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c±∇Ψ : transport of ions by the electrical field E = −∇Ψ

Poisson equation

εv∆Ψ = ρ, in Yf
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Charge density ρ = F (c+ − c−) for a pair (c+, c−)

Electrochemical equilibrium : Ψ = 0 and ∇Ψ = 0, we have the Fick law

Antoine P. Moreau November 20, 2025 2 / 34



Geometry-dependent periodic homogenization
ROM with additional parameters

Perspectives

Problem statement
A parameter-dependent transformation

Modelling ionic diffusion in porous media

Ionic diffusion : Nernst-Planck equations{
∂c±
∂t
− D± div (∇c± + B c±∇Ψ) = 0 in Yf

−D± (∇c± + B c±∇Ψ) · n = 0 on Γsf

c±∇Ψ : transport of ions by the electrical field E = −∇Ψ

Poisson equation

εv∆Ψ = ρ, in Yf

εv∇Ψ · n = σ, on Γsf

Charge density ρ = F (c+ − c−) for a pair (c+, c−)

Electrochemical equilibrium : Ψ = 0 and ∇Ψ = 0, we have the Fick law

Antoine P. Moreau November 20, 2025 2 / 34



Geometry-dependent periodic homogenization
ROM with additional parameters

Perspectives

Problem statement
A parameter-dependent transformation

Modelling ionic diffusion in porous media

Ionic diffusion : Nernst-Planck equations{
∂c±
∂t
− D± div (∇c± + B c±∇Ψ) = 0 in Yf

−D± (∇c± + B c±∇Ψ) · n = 0 on Γsf

c±∇Ψ : transport of ions by the electrical field E = −∇Ψ

Poisson equation

εv∆Ψ = ρ, in Yf

εv∇Ψ · n = σ, on Γsf

Charge density ρ = F (c+ − c−) for a pair (c+, c−)

Electrochemical equilibrium : Ψ = 0 and ∇Ψ = 0, we have the Fick law

Antoine P. Moreau November 20, 2025 2 / 34



Geometry-dependent periodic homogenization
ROM with additional parameters

Perspectives

Problem statement
A parameter-dependent transformation

Modelling ionic diffusion in porous media

Ionic diffusion : Nernst-Planck equations{
∂c±
∂t
− D± div (∇c± + B c±∇Ψ) = 0 in Yf

−D± (∇c± + B c±∇Ψ) · n = 0 on Γsf

c±∇Ψ : transport of ions by the electrical field E = −∇Ψ

Poisson equation

εv∆Ψ = ρ, in Yf

εv∇Ψ · n = σ, on Γsf

Charge density ρ = F (c+ − c−) for a pair (c+, c−)

Electrochemical equilibrium : Ψ = 0 and ∇Ψ = 0, we have the Fick law

Antoine P. Moreau November 20, 2025 2 / 34



Geometry-dependent periodic homogenization
ROM with additional parameters

Perspectives

Problem statement
A parameter-dependent transformation

Modelling ionic diffusion in porous media

Ionic diffusion : Nernst-Planck equations{
∂c±
∂t
− D± div (∇c± + B c±∇Ψ) = 0 in Yf

−D± (∇c± + B c±∇Ψ) · n = 0 on Γsf

c±∇Ψ : transport of ions by the electrical field E = −∇Ψ

Poisson equation

εv∆Ψ = ρ, in Yf

εv∇Ψ · n = σ, on Γsf

Charge density ρ = F (c+ − c−) for a pair (c+, c−)

Electrochemical equilibrium : Ψ = 0 and ∇Ψ = 0, we have the Fick law

Antoine P. Moreau November 20, 2025 2 / 34



Geometry-dependent periodic homogenization
ROM with additional parameters

Perspectives

Problem statement
A parameter-dependent transformation

Influence of the electrical double layer (EDL)

`pores ≤ `D ∝ 1√
Cb

:
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c± = Cb e

∓B ϕ

Poisson-Boltzmann
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1 Scale separation: ε =
`

L
� 1.

