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Origine

1 en 2004, début du questionnement sur la stabilité pour les corps ou systèmes
élastiques sous chargement sans potentiel (A. Rigolot, E. Absi)

2 3 aspects "équivalents"
1) systèmes sans Lagrangien
2) matrice de rigidité K(p) non symétrique
3) cycle mécanique à bilan non nul

3 extension du cadre d’application : actions extérieures sans potentiel ou ac-
tions de liaison hypo-élastiques et lien avec la plasticité non associée K =
"matrice de rigidité tangente", travaux en commun avec F. Darve, F. Ni-
cot, N. Challamel =⇒ explication de l’utilisation du terme "Hill stability"
ou critère du travail du second ordre de F. Darve (Hill 1959, 1960)
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Exemple jouet : système de Ziegler, aspects 1 et 2
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Σ = {OA,AB}, OA = AB = `,
M = S1 × S1

système de coordonnées (θ, φ),

aspect 1 : FP (θ, φ) = P` sin(θ −
φ)dθ, dFP 6= 0  pas de potentiel

0 = (0, 0) unique configuration

d’équilibre, p =
P`

k

K(p) =

(
2− p −1 + p
−1 1

)
 

aspect 2 : K(p) non symétrique
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Exemple jouet : système de Ziegler, aspect 3

aspect 3 : cycle γ à bilan non nul
1 γ = γ1 ∨ γ2 ∨ γ3 cycle tracé sur M
2 (chaque chemin paramétré sur [0, 1]) γ1(t) = (0, tα) :

∮
γ1

FP = 0, γ2(t) =

(tα, α) :
∮
γ2

FP = P`(cosα− 1), γ3(t) = ((1− t)α, (1− t)α) :
∮
γ3

FP = 0∮
γ
FP = P`(cosα− 1)

3 cycle γ
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Présentation de la question de base. Solutions

1 cas ultimes de systèmes statiquement stables quelque soit le chargement
=⇒ proposition d’un "nouveau" critère d’instabilité : perte du caractère
défini positif de la partie symétrique Ks (p) de K(p) : Hill (in)stabilité

2 exemple jouet det(K(p)) = 1 quelque soit p : p∗div = +∞
3 solution "usuelle" : impossibilité d’une approche quasi-statique =⇒ instabi-

lité seulement dynamique par flottement  p∗fl dépendant de la répartition
des masses.

4 solution "nouvelle" : det(Ks (p)) = 1− p2

4 = 0 p∗hill = 2
5 remarque : contrainte cinématique "générique" : aθ + φ = 0  p∗div (a) =

a2 + 2a + 2
a + 1

=⇒ min
a

p∗div (a) = p∗div (0) = 2 atteinte pour a = 0 soit pour la

contrainte φ = 0
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Stabilité Structurelle Cinématique (KISS)

1 idée clé : comportement non trivial et a priori "paradoxal" concernant la
stabilité sous ajout de contraintes cinématiques (holonomes) : une position
d’équilibre (Lyapounov) stable sous un chargement p∗ peut devenir instable
si l’on bloque certains mouvements par ajout de contraintes cinématiques
bien choisies

2 2009-2014 émergence et étude du concept de Stabilité Structurelle Ciné-
matique (KISS) à partir de ce phénomène "paradoxal" : choisir p∗ tel que
Ks (p∗) non inversible (Hill instabilité), prendre X ∗ non nul dans Ker(Ks (p∗))
puis contraindre le système par la contrainte définie par K(p∗)X ∗ = Ka(p∗)X ∗

(le système est supposé stable pour la divergence sous le chargement p∗ bien
entendu : K(p∗)X ∗ 6= 0 ! !)

3 résultat complet : la Hill stabilité du système Σ est équivalente à la Lyapou-
nov divergence stabilité de Σ et de tous les sous-systèmes ΣC obtenus par
ajout d’une famille quelconque C de contraintes cinématiques : formulation
variationnelle sur tous les sous-sytèmes de Σ.

