with additional parameters

Problem statement
Perspectives A

t fi ion

Cell Problem taking into account the electrical double layer (EDL)
DivyDe ™ ?* (I +V,x") = 0 dansY;
De P*(I+Vyx)-n = 0 sur gt

evAyp — 2F Gy, sinh (B p) 0 dans Yt
eVyp - n = o sur [g¢

Equation of x : {

Poisson-Boltzmann : {
Issue for POD-ROM

Galerkin projection : must be perfomed at each p pour sinh (B }75™ bi(p) ¢/ (£))
Coupling of POD-ROM : factor e A EE™ bile) 91(8)
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Geometry-dependent periodic homogenization

ROM with additional parameters [Glem SR

Perspectives P

Cell Problem taking into account the electrical double layer (EDL)

. DivyDe ™ ?* (I +V,x") = 0 dansY;
E fx: Y g ‘
quation of x { D e B% (I+Vyx)-n = 0 sur g
Poisson-Boltzmann : { @hyp=2FCosinh(By) = 0 dans ¥
eVyp - n = o sur [g¢

Issue for POD-ROM
Galerkin projection : must be perfomed at each p pour sinh (B }75™ bi(p) ¢/ (£))
Coupling of POD-ROM : factor e™# X" bi(P) ¢/ (8)

Solution : change of variable and POD on r = e~ 8%
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Geometry-dependent periodic homogenization

1] crrieh et el prremee [Glem SR

Perspectives P

Cell Problem taking into account the electrical double layer (EDL)

. DivyDe ™ ?* (I +V,x") = 0 dansY;
E fx: Y g ‘
quation of x { D e B% (I+Vyx)-n = 0 sur g
Poisson-Boltzmann : { @hyp=2FCosinh(By) = 0 dans ¥
eVyp - n = o sur [g¢

Issue for POD-ROM
Galerkin projection : must be perfomed at each p pour sinh (B }75™ bi(p) ¢/ (£))

Coupling of POD-ROM : factor e A EE™ bile) 91(8)
Solution : change of variable and POD on r = e~ 8%

Weak equation of ¢ : eV/V¢quY+2F Cl,/sinh(B ) qdY = /qursf Vg e W,
Yy Yy st

ezl 2, 20 Y



Geometry-dependent periodic homogenization
ROM with additional paramet el tatermeng .
Fr,\ A

Cell Problem taking into account the electrical double layer (EDL)

. DivyDe ™ ?” (I +V,x") = 0 dansY;
E fx: Y g ‘
quation of x { D e B% (I+Vyx)-n = 0 sur g
Poisson-Boltzmann : { @hyp=2FCosinh(By) = 0 dans ¥
eVyp - n = o sur [g¢

Issue for POD-ROM
Galerkin projection : must be perfomed at each p pour sinh (B }75™ bi(p) ¢/ (£))
Coupling of POD-ROM : factor e —B Y™ bile) ¥ (8)

Solution : change of variable and POD on r = e~ 8%

Weak equation of ¢ : eV/V¢quY+2F Cl,/sinh(B ) qdY = /qursf Vg e W,
Yy Yy st
Weak equation of r :
sv/ﬁlvpqu\ur C.,B/rqu— C1,B/r71qu+B/(fqdrsf =0 VYgeWw,
Yy Yy Yg st

ezl 2, 20 Y



Non linearity of the problem to be reduced

o Fr El= DA
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Non linearity of the problem to be reduced
@ Factor r~! appears in the equation of r
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Non linearity of the problem to be reduced
@ Factor r~! appears in the equation of r

o Galerkin projection : must be performed at each p forr ( im bi(p) ng,f(ﬁ))_1
iz

=] Fr El= DA
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Geometry- depe‘r:ﬁnt”phen‘oid{l‘? ‘h‘?n‘]ngn:Zat‘l‘O’n I‘:mblem statelrnentJ )

Perspe

Non linearity of the problem to be reduced

@ Factor r~! appears in the equation of r

o Galerkin projection : must be performed at each p forr ( S bi(p) o1(&) "
iz

Solution : decoupling of r and r—

ev/rﬂVr-quY—F CI)B/rqu C;)B/rilqu - B/”qdrsf
Y¢ Y¢ Y¢ st
rr71 = 1

ezl 2, 20 YD



Geometry-dependent periodic homogenization

ROM with additional parameter el tatermeng
Per Ap

Non linearity of the problem to be reduced

@ Factor r~! appears in the equation of r

o Galerkin projection : must be performed at each p forr ( im bi(p) gbf(g))_l
=1

Solution : decoupling of r and r~!

Ev/rflv,.quyq_ CI,B/rqu C,)B/r’lqu - B/qursf

Y¢ Y Ye Tst
rrt = 1
n. . L n, e
POD:r=> b¢fand r =5 b* ¢L"
i=1 e=1
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Geometry-dependent periodic homogenization
XOM with additional parameters

Problem statement

Non linearity of the problem to be reduced

@ Factor r~! appears in the equation of r

o Galerkin projection : must be performed at each p forr ( im bi(p) gbf(g))_l
=1

Solution : decoupling of r and r~!