2 Space variables x and y are independent

3 Unknowns c±, Cb, ψb et ϕ are developped in a formal series of the perturbation parameter ε

4 Nested problems to solve: homogenized model
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A multiscale problem (Bourbatache et al., 2012)

Homogenized equation

εp
∂Cb

〈
e−Bϕ

〉
y

∂t
− divx

(
Dhom (∇xCb + B Cb∇xψb)

)
= 0

Homogenized diffusion tensor

Dhom =
1

|Y|

∫
Yf (ρ)

De−βϕ
(
I +∇yχ

ᵀ)
dy where β =

F

RT

Cell problem

Poisson-Boltzmann equations :{
εv∆ϕ = 2 F Cb sinh βϕ on Yf

εv∇ϕ · n = σ on Γsf

Local variable χ :{
DivyD e−βϕ (I +∇yχ

ᵀ) = 0 on Yf

D e−βϕ (I +∇yχ) · n = 0 on Γsf

Γsf

Ys
Ys Ys

Yf

Y

n
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ROM with additional parameters

Perspectives

Problem statement
A parameter-dependent transformation

1 Compute Dhom for an elementary cell
coming from a real image

2 Computation of Dhom for a great
number of geometries

Takes into account the multi-scale variability of
the material

Resolution a great number of times with Finite
element Method very costly

Use model order reduction

Jewell et al., 2015

Principle of model order reduction

χ(ρ1
1, ρ

1
2) χ(ρk1 , ρ

k
2) χ(ρnew1 , ρnew2 )

1 Computation of χ and then Dhom for (ρ1
1, ρ

1
2), . . . , (ρk1 , ρ

k
2)

2 Fast computation of Dhom(ρnew1 , ρnew2 )
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Geometry-dependent periodic homogenization
ROM with additional parameters

Perspectives

Problem statement
A parameter-dependent transformation

Objective : approximate u(x,µ) on a reduced basis (φi )
nrom
i=1

u(x; µ) '
nrom∑
i=1

ai (µ)φi (x)

1 Basis (φi )
nrom
i=1 is precomputed

2 Coefficients (ai )i (µ) are solution of the ROM :

〈
f (

nrom∑
i=1

ai (µ)φi (x),µ), φj

〉
= 0 ∀j

I Obtained from Galerkin projection of the full-order model (φi )
nrom
i=1

I Algebraic equations system
I Fast resolution

A construction method for the reduced basis (φi )
nrom
i=1

Choice of POD : basis (φi )
nrom
i=1 is optimal

Snapshots method (POD) :
Particular solutions u(x,µ1), . . . , u(x,µNµ)

Correlations tensor
[
C
]
kj

=
1

Nµ

∫
Y

u(µk , x
′)u(µj , x

′)dx′

 Reduction−−−−−→
of C

(φi )i
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2 Coefficients (ai )i (µ) are solution of the ROM :

〈
f (

nrom∑
i=1

ai (µ)φi (x),µ), φj

〉
= 0 ∀j

I Obtained from Galerkin projection of the full-order model (φi )
nrom
i=1

I Algebraic equations system
I Fast resolution

A construction method for the reduced basis (φi )
nrom
i=1

Choice of POD : basis (φi )
nrom
i=1 is optimal

Snapshots method (POD) :
Particular solutions u(x,µ1), . . . , u(x,µNµ)

Correlations tensor
[
C
]
kj

=
1

Nµ

∫
Y

u(µk , x
′)u(µj , x

′)dx′

 Reduction−−−−−→
of C

(φi )i
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Geometry-dependent periodic homogenization
ROM with additional parameters

Perspectives

Problem statement
A parameter-dependent transformation

Issue : ROM construction for the parametrized cell problem depending on ρ

Snapshots for two different cells : ρ1 6= ρ2

χ(y ,ρ1) ϕ(y ,ρ1) χ(y ,ρ2) ϕ(y ,ρ2)

Correlations tensor puisque ρ1 6= ρ2 :

[Cϕ]12 =

∫
Ω

ϕ(y ;ρ1)ϕ(y ;ρ2) dΩ et [Cχ]12 =

∫
Ω

χ(y ;ρ1) · χ(y ;ρ2)dΩ

are not defined

POD basis (φϕi )i et (φχi )i : cannot be built
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Geometry-dependent periodic homogenization
ROM with additional parameters

Perspectives

Problem statement
A parameter-dependent transformation

Parametrized transformation τρ : Y? → Y

q

Γ⋆
sf

Y⋆
s

Y⋆
c

Y⋆
e

b
ξ

τρ

qΓsf(ρ)

Ys(ρ)

Yc(ρ)

Ye

b y

Direct transformation : τρ?,ρ(ξ) = βρξ + αρ
ξ

‖ ξ ‖

Dependency in ρ : αρ = q
ρ − ρ?
q − ρ?

et βρ =
q − ρ
q − ρ?