4 émergence du problème dual en 2014 et du concept associé de Degré Géo-
métrique de Nonconservativité (GDNC)
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Le cadre usuel d’algèbre linéaire et les notations

1 Σ système holonome, q = (q1, . . . , qn) système de coordonnées de la variété
M des configurations de Σ, qe une configuration d’équilibre de Σ

2 étude restreinte à TqeM considéré dans un premier temps comme un espace
euclidien (E , (. | .)) =⇒ E∗ ∼ E

3 une C famille de p contraintes ∼ un sous espace vectoriel FC de E de
dimension p

4 si u ∈ L(E) et si F sev de E , le compressé uF de u sur F est l’élément de
L(F ) défini par uF = pF ◦ u ◦ iF

5 un objet mécanique défini sur Σ décrit par un opérateur linéaire u ∈ L(E)
sera décrit pour le système ΣC contraint par une famille C de contraintes
cinématiques par le compressé uF⊥

C
de u sur l’orthogonal de FC .

6 résultat autour du KISS : si u est injective alors toutes ses compressées le
restent tant que sa partie symétrique us = 1

2 (u + u∗) reste injective. Dès
qu’elle cesse de l’être, on peut trouver (de manière constructive) un sev F
(un hyperplan en fait) pour lequel la compressée sur F dégénère
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GDNC discret linéaire : définition et position du problème

Objectif principal

mesure géométrique de l’importance de la non conservativité dépendant le moins
possible de p

Degré Géomérique de Nonconservativité d (GDNC) de Σ

1) (Mécanique) d def
= minC card(C) telle que ΣC est conservatif.

2) (En termes de compression) dimension maximale s des sous-espaces F sur
lesquels uF est symétrique (s = n − d)

Questions

1) (Mécanique) calculer d , trouver une famille C solution, trouver toutes les
familles C solutions.
2) (En termes de compression) calculer s, trouver un sev F solution, trouver
toutes les sev F solutions.
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GDNC discret linéaire : solution

Le critère va porter sur la partie antisymétrique ua = 1
2 (u − u∗) de u. Les sous

espaces F doivent vérifier la condition (ua(x) | y) = 0 ∀x , y ∈ F . On rappelle
le théorème de décomposition dans R de tout endomorphisme antisymétrique
ua : Ker ua et Im ua sont orthogonaux, dim Im ua =rang ua = 2d est paire et il
existe une famille G1, . . .Gd de sev de Im ua de dimension 2, orthogonaux deux
à deux, stables par ua tels que E = Ker ua ⊥ G1 ⊥ . . . ⊥ Gd .

Proposition

Soit Σ un système mécanique dont les efforts à l’équilibre sont décrits par l’opé-
rateur u. Le GDNC d est la moitié du rang de la partie antisymétrique ua de
u (qui est toujours paire). Une solution du problème en terme mécanique est
formée par le choix d’un vecteur propre dans chaque sous espace propre de l’en-
domorphisme symétrique u2

a (excepté pour la valeur propre 0) engendrant une
famille de d contraintes. Une solution en termes de compressions est donnée par
les sev F = Ker ua ⊥ F1 ⊥ . . . ⊥ Fd où chaque Fi est un sev de dimension 1 de
Gi pour i = 1 . . . d .
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Exemple : charge ponctuelle

1 chargement ponctuel : colonne de Ziegler ou Hencky (version discrète à n
ddl de la colonne de Beck (continu))

2 n = 3,Ka =
p

2

 0 0 1
0 0 1
−1 −1 0


3 rang Ka = 2 (si p 6= 0 ! !), d = 1

4 K 2
a = −p2

4

 1 1 0
1 1 0
0 0 2

 ,Sp(K 2
a ) = {0,−p2

2
},R3 = kerKa ⊥ G1 avec

kerKa =<

 1
−1
0

 > et G1 =<

 0
0
1

 ,

 1
1
0

 >

5 2 contraintes génériques possibles rendant le système conservatif : θ3 = 0
ou θ1 + θ2 = 0

6 le GDNC est indépendant de n : pour n quelconque, rang Ka(p) = 2 et
d = 1
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Exemple : charge distribuée