Ev/rflv,.quyq_ CI,B/rqu C,)B/r’lqu - B/qursf

Y¢ Y Ye Tst
rrt = 1
n. . L n, e
POD:r=> b¢fand r =5 b* ¢L"
i=1 e=1

ROM using Galerkin projection :

ezl 2, 20 YD



Geometry-dependent periodic hcmogemzatlon

ROM with additional parameters el tatermeng

Perspectives s -

Non linearity of the problem to be reduced

@ Factor r~! appears in the equation of r

o Galerkin projection : must be performed at each p forr ( im bi(p) /(&)
=1

Solution : decoupling of r and r~!

ev/rﬂVr-quY—F CbB/fqu = ChB/rilqu - B/qursf
Y¢ Y¢ Y¢ st
rr71 = 1

POD : r = Z bt and r1 Z b* gL
i=1

ROM using Galerkin projection :

e AY b'b* + FC.B(D,yb' — DF, b*°) = —Bof, VI€l,....n
X b = kY, Vfel,...,n;

ezl 2, 20 YD



Geometry-dependent periodic homogenization

ROM with additional parameters el tatermeng
R Ap

ti

Non linearity of the problem to be reduced

@ Factor r~! appears in the equation of r

o Galerkin projection : must be performed at each p forr ( S bi(p) (,s,f(g))‘l
iz

Solution : decoupling of r and r~!

ev/rﬂVr-quY—F CbB/fqu = ChB/rilqu - B/qursf
Y¢ Y¢ Y¢ st
rr71 = 1

POD : r = Z b’@i)f and r ! = Z b%e@g*
i=1 e=1

ROM using Galerkin projection :

e AF . b'b*+ FC,B(Dy,b' =Dy b*°) = —Bof, VIel,...n
X b = kY, vfel,...,nf

Updating with p : A%, D,, D}, f,, C; and h; depend explicitely on p

ezl 2, 20 YD



Geometry-dependent periodic homogenization

ROM for x knowing r ~ Zr: bt

FOM:/

rVyx: VyvdY = /Vyr -vdY —
Y Y

st

i=1

/rv - ndl g
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Geometry-dependent periodic homogenization

ROM for x knowing r ~ Zr: bt

FOM:/

rVyx: VyvdY = /Vyr -vdY —
Y Y

st

i=1

/rv - ndl g
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Geometry-dependent periodic homogenization

ROM for x knowing r ~ Zr: bt

FOM:/

rVyx: VyvdY = /Vyr -vdY —
Y Y

Fse
POD: o r=> b(p)ef
i=1

i=1

/rv - ndl g
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Geometry-dependent periodic homogenization

ROM for x knowing r ~ Zr: bt

FOM:/

rVyx: VyvdY = /Vyr -vdY —
Y Y

/rv - ndl g
st
POD: o r=> b(p)ef
i=1
o r =Y "b"(p)ol
e=1

i=1

o Fr El= DA
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Geometry-dependent periodic homogenization

ROM for x knowing r ~ Zr: bt

FOM:/

rVyx: VyvdY = /Vyr -vdY —
Y Y

st
POD: o r=> b(p)ef
i=1

i=1

/rv - ndl g
o r =Y "b"(p)ol
e=1

=1

o Fr El= DA
Antoine P. Moreau 15/ 34
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Geometry-dependent periodic homogenization

ROM for x knowing r ~ Zr: bt

FOM:/

rVyx: VyvdY = /Vyr -vdY —
Y Y

/rv - ndl g
st
POD: o r=> b(p)ef
i=1
o r =Y "b"(p)ol
e=1

i=1

x

o Rul&p) =D () 4i(8)
j=1

ROM built from Galerkin projection : A¥ b'(p)d (p) = BX,.b'(p) —

C}kibi(p)

=] Fr El= DA
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Geometry-dependent periodic homogenization

ROM for x knowing r ~ Zr: bt

FOM:/

rVyx: VyvdY = /Vyr -vdY —
Ye Y¢

/rv - ndl g
st
POD: o r=> b(p)ef
i=1
o r =Y "b"(p)ol
e=1

i=1

o Rul&p) =D () 4i(8)

j=1
ROM built from Galerkin projection

Dhom . Dhom

A}jk,' bi(/’)aj(p) = BX, bi(p) - Cx
=

b kibi(p)
. 1 I "x
> (p) s, + g PRAODIEIOLS
i=1 j=1

=] Fr El= DA
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n,o
H 1 Lr
ROM for x knowing r =~ 21 b' ¢!
=

FOM : /rVyx: Vyde:/Vyr~de—/rv~ndrsf
Y Y

st
POD: o r=> b(p)ef
i=1

o r =3 b (p)ol

e=1

o Rul&p) =D () 4i(8)

j=1
ROM built from Galerkin projection

Dhom : Dhom

A}jk,' bi(/’)aj(p) = BX, bi(p) - Cx
Yy

i=1

o kibi(p)
. 1 I "x
> ) s+ g 2 PO A0 K
i=1 j=1

Explicit dependency of p : same thing than the ROM of Boltzmann factor r
o «F»> E= DAl



Geometry-dependent periodic homogenization

Summary of the ROM construction
Offline

o Fr El= DA
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Geometry-dependent periodic homogenization

Summary of the ROM construction
Offline

@ Compute snapshots x.(&, p1), -

' X*(€7pﬂsnap) et 90*(671)1)' - @*(£7pﬂsnap)

o Fr El= DA
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Geometry-dependent periodic homogenization