Inverse transformation : τ−1
ρ?,ρ (y) = τρ,ρ? (y) = 1

βρ
y − αρ

βρ

y
‖y‖
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Geometry-dependent periodic homogenization
ROM with additional parameters

Perspectives

Problem statement
A parameter-dependent transformation

Cell problem (EDL neglected)

∫
Yf (ρ)

∇yχ : ∇yvdy = −
∫

Γsf

v · n dy

Dhom(ρ) = DεpI +
1

|Y|

∫
Yf (ρ)

D∇yχ
ᵀ dy

Reformulation on the reference domain Y?

∫
Y?c

(
∇ξχ? Jρ−2jρ

)
: ∇ξv? dξ +

∫
Y?e

(∇ξχ?) : ∇ξv? dξ = −
∫

Γ?
sf

n · v? gρ dξ

Dhom(ρ) = DεpI +

∫
Y?c

(
∇ξχ? Jρ−1jρ

)ᵀ
dξ +

∫
Y?e

∇ξχᵀ
? dξ

Condition of ROM efficiency

Separate variables ρ and ξ in Jρ−1jρ, Jρ−2jρ, jρ and gρ
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Geometry-dependent periodic homogenization
ROM with additional parameters

Perspectives

Problem statement
A parameter-dependent transformation

Differentiation of τρ

Jρ(ξ) = βρI + αρ∇ξu(ξ) où Gu(ξ) = I − 1
‖ξ‖2 ξ ξ

ᵀ

J−1
ρ (ξ) = 1

βρ
I − αρ

βρ(βρ‖ξ‖+αρ)
Gu(ξ)

jρ(ξ) = βρ
(αρ + βρ‖ξ‖)d−1

‖ξ‖d−1

gρ =

(
ρ

ρ?

)d−1

Issue : Jρ−2jρ

Dimension 3 : Jρ−2jρ =

(
βρ +

2αρ
‖ξ‖ +

αρ
2

βρ‖ξ‖2

)
I − 2αρ
‖ξ‖Gu(ξ) −

αρ
2

βρ‖ξ‖2
Gu(ξ)

Dimension 2 : No exact formula, we develop
1

(βρ‖ξ‖+ αρ)
in a power series
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Geometry-dependent periodic homogenization
ROM with additional parameters

Perspectives

Problem statement
A parameter-dependent transformation

Reduced Order Model
χ̂?(ξ; ρ) =

∑nχ
j=1 aj(ρ)φj(ξ) ,

Aρ a(ρ) = cρ ,

D̂hom(ρ) = D

(
εpI +

nχ∑
k=1

aj(ρ)Kρ (φj)

)

ROM coefficients

Matrix Aρ : Aρ = A + Ξ0(ρ) A0 + Ξ1(ρ) A1 + . . .

Vector cρ : cρ = gρ c

Tensor Kρ : Kρ = K(φj) + Θ0(ρ) K(φj)0 + Θ1(ρ) K(φj)1 + . . .

[
A
]
jk

=

∫
Y?e

∇ξφk : ∇ξφj dY
?, . . . ,

[
A1

]
jk

=

∫
Y?c

∇ξφk Gu(ξ) : ∇ξφj dY
?, . . .

[
c
]
k

=

∫
Γ?
sf

n · φk dΓ?sf

K(φj ) =

∫
Y?e

∇ξφj dY
?, K(φj )0 =

∫
Y?c

∇ξφj dY
?, K(φj )1 =

∫
Y?c

∇ξφj Gu(ξ) dY
?, . . .
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Geometry-dependent periodic homogenization
ROM with additional parameters

Perspectives

Problem statement
A parameter-dependent transformation

Cell Problem taking into account the electrical double layer (EDL)

Equation of χ :

{
DivyD e−βϕ (I +∇yχ

ᵀ) = 0 dans Yf

D e−βϕ (I +∇yχ) · n = 0 sur Γsf

Poisson-Boltzmann :

