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@ en 2004, début du questionnement sur la stabilité pour les corps ou systémes
élastiques sous chargement sans potentiel (A. Rigolot, E. Absi)
@ 3 aspects "équivalents"
e 1) systémes sans Lagrangien
e 2) matrice de rigidité K(p) non symétrique
e 3) cycle mécanique a bilan non nul
© extension du cadre d’application : actions extérieures sans potentiel ou ac-
tions de liaison hypo-élastiques et lien avec la plasticité non associée K =
"matrice de rigidité tangente", travaux en commun avec F. Darve, F. Ni-
cot, N. Challamel = explication de ['utilisation du terme "Hill stability"
ou critére du travail du second ordre de F. Darve (Hill 1959, 1960)
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Exemple jouet : systéme de Ziegler, aspects 1 et 2

Y = {OA,AB}, OA = AB = ¢,
M =S x st

systéme de coordonnées (6, ¢),
aspect 1 : Fp(0,¢) = Plsin(6 —
¢)d0, dFp # 0 ~~ pas de potentiel

0 = (0,0) unique configuration
S P/
d’équilibre, p = —
k
_(2-p -1+p
) ko) = (257 7))

aspect 2 : K(p) non symétrique
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Exemple jouet : systéme de Ziegler, aspect 3

aspect 3 : cycle v a bilan non nul
Q =1V 2 Vs cycle tracé sur M
@ (chaque chemin paramétré sur [0, 1]) y1(t) = (0, ta) : § Fp=
(ta,a) 1§ Fp = Pl(cosa—1), y3(t) = ((1 - t)a, (1 - t)a
§7 Fp = Pl(cosa — 1)
O cycle y

Y3
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Présentation de la question de base. Solutions

@ cas ultimes de systémes statiquement stables quelque soit le chargement
= proposition d'un "nouveau" critére d'instabilité : perte du caractére
défini positif de la partie symétrique Ks(p) de K(p) : Hill (in)stabilité

@ exemple jouet det(K(p)) = 1 quelque soit p : pJ;, = +oo

© solution "usuelle" : impossibilité d'une approche quasi-statique = instabi-

lité seulement dynamique par flottement ~ pj dépendant de la répartition
des masses.

© solution "nouvelle" : det(Ks(p)) =1 — % =0~ ppiy =2
© remarque : contrainte cinématique "générique" : ad + ¢ = 0 ~ pg(a) =
a®+2a+2

a+1
contrainte ¢ =0

= min pg,(a) = pgi,(0) = 2 atteinte pour a = 0 soit pour la
a
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Stabilité Structurelle Cinématique (KISS)

@ idée clé : comportement non trivial et a priori "paradoxal" concernant la
stabilité sous ajout de contraintes cinématiques (holonomes) : une position
d'équilibre (Lyapounov) stable sous un chargement p* peut devenir instable
si I'on bloque certains mouvements par ajout de contraintes cinématiques
bien choisies

@ 2009-2014 émergence et étude du concept de Stabilité Structurelle Ciné-
matique (KISS) a partir de ce phénoméne "paradoxal" : choisir p* tel que
Ks(p*) non inversible (Hill instabilité), prendre X™ non nul dans Ker(Ks(p™))
puis contraindre le systéme par la contrainte définie par K(p*)X* = K.(p*)X*
(le systéme est supposé stable pour la divergence sous le chargement p* bien
entendu : K(p*)X* #0!1)

© résultat complet : la Hill stabilité du systéme X est équivalente a la Lyapou-
nov divergence stabilité de ¥ et de tous les sous-systémes Y obtenus par
ajout d'une famille quelconque C de contraintes cinématiques : formulation
variationnelle sur tous les sous-sytémes de X.

@ émergence du probléme dual en 2014 et du concept associé de Degré Géo-
métrique de Nonconservativité (GDNC)
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Le cadre usuel d'algébre linéaire et les notations

@ X systéme holonome, g = (qu, - - -, gn) systéme de coordonnées de la variété
M des configurations de X, g. une configuration d'équilibre de *

@ étude restreinte a T, M considéré dans un premier temps comme un espace
euclidien (E,(.|.))= E" ~E

© une C famille de p contraintes ~ un sous espace vectoriel F¢ de E de
dimension p

Q si u e L(E) et si F sevde E, le compressé ur de u sur F est I'élément de
L(F) défini par up = prouocir

© un objet mécanique défini sur X décrit par un opérateur linéaire u € L(E)
sera décrit pour le systéme ¥ contraint par une famille C de contraintes
cinématiques par le compressé Upt de u sur 'orthogonal de Fc.