Summary of the ROM construction
Offline

@ Compute snapshots X« (&, p1), -

» Xx (&5 Pronap) €8 24 (§, 1),
@ Compute coefficients [CX]j = /X*(ﬁ; pi) - xx (& pr)dY™,

R @*(£7p"snap)
Y§
(€ o = / & pe) 1 (& pr) Y

*
Yf

=] Fr El= DA
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Geometry-dependent periodic homogenization

Summary of the ROM construction
Offline

@ Compute snapshots X« (&, p1), -

' X*(€7p"snap) et @*(€7p1)l st @*(£7p"snap)
@ Compute coefficients [CX]j = /X*(ﬁ; pi) - xx (& pr)dY™,
Y

(€ Q= [ (&) (G o)A
© Build basis (¢j)sz<1 (67); et (607)

=] Fr El= DA
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Summary of the ROM construction
Offline

@ Compute snapshots X« (&, p1), -

» Xx (&5 Pronap) €8 24 (§, 1),
@ Compute coefficients [CX]j = /X*(é; pi) - xx (& pr)dY™,

ey, @*(&7 p"snap)
Yy

. B B .

(€ Q= [ (&pn) (G p)aY
Y§

@ Build basis (¢;)™, (¢]); et (4L7)

@ Compute coefficients A, Ay

=] Fr El= DA
Antoine P. Moreau 16 / 34



Geometry-dependent periodic homogenization

ROM with additional parameters [Glem SR

Perspectives P

Summary of the ROM construction

Offline
© Compute snapshots X«(&,p1), - -, Xx(&; Pronap) €8 04 (&,01), - s ©4(&, Pronap)
@ Compute coefficients [CX]j = /X*(g; pi) - x+(& pr)dY™,
Y§

A€ e = [ (& pe) (& pr) AY
/

© Build basis (qi)-)fi‘1 (o7)i et (L7 )e
@ Compute coefficients A, Ay ...

Online

For P ¢ {p17"' 7pnsnap} :
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Geometry-dependent periodic homogenization

ROM with additional parameters [Glem SR

Perspectives P

Summary of the ROM construction

Offline
© Compute snapshots X«(&,p1), - -, Xx(&; Pronap) €8 04 (&,01), - s ©4(&, Pronap)
@ Compute coefficients [CX]j = /X*(g; pi) - x+(& pr)dY™,
Y§

A€ e = [ (& pe) (& pr) AY
/

© Build basis (qi)-)fi‘1 (o7)i et (L7 )e
@ Compute coefficients A, Ay ...

Online

For p ¢ {p17 s 7pnsnap} :
@ Update A%, AX ... using p and tensors Aj Ag
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Geometry-dependent periodic homogenization

1] crrieh et el prremee [Glem SR

Perspectives P

Summary of the ROM construction

Offline
© Compute snapshots X«(&,p1), - -, Xx(&; Pronap) €8 04 (&,01), - s ©4(&, Pronap)
@ Compute coefficients [CX]j = /X*(g; pi) - x+(& pr)dY™,
Y§

A€ e = [ (& pe) (& pr) AY
/

© Build basis (qi)-)fi‘1 (¢7)i et (oL7)e
@ Compute coefficients A, Ay ...

Online

For P ¢ {p17 v 7pnsnap} :
@ Update A%, AX ... using p and tensors Aj Ag
@ Resolution of the nested ROMs to obtain (b;)i(p) and (a;);(p)
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Geometry-dependent periodic homogenization

ROM with additional parameters el tatermeng
R Ap

ti

Summary of the ROM construction

Offline
© Compute snapshots X«(&,p1), - -, Xx(&; Pronap) €8 04 (&,01), - s ©4(&, Pronap)
@ Compute coefficients [CX]j = /X*(g; pi) - x+(& pr)dY™,
Y§

A€ e = [ (& pe) (& pr) AY
/

© Build basis (¢.)J’_73<1 (60); et (60°)e
@ Compute coefficients A, Ay ...

Online

For P ¢ {p17 v 7pnsnap} :
@ Update A, AX ... using p and tensors A Ao
@ Resolution of the nested ROMs to obtain (b;)i(p) and (a;);(p)

© Computation in a reduced time of tensor 5h°m(/)) estimated by ROM

ezl 2, 20 Y



Geomet

ependent periodic homogei

Generalization to multiple inclusions

Piecewise defined transformations

Ye RN
/ I‘V\
| \
' /
N Yealea)
o N ealp)-”
BN o
/
' )
4 Yia(p1)
3 ]
\
a) Reference elementary cell

b) Actual clementary cell
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Geometry-dependent periodic homogenization

Generalization to multiple inclusions

Piecewise defined transformations
A RN Y. PERREN
// iy w\‘ .'/ FV\\
\ 5 | p
L / _ o Yeale)/
S o \‘Y‘C'Z(_)/
/"y';:\ @ /,m’m%\ a@
’ Y / R
| - i )
f T | Yia(pr)
\ ! \ !
. y A /
K = UAmual elementary cell

) Reference clementary cell

&n+ (}'/)nu(g - &n) + ﬂ/m(& - fn)a if § € Y:,na for 1< n < n;,
if & € Y,

To(§) =

b

=} Fr El= DA
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Geometry-dependent periodic homogenization