{
εv∆yϕ− 2F Cb sinh (B ϕ) = 0 dans Yf

εv∇yϕ · n = σ sur Γsf

Issue for POD-ROM

Galerkin projection : must be perfomed at each ρ pour sinh
(
B
∑nrom

i=1 bi (ρ)φr
i (ξ)

)
Coupling of POD-ROM : factor e−β

∑nrom
i=1 bi (ρ)φr

i (ξ)

Solution : change of variable and POD on r = e−Bϕ

Weak equation of ϕ : εv

∫
Yf

∇ϕ∇qdY + 2F Cb

∫
Yf

sinh (B ϕ) qdY =

∫
Γsf

σqdΓsf ∀q ∈ Wρ

Weak equation of r :

εv

∫
Yf

r−1∇r · ∇qdY + CbB

∫
Yf

rqdY − CbB

∫
Yf

r−1qdY + B

∫
Γsf

σqdΓsf = 0 ∀q ∈ Wρ
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Geometry-dependent periodic homogenization
ROM with additional parameters

Perspectives

Problem statement
A parameter-dependent transformation

Non linearity of the problem to be reduced

Factor r−1 appears in the equation of r

Galerkin projection : must be performed at each ρ forr
( nrom∑

i=1

bi (ρ)φr
i (ξ)

)−1

Solution : decoupling of r and r−1
εv

∫
Yf

r−1∇r · ∇q dY + CbB

∫
Yf

rqdY = CbB

∫
Yf

r−1qdY − B

∫
Γsf

σqdΓsf

r r−1 = 1

POD : r =
nr∑
i=1

biφri and r−1 =
nr∑
e=1

b>
e
φr ∗e

ROM using Galerkin projection :

εvA>
ρ ile

bib>e
+ FCbB

(
Dρ ilb

i −D>
ρ le

b>e)
= −Bσfρ l ∀l ∈ 1, . . . , nr

C>
ρ eif

bib>e
= h>

ρ f
∀f ∈ 1, . . . , n∗r

Updating with ρ : A>
ρ , Dρ, D>

ρ , fρ, C>
ρ and h>

ρ depend explicitely on ρ
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Perspectives

Problem statement
A parameter-dependent transformation

ROM for χ knowing r '
nr∑
i=1

biφri

FOM :

∫
Yf

r∇yχ : ∇yvdY =

∫
Yf

∇y r · vdY −
∫

Γsf

rv · ndΓsf

POD : r =

nr∑
i=1

bi (ρ)φr
i

r−1 =

nr∑
e=1

b>e
(ρ)φr ∗

e

χ̂?(ξ; ρ) =

nχ∑
j=1

aj(ρ)φj(ξ)

ROM built from Galerkin projection : Aχρ jki
bi (ρ)aj(ρ) = Bχρ ki

bi (ρ)− Cχρ ki
bi (ρ)

Dhom : D̂hom =
1

|Y?|

nr∑
i=1

bi (ρ) sρ i +
1

|Y?|

nr∑
i=1

bi (ρ)

nχ∑
j=1

aj(ρ) K r
ρ ij

Explicit dependency of ρ : same thing than the ROM of Boltzmann factor r
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Geometry-dependent periodic homogenization
ROM with additional parameters

Perspectives

Problem statement
A parameter-dependent transformation

Summary of the ROM construction

Offline

1 Compute snapshots χ?(ξ, ρ1), . . . , χ?(ξ, ρnsnap) et ϕ?(ξ, ρ1), . . . , ϕ?(ξ, ρnsnap)

2 Compute coefficients [Cχ]jk =

∫
Y?

f

χ?(ξ;ρj) · χ?(ξ;ρk) dY?,

. . . [C r−1

]ef =

∫
Y?

f

r−1
? (ξ;ρe) r−1

? (ξ;ρf )dY?