O résultat autour du KISS : si u est injective alors toutes ses compressées le
restent tant que sa partie symétrique us = %(u + u™) reste injective. Dés
qu'elle cesse de I'étre, on peut trouver (de maniére constructive) un sev F
(un hyperplan en fait) pour lequel la compressée sur F dégénére
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GDNC discret linéaire : définition et position du probléme

Objectif principal

mesure géométrique de I'importance de la non conservativité dépendant le moins
possible de p

Degré Géomérique de Nonconservativité d (GDNC) de X

1) (Mécanique) d ' minc card(C) telle que ¥¢ est conservatif.
2) (En termes de compression) dimension maximale s des sous-espaces F sur
lesquels uF est symétrique (s = n — d)

1) (Mécanique) calculer d, trouver une famille C solution, trouver toutes les
familles C solutions.

2) (En termes de compression) calculer s, trouver un sev F solution, trouver
toutes les sev F solutions.
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GDNC discret linéaire : solution

Le critére va porter sur la partie antisymétrique u, = %(u — u") de u. Les sous
espaces F doivent vérifier la condition (u,(x) | y) =0 Vx,y € F. On rappelle
le théoréme de décomposition dans R de tout endomorphisme antisymétrique
u, : Ker u, et Im u, sont orthogonaux, dim Im u, =rang u, = 2d est paire et il
existe une famille Gy, ... Gy de sev de Im u, de dimension 2, orthogonaux deux
a deux, stables par u, tels que E = Ker u, L. G; L ... 1 Gy.

Soit X un systéme mécanique dont les efforts a I'équilibre sont décrits par |'opé-
rateur u. Le GDNC d est la moitié du rang de la partie antisymétrique u, de
u (qui est toujours paire). Une solution du probléme en terme mécanique est
formée par le choix d'un vecteur propre dans chaque sous espace propre de I'en-
domorphisme symétrique u? (excepté pour la valeur propre 0) engendrant une
famille de d contraintes. Une solution en termes de compressions est donnée par
lessev F =Keru, L F; 1 ... 1L Fy ot chaque F; est un sev de dimension 1 de
Gipouri=1...d.
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Exemple : charge ponctuelle

@ chargement ponctuel : colonne de Ziegler ou Hencky (version discréte a n
ddl de la colonne de Beck (continu))

0 0 1
@ n=3K,= B o 0 1
-1 -1 0
Q rang K, = (S|p7é0”) d=1
1 2
0 K2 = A 1 o ,Sp(K2) = {0,— 2} R® = kerK, L G; avec
4 2
0 0 2
1 0 1
ker K, =< > et G =< 0o 1, 1 >
1 0
© 2 contraintes génériques possibles rendant le systéme conservatif : 63 = 0
oub;+6,=0
O le GDNC est indépendant de n : pour n quelconque, rang Ki(p) = 2 et
d=1
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Exemple : charge distribuée

@ chargement uniformément distribué : colonne de Bigoni (version discréte a
n ddl de la colonne de Leipholz (continu))

0 1 1
@n=3K=P -1 0 1
2\ -1 -1 0
Q@ rang K, =2 (sip#0ID, d=1
2 2 1 -1 3 2
oKk2=-P 1 1 2 1 |,sp(Kk?) =1{0,-P 1 R®=rkerk, L G
A\ 11 2 4
1 -1 1
avec ker K, =< -1 > et Gy =< 0 , 1 >
1 1 0

© 2 contraintes génériques possibles rendant le systéme conservatif : —6; +
03=0o0uf;+0,=0

Q@ le GDNC dépend de n: d = {gJ
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(divergence) KISS vs GDNC dualité dans le cas linéaire

comparaison entre les deux problémes duaux : (divergence) KISS vs GDNC

div. KISS : recherche des contraintes
déstabilisantes ¥

o dépend du paramétre de charge-
ment p : seuil pg, -

o dépend de la partie symétrique us
of u : perte du caractére défini de
Us.

@ indépendant de la dimension du sev
F definisssant la compression (i.e;
n — 1) : une contrainte est suffi-
sante.