Generalization to multiple inclusions

Piecewise defined transformations

7o(£)

{

£" + (l,/)"ll(g - &") + ‘S/’n (£ - 6")7

)

N -

) Reference clementary cell

Affine dependency on the parameters

Ai’(jki =A+

Zo((0) Ao +

Zi((0) Au

Ye RN
/ FW\
! \
{ /
3 Yi2(p2)r

A /

.
N Yea(pa)-”

BN o
\
\
Yia(p1)
]
/

N -

b) Actual clementary cell

*

if&ecY:,,

if & €Yy,

+ ...

for 1 <n<ng,

=} =)

DA
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Geometry-dependent periodic homogenization

Generalization to multiple inclusions

Piecewise defined transformations

7o(£)

Affine dependency on the parameters

X
AP Jki

{

£" + (l,/)"ll(g - &") + ‘S/’n (£ - 6")7

)

N -

) Reference clementary cell

Ye RN
/ FW\
! \
{ /
3 Yi2(p2)r

A /

.
N Yea(pa)-”

BN o
\
\
Yia(p1)
]
/

N -

b) Actual clementary cell

*

if&ecY:,,

if & €Yy,

= Z + Z:IES(/M) AO,n + Z:lzi’(/)n) Al,n +...

Antoine P. Moreau 17/ 34

for 1 <n<ng,
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DA



Geometry-dependent periodic homogenization

Numerical application

two varying parameters

Bidimensional cell : 8 inclusions with two parameters o1 et 0>
(p1, p2) = (0.1387, 0.0547) (pl, pz) = (0.05
R T EEE

R

11, 0.1485)  (pe1, ps2) = (0.109, 0.109)

o5

a) Example of geometry

b) Example of geometry

C) Reference geometry

o Fr El= DA
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Geometry-dependent periodic homogenization

Numerical application

two varying parameters

-

Bidimensional cell : 8 inclusions with two parameters o1 et 0>
(p1, p2) = (0.1387, 0.0547)  (

p1, p2) = (0.0511, 0.1485)  (pe.1,p+2 ) = (0.109, 0.109)
g TR X R

a) Example of geometry b) Example of geometry

C) Reference geometry

o Fr El= DA
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o Radii p,, n =1,3,5,7 are parametrized by o1 such as p, = 01 ps,n ;



Numerical application : two varying parameters

Bidimensional cell : 8 inclusions with two parameters o1 et 0>
(pr, p2)

(0.1387, 0.0547)  (p1, po

) = (0.0511, 0.1485)

o5

(ps,1, px,2 ) = (0.109, 0.109)

a) Example of geometry b) Example of geometry

C) Reference geometry
e Radii p,, n =2,4,6,8 are parametrized by g» such as p, = 02 px,n.

o Fr El= DA
Antoine P. Moreau 18 / 34

o Radii p,, n =1,3,5,7 are parametrized by o1 such as p, = 01 ps,n ;



Geometry-dependent periodic homogenization

Examples of snapshots

Reference mesh Field x«

Field ¢,

-0

2
o 2 S
Tyt

) 3

= DA
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Geometry-dependent periodic homogenization

t ion

, Problem statement
OM with additional parameters A d d

yectives

Examples of snapshots

Reference mesh Field ¢, Field x«

iy

S
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Geometry-dependent periodic homogenization

Results for a bidimensional cell

Shom — |7D| / e—B‘PdY
phom — ghom j o phom oo D Yy
Thom = ¥ / e PV, xTdY
Yy

S .
0.1407 | | 24
21
0125} 1 T8
& 01004 | la | Ls
0.0938 | 1 4 0.9
0.6
0.0782 | 1 - 03
00625 L . 0.0
I IR N B RSy N
AU R G
RIS N N
PL L
a) st b) Tf™ o) ™
. h
@ Maximum error of 0.13% on s*°™
=] =)
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t ion

Results for a bidimensional cell

Shom — 3 / e—deY
[Y]
phom _ ghom j 4 phom o D Yy
Thom i / e BPv, xTdY
Yy

27
0.1407 24
21
0.125 s
0.1094 L5
& 12
0.0938 0.9
0.6
0.0782 03
0.0625 0.0
gbb
&
N

@ Maximum error of 0.13% on s"™
@ Maximum error of 2.7% on Tho™
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Geometry-dependent pel ic homogenization
ROM with additic

Problem statement

t fi ion

Results for a bidimensional cell

Shom _ 3 E_B Y dYy
[Y]
phom _ ghom j 4 phom o D Yy
Thom = i / e PPV, xTdY
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@ Maximum error of 0.13% on s?°™
o Maximum error of 2.7% on Thom
@ The proposed approach is valid for multiparametric domains
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Diffusion tensor
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on the solid-fluid interface)

e D"™ depends on G, (ionic concentration in the bulk) and o (surface charge present
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Sensitivity of the EDL's physical parameters

Diffusion tensor

on the solid-fluid interface)

e D"™ depends on G, (ionic concentration in the bulk) and o (surface charge present
o Objective : compute D™ (p, C,, o) in a reduced time
Issue
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First approach: ITSGM interpolation
Second approach: Multiparametric sampling