3 Build basis (φj)
nχ
j=1 (φr

i )i et (φr ∗
e )e

4 Compute coefficients A>
0 , A0 . . .

Online

For ρ /∈ {ρ1, . . . , ρnsnap} :

1 Update A>
ρ , Aχρ . . . using ρ and tensors A>

0 A0

2 Resolution of the nested ROMs to obtain (bi )i (ρ) and (aj)j(ρ)

3 Computation in a reduced time of tensor D̂hom(ρ) estimated by ROM
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Geometry-dependent periodic homogenization
ROM with additional parameters

Perspectives

Problem statement
A parameter-dependent transformation

Generalization to multiple inclusions

Piecewise defined transformations

q1

Γ⋆
1Y⋆

s,1

Y⋆
c,1

q2

Γ⋆
2Y⋆

s,2

Y⋆
c,2

Y⋆
e

a) Reference elementary cell

τ̂ρ

Ye

q1Γ1(ρ1)

Ys,1(ρ1)

Yc,1(ρ1)

q2

Γ2(ρ2)

Ys,2(ρ2)

Yc,2(ρ2)

b) Actual elementary cell

τ̂ρ(ξ) =

{
ξn + αρnu(ξ − ξn) + βρn (ξ − ξn), if ξ ∈ Y?c,n, for 1 ≤ n ≤ ns,
ξ, if ξ ∈ Y?e ,

Affine dependency on the parameters

Aχρ jki
= A +

ns∑
n=1

Ξ0((ρ) A0

,n

+

ns∑
n=1

Ξ1((ρ) A1

,n

+ . . .
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Geometry-dependent periodic homogenization
ROM with additional parameters

Perspectives

Problem statement
A parameter-dependent transformation

Numerical application : two varying parameters

Bidimensional cell : 8 inclusions with two parameters %1 et %2

(ρ1, ρ2) = (0.1387, 0.0547) (ρ1, ρ2) = (0.0511, 0.1485) (ρ?,1, ρ?,2 ) = (0.109, 0.109)

a) Example of geometry b) Example of geometry c) Reference geometry

Radii ρn, n = 1, 3, 5, 7 are parametrized by %1 such as ρn = %1 ρ?,n ;

Radii ρn, n = 2, 4, 6, 8 are parametrized by %2 such as ρn = %2 ρ?,n.
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Problem statement
A parameter-dependent transformation

Examples of snapshots

Reference mesh Field ϕ? Field χ?

10 snapshots : LHS method (Latin Square Hyperbube)

Antoine P. Moreau November 20, 2025 19 / 34



Geometry-dependent periodic homogenization
ROM with additional parameters

Perspectives

Problem statement
A parameter-dependent transformation

Examples of snapshots

Reference mesh Field ϕ? Field χ?

10 snapshots : LHS method (Latin Square Hyperbube)

Antoine P. Moreau November 20, 2025 19 / 34



Geometry-dependent periodic homogenization
ROM with additional parameters

Perspectives

Problem statement
A parameter-dependent transformation

Results for a bidimensional cell

Dhom = shom I + Thom where


shom =

D

|Y|

∫
Yf

e−B ϕ
dY

Thom =
D

|Y|

∫
Yf

e−B ϕ∇y χ
ᵀ
dY

Maximum error of 0.13% on shom

Maximum error of 2.7% on Thom

The proposed approach is valid for multiparametric domains

Antoine P. Moreau November 20, 2025 20 / 34



Geometry-dependent periodic homogenization
ROM with additional parameters

Perspectives

Problem statement
A parameter-dependent transformation

Results for a bidimensional cell

Dhom = shom I + Thom where


shom =

D

|Y|

∫
Yf

e−B ϕ
dY

Thom =
D

|Y|

∫
Yf

e−B ϕ∇y χ
ᵀ
dY

Maximum error of 0.13% on shom

Maximum error of 2.7% on Thom

The proposed approach is valid for multiparametric domains

Antoine P. Moreau November 20, 2025 20 / 34



Geometry-dependent periodic homogenization
ROM with additional parameters

Perspectives

Problem statement
A parameter-dependent transformation

Results for a bidimensional cell

Dhom = shom I + Thom where


shom =

D

|Y|

∫
Yf

e−B ϕ
dY

Thom =
D

|Y|

∫
Yf

e−B ϕ∇y χ
ᵀ
dY

Maximum error of 0.13% on shom

Maximum error of 2.7% on Thom

The proposed approach is valid for multiparametric domains

Antoine P. Moreau November 20, 2025 20 / 34



ROM with additional parameters



Geometry-dependent periodic homogenization
ROM with additional parameters

Perspectives

First approach: ITSGM interpolation
Second approach: Multiparametric sampling

Sensitivity of the EDL’s physical parameters

Diffusion tensor

Dhom depends on Cb (ionic concentration in the bulk) and σ (surface charge present
on the solid-fluid interface)