@ processus effectif
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GDNC : recherche des contraintes

rendant ¥ conservatif

ne dépend pas du paramétre de
chargement p

dépend de la partie antisymétrique
u;deu:d= %rank(ua)

dépend de la dimension s du sev F
definisssant la compression (c'est-
a-dire du nombre de contraintes) :
d = n — s contraintes sont néces-
saires

processus effectif (a la réduction
prés des endomorphismes symé-
triques)



Le GDNC traduit avec le langage du calcul extérieur. Notations.

@ en fait, il n'y a pas a priori de structure euclidienne sur E = T M (donc us
et u, n'existent pas en tant qu'éléments de L(E))

@ K est la matrice d'une application linéaire u : E — E™* ou d'une forme
bilinéaire ¢ définie sur E x E par ¢(x,y) =< u(x),y > pour tous x,y € E
@ une contrainte est un élément de E”

@ on peut définir les parties symétrique et antisymétrique ¢s et ¢, de ¢ :

¢5(X7y) = %(¢(X7y) + (Z)(y,X)) (be) et ¢3(X1y) = %(qﬁ(X,y) - ¢(y,X))
(fba). On note ¢, = w.

@ la compression de ur € L(E) de u sur F sev de E devient la restriction de

baF
@ si x € E, on pose i(x)w I'élément de E* défini par < i(x)w,y >= w(x,y)
et w’ : E — E* le morphisme défini par w’(x) = —i(x)w pour tout x € E.

On alors (w’)" = —w (ot E** = E).
o Kerw =Kerw’ etmw’ = (Kerw)® = {a € E* |< a,x >= 0 Vx € Ker w}

o (E,w) est un espace dit pré-symplectique. Il est dit symplectique si Ker w =
{0e}. (E = E/Kerw, @) est un ev symplectique avec & naturellement définie
sur E.
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On a le résultat classique : le rang de w (c'est-a-dire celui de w’) est un nombre

pair 2p et il existe 2p vecteurs de w’(E) notés ..., fP g', ... gP formant une
P

base du sev Im w” de E* tels que w = Z f' A g'. Une telle famille est appelée
i=1

canonique ou de Darboux de (E,w).

Proposition

d=pet,si(f,...,fP g" ... g") estune famille de Darboux de (E, w), alors une
solution du probléme en terme mécanique est fournie par le choix d'une famille
(W)j=1,...,» d’éléments de E* (contraintes cinématiques) avec # = f’ pour j =
1,...,k et W = gl pour j = k+1,...,p pour n'importe quel k = 0,...,p
et n'importe quelle sous-famille (éventuellement vide si k = 0) {i,..., i} de

{1,...,p}

= calculs plus simples et recherche de I'ensemble de toutes les solutions
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Retour aux exemples avec le langage du calcul extérieur

@ cas du chargement ponctuel
w(x,y) = S(x1ys + x2y3 — x3y1 — xoy3) soit w = 5(ef Nej +e3 Ne3) =
(65 + ) A e)
d'odl deux contraintes possibles (I'une des deux) ') c; = ef +e5 et co = e3 :
on a les mémes solutions que précédemment sans calcul !

@ cas du chargement distribué
w(x,y) = B(x1y2 + x1y3 — X1y2 + Xay3 — X3y2 — xay3) soit w = S(ef N3 +
efNel+esNes)=15((ef + )N (e +e3))
d’ou les contraintes possibles c1 = ef + €5 ou ¢ = e5 N e3
les contraintes obtenues précédemment qui correspondent 3 ¢; et &2 — 1

(07

comparer avec
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Parameétrisation de |'ensemble des solutions

@ une solution <= une base duale d'un sous espace Lagrangien (égal a son
orthogonal pour & dans (E, %)) = décrire la variété A(w) des sous espaces
Lagrangiens d'un espace symplectique quelconque (V,w) appelée variété
lagrangienne de V

@ soit, pour tout s, A(s) la variété Lagrangienne du R-ev symplectique (C°, ws)
muni de sa structure symplectique canonique (partie imaginaire de sa struc-
ture hermitienne) : A(s) ~ Us(s) ensemble des matrices unitaires symé-
triques de M(C) de la maniére suivante :
un sous espace Lagrangien L € A(s) > UL € Us(s) via x € L < 3V, €
Us(s) tel que x = Ui x ol X est le vecteur colonne conjugué de x € C°. On
a une représentation explicite des matrices de Us(s) :

Proposition

U € Us(s) si et seulement si U = OT RVO avec R = diag(r;), V = diag(e’¥) et
O une matrice R-orthogonale.