Sensitivity of the EDL’s physical parameters

Diffusion tensor

@ D"™ depends on C; (ionic concentration in the bulk) and o (surface charge present
on the solid-fluid interface)

o Objective : compute D™ (p, C,, o) in a reduced time

Issue

@ ROM is built for fixed values (Ci0,00) of each physical parameter
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First approach: ITSGM interpolation
Second approach: Multiparametric sampling

Sensitivity of the EDL’s physical parameters

Diffusion tensor

@ D"™ depends on C; (ionic concentration in the bulk) and o (surface charge present
on the solid-fluid interface)

o Objective : compute D™ (p, C,, o) in a reduced time

Issue
@ ROM is built for fixed values (Ci0,00) of each physical parameter

@ A POD basis is only valuable for values (Cy,, o) close to the construction ones
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ROM with additional parameters

Interpolation of POD basis

@ Construction of POD basis for different values (Ci, o«) of pair (G, o)




ROM with additional parameters

Interpolation of POD basis

@ Construction of POD basis for different values (Ci, o«) of pair (G, o)

@ For any new value (G, 5), interpolate these basis via :




First approach: ITSGM interpolation
Second approach: Multiparametric sampling

Interpolation of POD basis

@ Construction of POD basis for different values (Cy«, o«) of pair (G, o)

@ For any new value (E;,,E), interpolate these basis via :

Direct interpolation Interpolation on the tangent space
Gives bad results to the Grassmann manifold
Ta,9(q, Na)

Oulghelou et al., 2021

ezl 2, 20 =T



First approach: ITSGM interpolation
Second approach: Multiparametric sampling

Interpolation of POD basis

@ Construction of POD basis for different values (Cy«, o«) of pair (G, o)

@ For any new value (a:,?i), interpolate these basis via :

Direct interpolation Interpolation on the tangent space
Gives bad results to the Grassmann manifold
T209(4; Nz)

Oulghelou et al., 2021
© Construction and resolution of ROM
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Numerical application to a bidimensional monoparametric cell

Periodic microstructure Elementary Cell

Construction of ROMs
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Numerical application to a bidimensional monoparametric cell

Periodic microstructure Elementary Cell

Construction of ROMs
@ 6 snapshots, with p = 0.45, 0.55, ...0.95

Antoine P. Moreau 23 /34



ROM with additional parameters

Numerical application to a bidimensional monoparametric cell

Periodic microstructure

Construction of ROMs

@ 6 snapshots, with p = 0.45, 0.55, ...0.95

@ Reference radius p, = 0.8

Antoine P. Moreau

Elementary Cell




ROM with additional parameters

Numerical application to a bidimensional monoparametric cell

Periodic microstructure Elementary Cell

Construction of ROMs
@ 6 snapshots, with p = 0.45, 0.55, ...0.95
@ Reference radius p, = 0.8
@ 4 POD modes for each (G, o)

=] Fr El= DA
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endent periodic homogenization
ROM with additional parameters

First approach: ITSGM interpolation

Perspectives Second approach: Multiparametric sampling
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@ POD-ROM built for 64 values of pair (G, o)
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pendent periodic homogenization
ROM with additional parameters

First approach: ITSGM interpolation
Second approach: Multiparametric sampling

Perspectives
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@ POD-ROM built for 64 values of pair (G, o)

@ Simulation on 49 values of (a,(?)
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Geometry-dependent periodic homogenization

RO it el prrenmeis First approach: ITSGM interpolation

Second approach: Multiparametric sampling

Perspectives
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@ POD-ROM built for 64 values of pair (G, o)

@ Simulation on 49 values of (a,(?)

o Maximum error : < 1%
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Geometry-dependent periodic homogenization

RO it el prrenmeis First approach: ITSGM interpolation

Second approach: Multiparametric sampling

Perspectives
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@ POD-ROM built for 64 values of pair (G, o)

Simulation on 49 values of (a, 7)

°
@ Maximum error : < 1%
o Fast computation compared to FEM
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Multiparametric sampling (MPS)

Principle
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Multiparametric sampling (MPS)

Principle

(pka Cbk)ak)

o For each field x, r, r~!, compute a series of snapshots from different values of
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Multiparametric sampling (MPS)

Principle
(pka Cbk) Uk)

o For each field x, r, r~!, compute a series of snapshots from different values of

@ Build and truncate the three POD basis, one for each field
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First approach: ITSGM interpolation
Second approach: Multiparametric sampling

Multiparametric sampling (MPS)

Principle

o For each field x, r, r~!, compute a series of snapshots from different values of
(/)Im Cbka Uk)
@ Build and truncate the three POD basis, one for each field

o Compute the ROM coefficients using the Galerkin projection
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First approach: ITSGM interpolation
Second approach: Multiparametric sampling

ROM with additional parameters

Multiparametric sampling (MPS)

Principle

o For each field x, r, r~!, compute a series of snapshots from different values of
(/)kv Cbka Uk)
@ Build and truncate the three POD basis, one for each field

@ Compute the ROM coefficients using the Galerkin projection

The key feature: Poisson-Boltzmann equation

evAp —2F Cysinh(By) = 0
eVo-n = o.
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First approach: ITSGM interpolation
Second approach: Multiparametric sampling

ROM with additional parameters

Multiparametric sampling (MPS)

Principle

o For each field x, r, r~!, compute a series of snapshots from different values of
(/)kv Cbka Uk)
@ Build and truncate the three POD basis, one for each field

@ Compute the ROM coefficients using the Galerkin projection

The key feature: Poisson-Boltzmann equation

evAp —2F Cysinh(By) = 0
eVo-n = o.
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First approach: ITSGM interpolation
Second approach: Multiparametric sampling

ROM with additional parameters

Multiparametric sampling (MPS)

Principle

o For each field x, r, r~!, compute a series of snapshots from different values of
(/)kv Cbka Uk)
@ Build and truncate the three POD basis, one for each field

@ Compute the ROM coefficients using the Galerkin projection

The key feature: Poisson-Boltzmann equation

evAp —2F Cysinh(By) = 0
eVo-n = o.