Objective : compute Dhom(ρ,Cb, σ) in a reduced time

Issue

ROM is built for fixed values (Cb0, σ0) of each physical parameter

A POD basis is only valuable for values (Cb, σ) close to the construction ones
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Geometry-dependent periodic homogenization
ROM with additional parameters

Perspectives

First approach: ITSGM interpolation
Second approach: Multiparametric sampling

Interpolation of POD basis

1 Construction of POD basis for different values (Cbk , σk) of pair (Cb, σ)

2 For any new value (C̃b, σ̃), interpolate these basis via :

Direct interpolation Interpolation on the tangent space
Gives bad results to the Grassmann manifold

Oulghelou et al., 2021

3 Construction and resolution of ROM
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ROM with additional parameters

Perspectives

First approach: ITSGM interpolation
Second approach: Multiparametric sampling

Numerical application to a bidimensional monoparametric cell

Periodic microstructure Elementary Cell

Construction of ROMs

6 snapshots, with ρ = 0.45, 0.55, . . . 0.95

Reference radius ρ? = 0.8

4 POD modes for each (Cb, σ)
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Geometry-dependent periodic homogenization
ROM with additional parameters

Perspectives

First approach: ITSGM interpolation
Second approach: Multiparametric sampling

POD-ROM built for 64 values of pair (Cb, σ)

Simulation on 49 values of (C̃b, σ̃)

Maximum error : < 1%

Fast computation compared to FEM
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Geometry-dependent periodic homogenization
ROM with additional parameters

Perspectives

First approach: ITSGM interpolation
Second approach: Multiparametric sampling

Multiparametric sampling (MPS)

Principle

For each field χ, r , r−1, compute a series of snapshots from different values of
(ρk ,Cbk , σk)

Build and truncate the three POD basis, one for each field

Compute the ROM coefficients using the Galerkin projection

The key feature: Poisson-Boltzmann equation

εv∆ϕ− 2F Cb sinh (B ϕ) = 0
εv∇ϕ · n = σ.

Affine dependency is still possible with σ and Cb
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Geometry-dependent periodic homogenization
ROM with additional parameters

Perspectives

First approach: ITSGM interpolation
Second approach: Multiparametric sampling

Numerical application: a bidimensionnal cell depending on a single
geometric parameter

POD-ROM construction :

6 radii values ρk = 0.45, 0.55, . . . 0.95 . . .
. . . per 7 valeurs du couple (Cb, σ)
9 modes POD retained

Validation :

49 values of (C̃b, σ̃)
Errors on shom and Thom

11 less than 3% for 45 values of (Cb, σ)
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Geometry-dependent periodic homogenization
ROM with additional parameters

Perspectives

Real-time shape optimization
A multiphysics model of ionic diffusion
Numerically computed transformation

The TOPS project (with Julien Berger CR CNRS)

Shape optimization

Wall shape : D(p) for some p

For all p : compute numerically

Solar flux q∞(s, t)
Temperature T (x, t)
A thermal cost C(p)

Optimisation : Find popt = arg min
p
C(p)

Implementation

Meteorological model for q∞, T L
∞

q∞(x, t; p): simulated with Monte-Carlo

T (x, t) computed with the Finite Element Method
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Numerically computed transformation

Simulation over a month

Urban environment: a canyon street

C(p): outdoor heat transfer

Result : december 2022

x = η (y;p)

x
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(p)

Outcoming heat flux : ' −13% over a month

MC simulation of q∞: 90% of the CPU cost
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A multiphysics model of ionic diffusion
Numerically computed transformation

Real-time shape control

Parametrized POD

T (x, t; , p) =
nrom∑
i=1

ai (t)θi (x; p)

C(p): computed by the ROM (real time)

ROM: summary

Offline For pj in p1, . . . , pN

Compute q∞(s, t; , pj) and T (x, t; , p) on a reference domain Dref

Build POD basis θi (·, pj) on Dref

Online For a given pnew

Build the new POD basis θi (·, pnew)
Apply Galerkin projection and compute ai (t)

Remarks

POD basis θi (·, pnew) must be interpolated

No need of a MC simulation for q∞(s, t; , pnew)
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Geometry-dependent periodic homogenization
ROM with additional parameters