@ si u est un symplectomorphisme de (CY, wy) sur (E,@), alors A(@) =

u(A(d))
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Le cadre non linéaire et le lien avec le cadre linéaire

@ L'espace des configurations de X est une variété M de dimension n

o Efforts sur ou dans X : section F du fibré cotangent T*M (cas dit "inté-
grable")

o Coordonnées locales ¢ = (q*,...,q") de M, m,. position d'équilibre, ge
coordonnées locales de me,

@ La non conservativité de X est caractérisée par cette 1-forme F € T*M des
forces qui n'est pas fermée dF # 0 (dérivée extérieure)

o L’espace des configurations M du systéme contraint X ¢ par une famille de
contraintes holonomes (non linéaires) C est une sous variété de M

o Problématique du GDNC : trouver la plus grande dimension n— d des sous-
variétés N of M telles que 2 = dF est nulle sur N ou de maniére équivalente
que la restriction Fy de F & N soit fermée (et localement exacte).

o Lien avec 'analyse linéaire précédente : w = Q(m.)
o En coordonnées locales g = (q*,...,q") de M, Ka(ge) est la matrice de
Q(me) = dF(m.) dans les bases (8%,.),- de Tg M et (dg'); de Ty M

o C'est aussi la partie antisymétrique de la matrice de la différentielle verticale
d" (F)(me) € L(Tq M, T, M) dans les mémes bases
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@ hypothéses de régularité sur F : la 2 forme dF est supposée réguliére sur M
c'est-a-dire que sa classe r est constante sur M

o dF est une 2-forme fermée (d? = 0), sa classe est égale a son rang et est
paire : r = 2s. s est |'unique nombre tel que (dF)° # 0 et (dF)*™ = 0.

@ grace au théoréme de Darboux, on a une forme locale de dF sur un voisinage

ouvert U de m dans M : dF = Zdyk A dy*™* ou yl, ..., y* sont 2s
k=1
fonctions indépendantes sur U.

Si la classe r de Q = dF est constante en m. € M (c’est-a dire maximale) alors
le GDNC (non linéaire) de X (dans un voisinage de me € M) est la moitié d
de la classe 2d = r de dF. La définition locale d'une sous variété N solution est

donnée par des familles fL=0,...,f¢ =0 dequations sur M ou / =y’ pour
j=1,..., ket ff =yi*d pourj=k+1,...,d pour n'importe quel k =0,...,p
et n'importe quelle sous-famille (éventuellement vide si k = 0) {i,..., i} de

1,...,d}.
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Cas continu : remarques générales

@ aspects topologiques incontournables ~ structure additionnelle indispen-
sable sur E ~~ (E, (. |.)) espace de Hilbert séparable

@ E* ~ E' et E est réflexif : on peut identifier E et E”
@ une contrainte cinématique sera un élément de E’

@ comme dans le cas de la dimension finie, on pourra regarder une forme
bilinéaire continue ¢ : E x E — R comme une application linéaire continue
u € L(E) telle que ¢(x,y) = (u(x) | y) pour tous x,y € E

@ extension de certains résultats de décomposition d'opérateurs

@ extension du calcul extérieur & un espace de Hilbert et principalement pro-
bléme de |'existence de famille de Darboux généralisée pour une 2-forme

@ 2 exemples : colonne de Beck et colonne de Leipholz ~~ mé&me espace de
Hilbert E = {v : [0,4] — R | v(0) = v/(0) = 0,v” € L3[0,¢]} muni du
produit scalaire (v | w) = [ v//(x)w" (x)dx

@ On introduit sur E les formes linéaires continues ax : u — u(x) et By : u+—
u'(x) pour tout x € [0, /]
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Colonne de Beck

e Equation d'équilibre Elw""'(x) + pw”(x) =0 Vx €]0,¢[, w(0) = w'(0)
Elw' (€) = Elw'(£) = 0
@ ~» formulation faible qﬁ( ) w,v) = (A ( )(W) | v) 0 Vv € E avec