Affine dependency is still possible with ¢ and G,

ezl 2, 20 7T



ROM with additional parameters

Numerical application: a bidimensionnal cell depending on a single

geometric parameter
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ROM with additional parameters

Numerical application: a bidimensionnal cell depending on a single

geometric parameter
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POD-ROM construction

@ 6 radii values p, = 0.45, 0.55, ...0.95 ...
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ROM with additional parameters

Numerical application: a bidimensionnal cell depending on a single
geometric parameter
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POD-ROM construction

@ 6 radii values p, = 0.45, 0.55, ...0.95 ...
@ ... per 7 valeurs du couple (G, o)
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ROM with additional parameters

Numerical application: a bidimensionnal cell depending on a single

geometric parameter
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POD-ROM construction

@ 6 radii values p, = 0.45, 0.55, ...0.95 ...

@ ... per 7 valeurs du couple (G, o)

@ 9 modes POD retained

o <F > Bl DAl
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ROM with additional parameters

Numerical application: a bidimensionnal cell depending on a single

geometric parameter

oo e
a a & s & a s ° >
R P o
POD-ROM construction
@ 6 radii values p, = 0.45, 0.55, ...0.95 ...
@ ... per 7 valeurs du couple (G, o)
@ 9 modes POD retained
Validation :
o> <Fr El= DA
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Numerical application: a bidimensionnal cell depending on a single

ROM with additional parameters

geometric parameter

e e

. & 2.4
R P o
POD-ROM construction :
@ 6 radii values p, = 0.45, 0.55, ...0.95 ...
° per 7 valeurs du couple (G, o)
@ 9 modes POD retained
Validation :
@ 49 values of (G, )
o <F > Bl DAl
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First approach: ITSGM interpolation
Second approach: Multiparametric sampling

Numerical application: a bidimensionnal cell depending on a single
geometric parameter
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POD-ROM construction

@ 6 radii values p, = 0.45, 0.55, ...0.95 ...
° per 7 valeurs du couple (G, o)
@ 9 modes POD retained
Validation
@ 49 values of (CNb,(Nr)

o Errors on s™°™ and TE°™ less than 3% for 45 values of (Cy,0)
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The TOPS project (with Julien Berger CR CNRS)
Shape optimization

TL(t) DL
5
1(x,t,D)

=] Fr El= DA
Antoine P. Moreau 27/ 34



The TOPS project (with Julien Berger CR CNRS)
Shape optimization

Wall shape : D(p) for some p

TL(t) aDu(p
5
Goo(X,1,D)
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The TOPS project (with Julien Berger CR CNRS)
Shape optimization

Wall shape : D(p) for some p

For all p : compute numerically

TL(t) aDu(p
5
Goo(X,1,D)
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The TOPS project (with Julien Berger CR CNRS)
Shape optimization

Wall shape : D(p) for some p

For all p : compute numerically
@ Solar flux gu.(s, t)

TL
(1) DL
25
1(x,t,D)
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The TOPS project (with Julien Berger CR CNRS)
Shape optimization

Wall shape : D(p) for some p

For all p : compute numerically
@ Solar flux gu.(s, t)

L
Tx(1) aDL(p
=0/
o Temperature T(x,t) ﬁC)qw(x,tﬁp)

=] Fr El= DA
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g n Real-time shape optimization
tional parameters A multiphysics model of ionic diffusion
Perspectives Numerically computed transformation

The TOPS project (with Julien Berger CR CNRS)

Shape optimization

Wall shape : D(p) for some p

For all p : compute numerically TL(t) Du(p
@ Solar flux gu.(s, t)
7 5

o Temperature T(x,t)
o A thermal cost C(p)
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g n Real-time shape optimization
tional parameters A multiphysics model of ionic diffusion
Perspectives Numerically computed transformation

The TOPS project (with Julien Berger CR CNRS)

Shape optimization
Wall shape : D(p) for some p

For all p : compute numerically

@ Solar flux gu.(s, t)
o Temperature T(x,t)
o A thermal cost C(p)

Optimisation : Find p°"* = arg min C(p)
p
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Perspectlves

Real tlme shape opﬂmnzatlon

model of ionic diffusi

Numerlcally computed transformation

The TOPS project (with Julien Berger CR CNRS)

Shape optimization
Wall shape : D(p) for some p

For all p : compute numerically

@ Solar flux gu.(s, t)
o Temperature T(x,t)
o A thermal cost C(p)

Optimisation : Find p°"* = arg min C(p)
p

Implementation

Antoine P. Moreau

November 20, 2025
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Real tlme shape opﬂmnzatlon
model of ionic diffusi
Perspectlves Numerlcally computed transformation