1 chargement uniformément distribué : colonne de Bigoni (version discrète à
n ddl de la colonne de Leipholz (continu))

2 n = 3,Ka =
p

2

 0 1 1
−1 0 1
−1 −1 0


3 rang Ka = 2 (si p 6= 0 ! !), d = 1

4 K 2
a = −p2

4

 2 1 −1
1 2 1
−1 1 2

 , Sp(K 2
a ) = {0,−3p2

4
},R3 = kerKa ⊥ G1

avec kerKa =<

 1
−1
1

 > et G1 =<

 −10
1

 ,

 1
1
0

 >

5 2 contraintes génériques possibles rendant le système conservatif : −θ1 +
θ3 = 0 ou θ1 + θ2 = 0

6 le GDNC dépend de n : d =
⌊n
2

⌋
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(divergence) KISS vs GDNC dualité dans le cas linéaire

comparaison entre les deux problèmes duaux : (divergence) KISS vs GDNC

div. KISS : recherche des contraintes
déstabilisantes Σ

dépend du paramètre de charge-
ment p : seuil p∗div,co .

dépend de la partie symétrique us

of u : perte du caractère défini de
us .

indépendant de la dimension du sev
F definisssant la compression (i.e ;
n − 1) : une contrainte est suffi-
sante.

processus effectif

GDNC : recherche des contraintes
rendant Σ conservatif

ne dépend pas du paramètre de
chargement p

dépend de la partie antisymétrique
ua de u : d = 1

2 rank(ua)

dépend de la dimension s du sev F
definisssant la compression (c’est-
à-dire du nombre de contraintes) :
d = n − s contraintes sont néces-
saires

processus effectif (à la réduction
près des endomorphismes symé-
triques)
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Le GDNC traduit avec le langage du calcul extérieur. Notations.

en fait, il n’y a pas a priori de structure euclidienne sur E = TqeM (donc us

et ua n’existent pas en tant qu’éléments de L(E))

K est la matrice d’une application linéaire u : E → E∗ ou d’une forme
bilinéaire φ définie sur E × E par φ(x , y) =< u(x), y > pour tous x , y ∈ E

une contrainte est un élément de E∗

on peut définir les parties symétrique et antisymétrique φs et φa de φ :
φs (x , y) = 1

2 (φ(x , y) + φ(y , x)) (fbs) et φa(x , y) = 1
2 (φ(x , y) − φ(y , x))

(fba). On note φa = ω.

la compression de uF ∈ L(E) de u sur F sev de E devient la restriction de
φ à F

si x ∈ E , on pose i(x)ω l’élément de E∗ défini par < i(x)ω, y >= ω(x , y)
et ω[ : E → E∗ le morphisme défini par ω[(x) = −i(x)ω pour tout x ∈ E .
On alors (ω[)T = −ω ( où E∗∗ = E).

Ker ω = Ker ω[ et Im ω[ = (Kerω)0 = {α ∈ E∗ |< α, x >= 0 ∀x ∈ Ker ω}
(E , ω) est un espace dit pré-symplectique. Il est dit symplectique si Ker ω =
{0E}. (Ẽ = E/Kerω, ω̃) est un ev symplectique avec ω̃ naturellement définie
sur Ẽ .
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Solutions

On a le résultat classique : le rang de ω (c’est-à-dire celui de ω[) est un nombre
pair 2p et il existe 2p vecteurs de ω[(E) notés f 1, . . . , f p, g1, . . . gp formant une

base du sev Im ω[ de E∗ tels que ω =

p∑
i=1

f i ∧ g i . Une telle famille est appelée

canonique ou de Darboux de (E , ω).

Proposition

d = p et, si (f 1, . . . , f p, g1, . . . gp) est une famille de Darboux de (E , ω), alors une
solution du problème en terme mécanique est fournie par le choix d’une famille
(hj )j=1,...,p d’éléments de E∗ (contraintes cinématiques) avec hj = f ij pour j =
1, . . . , k et hj = g ij pour j = k + 1, . . . , p pour n’importe quel k = 0, . . . , p
et n’importe quelle sous-famille (éventuellement vide si k = 0) {i1, . . . , ik} de
{1, . . . , p}.