Perspectives

Real-time shape optimization
A multiphysics model of ionic diffusion
Numerically computed transformation

Modelling chloride diffusion (with R. Cherif MCF ULR)

The microstructure evolution

Cb(t) : Ionic diffusion

ρ(t) : Portlandite melting

Multiscale model

Macroscale εp
∂Cb

〈
e−Bϕ

〉
y

∂t
− divx

(
Dhom(t) (∇xCb + B Cb∇xψb)

)
= 0

Provides Cb(t)

Portlandite volume : ρ(t) = f (Cb(t)), ad-hoc model

Cell problem : POD-ROM

Depends on Cb(t), ρ(t)
Provides Dhom(t)

CPU performance

Full-order: macroscale only
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Geometry-dependent periodic homogenization
ROM with additional parameters

Perspectives

Real-time shape optimization
A multiphysics model of ionic diffusion
Numerically computed transformation

Reference ψρ Target

Axiomatic definition :

ψρ(Γ?sf) = Γsf(ρ)
ψρ preserves other interfaces pointwise
ψρ is regular enough

Key : ψρ solution of a PDE, with BC on Γ?sf

The Cell problem∫
Y?
f

(
∇ξχ? J−1

ψρ

)
:
(
∇ξv J−1

ψρ

)
jψρ dY

? = −
∫

Γ?
sf

v · n? gρdΓ?sf , ∀v ∈ V d
?

Caveat jψρ and J−1
ψρ

should be computed numerically for each ρ . . .

. . . involving a full-order problem
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Geometry-dependent periodic homogenization
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Perspectives

Real-time shape optimization
A multiphysics model of ionic diffusion
Numerically computed transformation

A monoparametric cell (A. Falaize, IR ULR)

The Dirichlet problem 
∆ξψ

ρ = 0 on Y?f

ψρ(ξ) = ρ
ξ

‖ξ‖
on Γ?sf (ρ?)

ψρ(ξ) = ξ on Γ?]

A trick for model order reduction

ψ
ρ = ψ

ρcust + (ρ − ρcust)ψrelev

ψρcust : particular solution, mesh diffusion for ρ = ρcust

ψrelev : solution of ∆ξψ
relev = 0 with appropriate boundary conditions

. . . only two full-order problems to be solved!

Numerical application

Thom
11 e χ

Increased accuracy : 1% in the worst case instead of 6%

Execution time : same gain than with τρ
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Geometry-dependent periodic homogenization
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Perspectives

Real-time shape optimization
A multiphysics model of ionic diffusion
Numerically computed transformation

Obtention of the reduced-order model

Characteristics

Explicit dependency of ρ

Decomposition of ψρ

ψρ = ψρcust + (ρ − ρcust)ψrelev

ψρcust : particular solution for ρ = ρcust
ψrelev : solution of ∆ξψ

relev = 0

The Cell problem formulated on Y?∫
Y?

f

(
∇ξχ?J−1

ψρ

)
:
(
∇ξv?J−1

ψρ

)
jψρ dY

? = −
∫

Γ?
sf

n? · v? gρ dΓ?sf

jψρ : develop det
(
Jψρcust + (ρ − ρcust)Jψrelev

)
through det multilinearity

Issue with J−1
ψρ : nonlinearity

Solution : POD-ROM J−1
ψρ ' Ĵ−1

ψρ(ξ) =
niJac∑
k=1

bk(ρ)Φinv
k (ξ) applied to J−1

ψρ Jψρ = I
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ψρ = ψρcust + (ρ − ρcust)ψrelev

ψρcust : particular solution for ρ = ρcust
ψrelev : solution of ∆ξψ

relev = 0

The Cell problem formulated on Y?∫
Y?

f

(
∇ξχ?J−1

ψρ

)
:
(
∇ξv?J−1

ψρ

)
jψρ dY

? = −
∫

Γ?
sf

n? · v? gρ dΓ?sf

jψρ : develop det
(
Jψρcust + (ρ − ρcust)Jψrelev

)
through det multilinearity

Issue with J−1
ψρ : nonlinearity

Solution : POD-ROM J−1
ψρ ' Ĵ−1

ψρ(ξ) =
niJac∑
k=1

bk(ρ)Φinv
k (ξ) applied to J−1

ψρ Jψρ = I

Antoine P. Moreau November 20, 2025 33 / 34



Geometry-dependent periodic homogenization
ROM with additional parameters

Perspectives

Real-time shape optimization
A multiphysics model of ionic diffusion
Numerically computed transformation