The TOPS project (with Julien Berger CR CNRS)

Shape optimization

Wall shape : D(p) for some p }ZI’
aD
For all p : compute numerically TE(b) a0y :
Q
@ Solar flux gu.(s, t) 2% S
o Temperature T(x,t) (x(X..p) T(xt) aDx
o A thermal cost C(p)
dDp .
Optimisation : Find p°"* = arg min C(p) ) 0
p

Implementation

o Meteorological model for .., TL
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Real tlme shape opﬂmnzatlon
model of ionic diffusi
Perspectlves Numerlcally computed transformation

The TOPS project (with Julien Berger CR CNRS)

Shape optimization

Wall shape : D(p) for some p }ZI’
aD
For all p : compute numerically TE(b) a0y :
Q
@ Solar flux gu.(s, t) 2% S
o Temperature T(x,t) (x(X..p) T(xt) aDx
o A thermal cost C(p)
dDp .
Optimisation : Find p°"* = arg min C(p) ) 0
p

Implementation

o Meteorological model for .., TL

® go.(x,t; p): simulated with Monte-Carlo
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Real tlme shape optlmlzatlon
model of ionic diffusi
Numerlcally computed transformation

The TOPS project (with Julien Berger CR CNRS)

Shape optimization

Wall shape : D(p) for some p ;
dD
For all p : compute numerically TL(t) oD '
@ Solar flux gu.(s, t) %’C) S
o Temperature T(x,t) (X.t,p) T(x,1) oDy
o A thermal cost C(p)
dDp I
Optimisation : Find p°"* = arg min C(p) ) 0
p

Implementation

@ Meteorological model for g, TL
® go.(x,t; p): simulated with Monte-Carlo
@ T(x,t) computed with the Finite Element Method

ezl 2, 20 B



Simulation over a month
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Simulation over a month

@ Urban environment: a canyon street
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@ Urban environment: a canyon street

@ C(p): outdoor heat transfer
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Simulation over a month

Perspectives

@ Urban environment: a canyon street

@ C(p): outdoor heat transfer

Result : december 2022
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Simulation over a month

Perspectives

@ Urban environment: a canyon street

@ C(p): outdoor heat transfer

Result : december 2022

@ Outcoming heat flux : ~ —13% over a month
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Perspectives

Simulation over a month

@ Urban environment: a canyon street

@ C(p): outdoor heat transfer

Result : december 2022

c(p)

"
[= 11480

10543

o6 z=1(y:p)

0.4 4
0.9627

0.2

0.0 + 0.5710

@ Outcoming heat flux : ~ —13% over a month
@ MC simulation of g..: 90% of the CPU cost
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Real-time shape control
Parametrized POD
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Real-time shape control
Parametrized POD

Nrom

o T(x,t;,p) = Z ai(t)0i(x; p)

i=1
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Real-time shape control
Parametrized POD

Nrom

o T(x,t;,p) = Z ai(t)0i(x; p)

i=1

@ C(p): computed by the ROM (real time)
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Real-time shape control
Parametrized POD

o T(xt;,p)= 5+ a(t)6i(x; p)

i=

@ C(p): computed by the ROM (real time)
ROM: summary
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Real-time shape control
Parametrized POD

o T(x,t;,p)= >, ai(t)8i(x; p)
o C(p): computed by the ROM (real time)
ROM: summary
Offline For pj in p1,

PN
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Real-time shape optimization
rarn s A multiphysics model of ionic diffusion
Perspectives Numerically computed transformation

Real-time shape control

Parametrized POD

Nrom

° T(xt;,p)= > ai(t)0i(x; p)

i=1

@ C(p): computed by the ROM (real time)

ROM: summary
Offline For pj in p1, ..., pn

e Compute g (s, t; ,p;) and T(x,t; ,p) on a reference domain D,
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g Real-time shape optimization
tional parameters A multiphysics model of ionic diffusion
Perspectives Numerically computed transformation

Real-time shape control

Parametrized POD

Nrom

° T(xt;,p)= > ai(t)0i(x; p)

i=1

@ C(p): computed by the ROM (real time)

ROM: summary
Offline For pj in p1, ..., pn

e Compute g (s, t; ,p;) and T(x,t; ,p) on a reference domain D,
@ Build POD beasis 6;(-, p;) on D,;
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Real tlme shape opﬂmnzatlon
model of ionic diffusi
Perspectlves Numerlcally computed transformation

Real-time shape control

Parametrized POD

Nrom

° T(xt;,p)= > ai(t)0i(x; p)

i=1

@ C(p): computed by the ROM (real time)

ROM: summary
Offline For pj in p1, ..., pn

e Compute g (s, t; ,p;) and T(x,t; ,p) on a reference domain D,
@ Build POD beasis 6;(-, p;) on D,;

Online For a given p"®
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o Real tlme shape optlmlzatlon
>arameters model of ionic diffusi
Perspectives Numerlcally computed transformation

Real-time shape control

Parametrized POD

Nrom

° T(xt;,p)= > ai(t)0i(x; p)

i=1

o C(p): computed by the ROM (real time)

ROM: summary
Offline For pj in p1, ..., pn

e Compute g (s, t; ,p;) and T(x,t; ,p) on a reference domain D,
@ Build POD beasis 6;(-, p;) on D,;