=⇒ calculs plus simples et recherche de l’ensemble de toutes les solutions
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Retour aux exemples avec le langage du calcul extérieur

1 cas du chargement ponctuel
ω(x , y) = p

2 (x1y3 + x2y3 − x3y1 − x2y3) soit ω = p
2 (e∗1 ∧ e∗3 + e∗2 ∧ e∗3 ) =

p
2 ((e∗1 + e∗2 ) ∧ e∗3 )
d’où deux contraintes possibles (l’une des deux) ! !) c1 = e∗1 +e∗2 et c2 = e∗3 :
on a les mêmes solutions que précédemment sans calcul ! !

2 cas du chargement distribué
ω(x , y) = p

2 (x1y2 + x1y3− x1y2 + x2y3− x3y2− x3y3) soit ω = p
2 (e∗1 ∧ e∗2 +

e∗1 ∧ e∗3 + e∗2 ∧ e∗3 ) = p
2 ((e∗1 + e∗2 ) ∧ (e∗2 + e∗3 ))

d’où les contraintes possibles c1 = e∗1 + e∗2 ou c2 = e∗2 ∧ e∗3 à comparer avec
les contraintes obtenues précédemment qui correspondent à c1 et c2 − c1
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Paramétrisation de l’ensemble des solutions

une solution ⇐⇒ une base duale d’un sous espace Lagrangien (égal à son
orthogonal pour ω̃ dans (Ẽ , ω̃)) =⇒ décrire la variété Λ(ω) des sous espaces
Lagrangiens d’un espace symplectique quelconque (V , ω) appelée variété
lagrangienne de V

soit, pour tout s, Λ(s) la variété Lagrangienne du R-ev symplectique (Cs , ωs )
muni de sa structure symplectique canonique (partie imaginaire de sa struc-
ture hermitienne) : Λ(s) ≈ Us (s) ensemble des matrices unitaires symé-
triques deMs (C) de la manière suivante :
un sous espace Lagrangien L ∈ Λ(s) ↔ UL ∈ Us (s) via x ∈ L ⇐⇒ ∃!UL ∈
Us (s) tel que x = ULx̄ où x̄ est le vecteur colonne conjugué de x ∈ Cs . On
a une représentation explicite des matrices de Us (s) :

Proposition

U ∈ Us (s) si et seulement si U = OTRVO avec R = diag(rj ), V = diag(e iαj ) et
O une matrice R-orthogonale.

si u est un symplectomorphisme de (Cd , ωd ) sur (Ẽ , ω̃), alors Λ(ω̃) =
u(Λ(d))
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Le cadre non linéaire et le lien avec le cadre linéaire

L’espace des configurations de Σ est une variété M de dimension n

Efforts sur ou dans Σ : section F du fibré cotangent T ∗M (cas dit "inté-
grable")

Coordonnées locales q = (q1, . . . , qn) de M, me position d’équilibre, qe

coordonnées locales de me ,

La non conservativité de Σ est caractérisée par cette 1-forme F ∈ T ∗M des
forces qui n’est pas fermée dF 6= 0 (dérivée extérieure)

L’espace des configurations MC du système contraint ΣC par une famille de
contraintes holonomes (non linéaires) C est une sous variété de M
Problématique du GDNC : trouver la plus grande dimension n−d des sous-
variétés N of M telles que Ω = dF est nulle sur N ou de manière équivalente
que la restriction FN de F à N soit fermée (et localement exacte).

Lien avec l’analyse linéaire précédente : ω = Ω(me)

En coordonnées locales q = (q1, . . . , qn) de M, Ka(qe) est la matrice de
Ω(me) = dF(me) dans les bases ( ∂

∂qi )i de TqeM et (dqi )i de T ∗qe
M

C’est aussi la partie antisymétrique de la matrice de la différentielle verticale
dver (F)(me) ∈ L(TqeM,T ∗qe

M) dans les mêmes bases
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Solution

hypothèses de régularité sur F : la 2 forme dF est supposée régulière sur M
c’est-à-dire que sa classe r est constante sur M
dF est une 2-forme fermée (d2 = 0), sa classe est égale à son rang et est
paire : r = 2s. s est l’unique nombre tel que (dF)s 6= 0 et (dF)s+1 = 0.

grâce au théorème de Darboux, on a une forme locale de dF sur un voisinage

ouvert U de m dans M : dF =
s∑

k=1

dy k ∧ dy k+s où y1, . . . , y2s sont 2s

fonctions indépendantes sur U.