Ao(p)(0)) = ol )+ U (w(s) + (£ — s)w'(£) — w(b))ds)dt x €

@ avec les opérateurs antisymétriques de E

o Ap,, € Ac(E)estdonnépar Ag ,(p) : w € E — Ag ,(p)(w)(x) = %(f W/(Z)X‘?’Jr
(ew'(€) — w(£))x?) Vx €0,4]

o rang(Aa(p)) =2, GDNC=1

o Im(Ag a(p)) =< x2,x3 > et les contraintes sont & (w) = w’(£) et &(w) =
' (€) — w(e)

@ avec le calcul extérieur sur E
¢

o wp(p)(v,w) = [o (3P(W" (X)v(x)=w(x)v"(x))dx = 5(w'()v(£)—v'(£)w(e))
Vw,v € E ~ wg(p) =8B Nay

o wp(p)? =0et GDNC=1

o les contraintes génériques sont les éléments de E’ données par c; = ay et
co = By avec < c1,cp >=< &1,8 >

GDR GDM 21/1



Colonne de Leipholz

e Equation d'équilibre Ew""(x) + p(¢ — x)w”(x) = 0 V¥x €]0,¢], w(0) =
w'(0) = Elw"(£) = ElwW"'(¢) =0

e ~ formulation faible ¢(p)(w,v) = (AL(p)( ) | v) 0 Vv € E avec
AL(p)(W)(x) = Elw(x)+p [ (fo (U—s)w(s)+2 [; w du)ds)dtJrPW ) (30x2—
x3) ¥x € [0,

@ avec les opérateurs antisymétriques de E

o Ap(p) € Ac(E) estdonnépar Ay ,(p):w € E— p [ (fot (— ff w(z)dz +
Lw(e)( —s)) ds)dt vx€0,4]

o rang(AL ,(p)) = co, GDNC= oo

° A%’a symétrique compact, ker A; ,(p) = {0}

1 (e o)
E =@,_; Gn avec dim G, = 2 et G, = ker(A; ,(p)? — Anidg) ot (An)p>1
est la suite des valeurs propres de AL,a(P)z (An = —p2 < 0 pour tout n > 1

et AL,a(p)2 opérateur intégral du sixiéme ordre!!)
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Colonne de Leipholz

@ avec les opérateurs antisymétriques de E (suite et fin)
ALs(p’C = —i?C vy = C = C(5), a = (£)3, ¥y +2°% = 0, y(0) =

(050 = 0,5"(0) = 0.y (0) = 8 J7 (¢ (I ¥(2)dz) o) d,y9(0) —

Gy=0
~» F(o) = 0 avec 0 = al ~- solution numérique (o, = anl)n>1 : 01 =
0.19,02 = 0.84,...) et les vecteurs U, associés de la forme U,(x) =
anV/3x _anV3

e 2 (cos?*4hy,sin ) te” 2 . (h2,n cos 28% +h3 , sin 25%)+ha , cOS anx+
hs,n sin a,x définissant les contraintes ¢,(v) = foe U (x)v"(x)dx pour n > 1

@ avec le calcul exterieur sur E

o wi(p)(w,v)=2 fo (W (x)v(x) — w(x)v’'(x))dx soit w;(p) = gfol Bx N axdx
e wi(p) est non degeneree pour p # 0 car ker A; ,(p) = {0}
e pour tout n > 1, w;(p 2 fo . foé,Bxl/\axl/\[BXZ/\aX2/\.../\an/\

Qux, dxy...dxp
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Colonne de Leipholz

o Calcul du GDNC
Soit up(x) = x" pour n > 1. Alors pour n réels xi,...x, € [0,€] , on a
Bra A ABog Atsg A ABxy Aty (U2 Uzn—1, <oy 1) = [[1q X} [Ticicjen(i—
x)*
En choisissant n points distincts 0 < x1 < x2... < x, < £, on en déduit
wi(p)" # 0 pour tout n et GDNC = co

@ Recherche des contraintes

On cherche (généralisation d'une base de Darboux) une famille (f,, gn)n>1
totale dans E telle que wi(p)(fa, fm) = wi(p)(gn, gm) = O pour tout n, m,
wr(p)(fa, gm) = 0'si n # m et wi(p)(fa, gn) # 0 pour tout n > 1.

C'est une question naturelle pour tout e.v.n. muni d'une forme bilinéaire

antisymétrique non dégénérée. Existence ici OK avec f, = U, et
gn = Ar,a(p)(Un). La question reste ouverte en général et ici pas de
solution directe (i.e. sans revenir aux opérateurs)
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