Online For a given p"®
@ Build the new POD basis 6;(-, p"")
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Real tlme shape opﬂmlzatlon
model of ionic diffusi
Perspectlves Numerlcally computed transformation

Real-time shape control

Parametrized POD

Nrom

° T(xt;,p)= > ai(t)0i(x; p)

i=1

o C(p): computed by the ROM (real time)

ROM: summary
Offline For pj in p1, ..., pn

e Compute g (s, t; ,p;) and T(x,t; ,p) on a reference domain D,
@ Build POD beasis 6;(-, p;) on D,;

Online For a given p"®

@ Build the new POD basis 6;(-, p"")
o Apply Galerkin projection and compute a;(t)
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Real tlme shape optlmlzatlon
model of ionic diffusi
Numerlcally computed transformation

Real-time shape control

Parametrized POD

Nrom

° T(xt;,p)= > ai(t)0i(x; p)

i=1

o C(p): computed by the ROM (real time)

ROM: summary
Offline For pj in p1, ..., pn

e Compute g (s, t; ,p;) and T(x,t; ,p) on a reference domain D,
@ Build POD beasis 6;(-, p;) on D,;

Online For a given p"®

@ Build the new POD basis 6;(-, p"")
o Apply Galerkin projection and compute a;(t)

Remarks
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Real-time shape optimization
A multiphysics model of ionic diffusion
Numerically computed transformation

Real-time shape control

Parametrized POD

Nrom

° T(xt;,p)= > ai(t)0i(x; p)

i=1

o C(p): computed by the ROM (real time)

ROM: summary
Offline For pj in p1, ..., pn

e Compute g (s, t; ,p;) and T(x,t; ,p) on a reference domain D,
@ Build POD beasis 6;(-, p;) on D,;

Online For a given p""

@ Build the new POD basis 6;(-, p"")
o Apply Galerkin projection and compute a;(t)

Remarks
@ POD basis (-, p™") must be interpolated
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Real-time shape optimization
A multiphysics model of ionic diffusion
Numerically computed transformation

Real-time shape control

Parametrized POD

o T(xt;,p)= 5+ a(t)6i(x; p)

i=1

o C(p): computed by the ROM (real time)

ROM: summary
Offline For pj in p1, ..., pn

e Compute g (s, t; ,p;) and T(x,t; ,p) on a reference domain D,
@ Build POD beasis 6;(-, p;) on D,;

Online For a given p""

@ Build the new POD basis 6;(-, p"")
o Apply Galerkin projection and compute a;(t)

Remarks
@ POD basis (-, p™") must be interpolated

@ No need of a MC simulation for g (s, t; , p"™")
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Modelling chloride diffusion (with R. Cherif MCF ULR)

The microstructure evolution
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The microstructure evolution
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o Real-time shape optimization
r A multiphysics model of ionic diffusion
Numerically computed transformation

Perspectives

Modelling chloride diffusion (with R. Cherif MCF ULR)

The microstructure evolution
Go(t) : lonic diffusion
p(t) : Portlandite melting

Multiscale model

oG, <e_B‘p>
Ty — divx (D"™(t) (VxCo + B GoVx¢h)) =0

o Provides Gy(t)
Portlandite volume : p(t) = f(Cy(t)), ad-hoc model
Cell problem : POD-ROM

e Depends on Gy(t), p(t)
o Provides D"™(¢t)

Macroscale gp

CPU performance

Full-order: macroscale only
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Reference P”

Axiomatic definition
o ¥°(I') = si(p)
@ )’ preserves other interfaces pointwise
e 1” is regular enough

Key : 1)” solution of a PDE, with BC on I'};

The Cell problem
-1 . -1 . * * d
/ (Vex.dgh )+ (Vevdyh)jwe dY* = —/v-n* g,dr;, Vv € V?
Y§ i
Caveat jyp and J;}) should be computed numerically for each p ...

...involving a full-order problem
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o jyr : develop det(Jyrcut + (9 — peust)d i) through det multilinearity
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Problem statement
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Transformations without an explicit dependency in p

Problem statement

Solve fastly / <V£X* Igh) (vsvj;;)jw dy* = — / von, g drl ...
YE s

and AepP 0 sur Y7
o PP (&) w? sur THUTY
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Suggestion : POD-ROM * ~ 4P = >~ di(p) ¥i(&)
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Full-order problem : The Nitsche method
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*
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Problem statement
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Transformations without an explicit dependency in p

Problem statement

Solve fastly / <V£X* Igh) (vst;;)jw ay* = —/v-n* g,drl ...

* *
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and AepP 0 sur Y7
o PP (&) w? sur THUTY

Suggestion : POD-ROM P ~ )P = é di(p) (&)
Full-order problem : The Nitsche method
J:u»—)%/Vgu:VgudY*— / (u—m"’)ng:dr;}+%z]E / (u—w")2 dary .
Y; r;‘furg r; ury
Caveat : ROM construction

Sixth-order tensor : [A], . = / (Vedi @) : (Ve di @) 01 ¥ A D2 B Y™

*
Y§

Bidimensional Cell : ['E}jﬂk = / Ve : (ng)j <I>§{nv com (Vg‘P/)) dY™, since J,J,prjwp = com (JlPP)-
'Y*
f
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