Proposition

Si la classe r de Ω = dF est constante en me ∈ M (c’est-à dire maximale) alors
le GDNC (non linéaire) de Σ (dans un voisinage de me ∈ M) est la moitié d
de la classe 2d = r de dF. La définition locale d’une sous variété N solution est
donnée par des familles f 1 = 0, . . . , f d = 0 d’équations sur M où f j = y ij pour
j = 1, . . . , k et f j = y ij+d pour j = k+1, . . . , d pour n’importe quel k = 0, . . . , p
et n’importe quelle sous-famille (éventuellement vide si k = 0) {i1, . . . , ik} de
{1, . . . , d}.
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Cas continu : remarques générales

aspects topologiques incontournables  structure additionnelle indispen-
sable sur E  (E , (. | .)) espace de Hilbert séparable

E∗  E ′ et E est réflexif : on peut identifier E et E ′′

une contrainte cinématique sera un élément de E ′

comme dans le cas de la dimension finie, on pourra regarder une forme
bilinéaire continue φ : E × E → R comme une application linéaire continue
u ∈ Lc (E) telle que φ(x , y) = (u(x) | y) pour tous x , y ∈ E

extension de certains résultats de décomposition d’opérateurs

extension du calcul extérieur à un espace de Hilbert et principalement pro-
blème de l’existence de famille de Darboux généralisée pour une 2-forme

2 exemples : colonne de Beck et colonne de Leipholz  même espace de
Hilbert E = {v : [0, `] → R | v(0) = v ′(0) = 0, v ′′ ∈ L2[0, `]} muni du
produit scalaire (v | w) =

∫ `
0 v ′′(x)w ′′(x)dx

On introduit sur E les formes linéaires continues αx : u 7→ u(x) et βx : u 7→
u′(x) pour tout x ∈ [0, `]
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Colonne de Beck

Equation d’équilibre EIw ′′′′(x) + pw ′′(x) = 0 ∀x ∈]0, `[, w(0) = w ′(0) =
EIw ′′(`) = EIw ′′′(`) = 0

 formulation faible φ(p)(w , v) = (AB (p)(w) | v) = 0 ∀v ∈ E avec
AB (p)(w)(x) = EIw(x) + p(

∫ x

0 (
∫ t

0 (w(s) + (`− s)w ′(`)−w(`))ds)dt ∀x ∈
[0, `]

avec les opérateurs antisymétriques de E

AB,a ∈ Ac (E) est donné par AB,a(p) : w ∈ E 7→ AB,a(p)(w)(x) = p
4 (−

w′(`)
3 x3+

(`w ′(`)− w(`))x2) ∀x ∈ [0, `]
rang(Aa(p)) = 2, GDNC= 1
Im(AB,a(p)) =< x2, x3 > et les contraintes sont c̃1(w) = w ′(`) et c̃2(w) =
`w ′(`)− w(`)

avec le calcul extérieur sur E
ωB(p)(v ,w) =

∫ `
0 (

1
2 p(w ′′(x)v(x)−w(x)v ′′(x))dx = p

2 (w
′(`)v(`)−v ′(`)w(`))

∀w , v ∈ E  ωB(p) =
p
2β` ∧ α`

ωB(p)
2 = 0 et GDNC= 1

les contraintes génériques sont les éléments de E ′ données par c1 = α` et
c2 = β` avec < c1, c2 >=< c̃1, c̃2 >
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Colonne de Leipholz