Obtention of the reduced-order model

Characteristics

Explicit dependency of ρ

Decomposition of ψρ

ψρ = ψρcust + (ρ − ρcust)ψrelev

ψρcust : particular solution for ρ = ρcust
ψrelev : solution of ∆ξψ

relev = 0

The Cell problem formulated on Y?∫
Y?

f

(
∇ξχ?J−1

ψρ

)
:
(
∇ξv?J−1

ψρ

)
jψρ dY

? = −
∫

Γ?
sf

n? · v? gρ dΓ?sf

jψρ : develop det
(
Jψρcust + (ρ − ρcust)Jψrelev

)
through det multilinearity

Issue with J−1
ψρ : nonlinearity

Solution : POD-ROM J−1
ψρ ' Ĵ−1
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Geometry-dependent periodic homogenization
ROM with additional parameters

Perspectives

Real-time shape optimization
A multiphysics model of ionic diffusion
Numerically computed transformation

Transformations without an explicit dependency in ρ

Problem statement

Solve fastly

∫
Y?
f

(
∇ξχ? J−1

ψρ

)
:
(
∇ξv J−1

ψρ

)
jψρ dY

? = −
∫

Γ?
sf

v · n? gρdΓ?sf . . .

. . . and

{
∆ξψ

ρ = 0 sur Y?f
ψρ(ξ) = ωρ sur Γ?sf ∪ Γ?]

.

Suggestion : POD-ROM ψρ ' ψ̂ρ =
nψ∑
l=1

dl (ρ)Ψl (ξ)

Full-order problem : The Nitsche method

J : u 7→
1

2

∫
Y?
f

∇ξu : ∇ξu dY
? −

∫
Γ?
sf
∪Γ?
]

(
u − ωρ

) ∂u
∂n?

dΓ?sf +
γ0

2hsf

∫
Γ?
sf
∪Γ?
]

(
u − ωρ

)2
dΓ?sf .

Caveat : ROM construction

Sixth-order tensor :
[
Ã
]
jilmqk

=

∫
Y?
f

(
∇ξ φi Φ

inv
k

)
:
(
∇ξ φj Φ

inv
q

)
∂ξ1 Ψl ∧ ∂ξ2 Ψm dY

?

Bidimensional Cell :
[
Ã
]
jilk

=

∫
Y?
f

∇ξφi :
(
∇ξφj Φ

inv
k com (∇ξΨl )

)
dY

?
, since Jψρ

−ᵀ jψρ = com
(
Jψρ

)
.

Antoine P. Moreau November 20, 2025 34 / 34



Geometry-dependent periodic homogenization
ROM with additional parameters

Perspectives

Real-time shape optimization
A multiphysics model of ionic diffusion
Numerically computed transformation

Transformations without an explicit dependency in ρ

Problem statement

Solve fastly

∫
Y?
f

(
∇ξχ? J−1

ψρ

)
:
(
∇ξv J−1

ψρ

)
jψρ dY

? = −
∫

Γ?
sf

v · n? gρdΓ?sf . . .

. . . and

{
∆ξψ

ρ = 0 sur Y?f
ψρ(ξ) = ωρ sur Γ?sf ∪ Γ?]

.

Suggestion : POD-ROM ψρ ' ψ̂ρ =
nψ∑
l=1

dl (ρ)Ψl (ξ)

Full-order problem : The Nitsche method

J : u 7→
1

2

∫
Y?
f

∇ξu : ∇ξu dY
? −

∫
Γ?
sf
∪Γ?
]

(
u − ωρ

) ∂u
∂n?

dΓ?sf +
γ0

2hsf

∫
Γ?
sf
∪Γ?
]

(
u − ωρ

)2
dΓ?sf .

Caveat : ROM construction

Sixth-order tensor :
[
Ã
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Ã
]
jilk

=

∫
Y?
f

∇ξφi :
(
∇ξφj Φ

inv
k com (∇ξΨl )

)
dY

?
, since Jψρ

−ᵀ jψρ = com
(
Jψρ

)
.

Antoine P. Moreau November 20, 2025 34 / 34



Thank you for your attention
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