Equation d’équilibre EIw ′′′′(x) + p(` − x)w ′′(x) = 0 ∀x ∈]0, `[, w(0) =
w ′(0) = EIw ′′(`) = EIw ′′′(`) = 0

 formulation faible φ(p)(w , v) = (AL(p)(w) | v) = 0 ∀v ∈ E avec
AL(p)(w)(x) = EIw(x)+p

∫ x

0 (
∫ t

0 (`−s)w(s)+2
∫ s

`
w(u)du)ds)dt+ pw(`)

6 (3`x2−
x3) ∀x ∈ [0, `]
avec les opérateurs antisymétriques de E

AL,a(p) ∈ Ac (E) est donné par AL,a(p) : w ∈ E 7→ p
∫ x
0

(∫ t
0

(
−
∫ `

s w(z)dz +
1
2 w(`)(`− s)

)
ds
)

dt ∀x ∈ [0, `]
rang(AL,a(p)) =∞, GDNC=∞
A2

L,a symétrique compact, ker AL,a(p) = {0}

E =
⊥⊕∞

n=1 Gn avec dim Gn = 2 et Gn = ker(AL,a(p)
2 − λnidE ) où (λn)n≥1

est la suite des valeurs propres de AL,a(p)
2 (λn = −µ2

n < 0 pour tout n ≥ 1
et AL,a(p)

2 opérateur intégral du sixième ordre ! !)
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Colonne de Leipholz

avec les opérateurs antisymétriques de E (suite et fin)
AL,a(p)2C = −µ2C  y = C − C( `2 ), a = ( p

µ
)

1
3 , y (6) + a6y = 0, y(0) =

−y(`), y ′(0) = 0, y ′′(`) = 0, y ′′′(0) = a6 ∫ `
0

(∫ t

0

(∫ `
s
y(z)dz

)
ds
)
dt, y (4)(0) =

0, y (5)(`) = 0
 F (σ) = 0 avec σ = a`  solution numérique (σn = an`)n≥1 : σ1 =
0.19, σ2 = 0.84, . . .) et les vecteurs Un associés de la forme Un(x) =

e
an

√
3x

2 (cos anx
2 +h1,n sin anx

2 )+e−
an

√
3x

2 (h2,n cos anx
2 +h3,n sin anx

2 )+h4,n cos anx+

h5,n sin anx définissant les contraintes cn(v) =
∫ `
0 U ′′n (x)v ′′(x)dx pour n ≥ 1

avec le calcul extérieur sur E
ωL(p)(w , v) =

p
2

∫ `
0 (w

′(x)v(x)−w(x)v ′(x))dx soit ωL(p) =
p
2

∫ `
0 βx ∧αx dx

ωL(p) est non dégénérée pour p 6= 0 car ker AL,a(p) = {0}
pour tout n ≥ 1, ωL(p)

n = ( p
2 )

n
∫ `
0 ...

∫ `
0 βx1 ∧ αx1 ∧ βx2 ∧ αx2 ∧ ... ∧ βxn ∧

αxn dx1...dxn
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Colonne de Leipholz

Calcul du GDNC
Soit un(x) = xn+1 pour n ≥ 1. Alors pour n réels x1, . . . xn ∈ [0, `] , on a
βx1∧αx1∧βx2∧αx2∧...∧βxn∧αxn (u2n, u2n−1, ..., u1) =

∏n
i=1 x

4
i

∏
1≤i<j≤n(xi−

xj )
4

En choisissant n points distincts 0 < x1 < x2 . . . < xn < `, on en déduit
ωL(p)n 6= 0 pour tout n et GDNC =∞
Recherche des contraintes
On cherche (généralisation d’une base de Darboux) une famille (fn, gn)n≥1

totale dans E telle que ωL(p)(fn, fm) = ωL(p)(gn, gm) = 0 pour tout n,m,
ωL(p)(fn, gm) = 0 si n 6= m et ωL(p)(fn, gn) 6= 0 pour tout n ≥ 1.

C’est une question naturelle pour tout e.v.n. muni d’une forme bilinéaire
antisymétrique non dégénérée. Existence ici OK avec fn = Un et

gn = AL,a(p)(Un). La question reste ouverte en général et ici pas de
solution directe (i.e. sans revenir aux opérateurs)
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