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Parametrisation
@000

Kinematical configuration of a beam-like structure

Material coordinates

Seo,L] (&,&2) local chartinS

Configuration in the ambiant space

Placement :

@(S,t) = 0G

Rotation : Q(S, t) € SO(3)
di(S, t) = Q(S, t)ei

Place of a point P of the beam
(£1,£2,S,t) - OP = 0G + GP
GP = &1d1 + &2da

S is rigidly transformed G is the center of mass of S

ds is not tangent to C {d;} is an inertial principal basis



Parametrisation
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Vectors on the tangent space TC

o odi
at—w/\d. 7857'%/\(1'
. oQ . 70Q
w = ax1a1(QTE) k = axial (Q ﬁ)
70Q 70
Q o € so(3) Q 25 € s0(3)




Parametrisation
[e] le]e]

Vectors on the tangent space TC

) _9¢
VT o s ~ %
v = wv1d; + vad2 + vads J € = e1d1 + e2d2 + £3d3

odi .
9 = w A d;
TaQ)

w= axial(@ -—

ot
QT% € so(3)

odi
g5 —rNd

. 0Q

R = aXlal(QTﬁ)

70
Q 35 € s0(3)

w = wids + wadz + wszds J

K = K1d1 + K2d2 + K3d3




Parametrisation
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Associated moments and energy

Momentum p = pAv

pA 0 0 Vi
p:=]0 pA O vo | = Av
0 0 pA| |vs

v

Moment of momentum o

ph 0 0] [w:
=10 ph 0| |w| =Jw
0 0 pl3 w3

.




Parametrisation

[e]e] o]

Associated moments and energy

Momentum p = pAv

pA 0 0 Vi
p:=]0 pA O vo | = Av
0 0 pA| |vs

v

Moment of momentum o

p/1 0
o:=|(0 ph
0 O

0
0

ph

w1
w2
w3

EL 0 K2

= Hk

0 0 Ghk| |ks

Kinetic energy density

T(v,w) = % (VAV + wlw)

Deformation energy density

Ue, k) = % (eGe + kHK)




Parametrisation
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Associated moments and energy

Momentum p = pAv

pA 0 0 Vi
p:=]0 pA O vo | = Av
0 0 pA |wvs

Moment of momentum o

|\

ph 0 07 [w

o=|(0 ph 0 wa| = Jw M:=|0 EL O k2| = Hr
0 0 pl3 w3 0 0 GI3 K3
1
T(v,w) = % (VAV + wlw) Ue, k) = > (eGe + kHK)

L
Lagrangian L(v,w, €&, K) / v+ 1(..).]](.u — 1z—:(l}c—: — %KHI@ ds
0

2 2

M\H M\I—‘

v+ 1th.u + 1EGE + EK,HK, ds

L
Hamilt
amiltonian H(v,w, e, K) /0 5 3 5




Parametrisation
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Application for (time) derivation of a quadratic form

f= %uxu, X" =X
Derivation of a vector of — Ouj U
at ot "
= (%—w/\u) - (Xu)

Of _ Qu
TS 8tx —(uA (Xu)) - w

)

0 (1 5‘u

du
— — w A u is a corotational derivative

ot




Problem construction

[ Jele]e]

Equilibrium
ON 0 Av
9s ~ ot (1) N := Ge
oM | 9 _ 0Jw M = Hk
25 "as "N = (2)
_ Op — avial(0-12Q — avial(0-12Q _9¢
V= ot w = axial(Q 5t ) Kk = axial(Q 95 =5 ds J




Problem construction
@000

Equilibrium

0 Ge OAv

s ~ ot W N = Ge
0 Hr _ O0Jw M := Hk
95 + (e +d3) ANGe = ot (2)
_ e — axial(Q-12Q — axial(Q12Q Yo
vi= o w = axial(Q ot ) Kk = axial(Q 95 €= 55 ds J




Problem construction
@000

Equilibrium

0 Ge OAv

as ot (1) N := Ge
0 Hk _ 0Jw M = Hk
a5 +(e+d3)/\Gs——at (2)
_ e — axial(Q-12Q — axial(Q12Q Yo
vi= o w = axial(Q ot ) Kk = axial(Q 95 €= 55 ds J
e (S,t) and Q(S, t) are not used as explicite unknowns

@ Four vectors are the unknowns v, w, K, €.

lll-posed problem with 12 unknown components and 6 scalar equations

first order, non-linear, partial differential equations.



Problem construction

[ Jele]e]

Equilibrium
0Ge OAv (1)
S ot N :=Ge
0 Hk 0Jw M := Hk
95 + (e +d3) AGe ot (2
0 . 10 . 10 0
v i= 8—(': w = axial(Q 1%) K = axial(Q 1£ €= % = d3J
® (S, t) and Q(S, t) are not used as explicite unknowns
o Four vectors are the unknowns v, w, k, €.
o lll-posed problem with 12 unknown components and 6 scalar equations
o first order, non-linear, partial differential equations.

Additional closure relations

87&_87“‘)4—(4)/\% %_g—w/\d
ot 0S ot 0S 3
obtained from 9 odi _ 9 od 0 9 9 aﬁ

atdsS — aS ot 0t 8S ~ 9S ot



Problem construction
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Two systems

First system: unknowns v, w, K, €

88(? - aaliv (3)

OB t(e+ds)A(Ge) = 202 (4)
‘Z—‘;Hw/\n:%': (5)
%ﬂmdp% ©

Second system: unknowns Q, d; and ¢

w = aXial(Q71%$ K= axial(Q713% V= %‘: o g% —ds

@ One second order PDE = Two first order PDE

I Initial and boundary conditions



Problem construction
[e]e] e}

Numerical point of view

0Ge O0Av
S ot (7)
0Hk 0Jw
W+(€+d3)A(G€)7W (8)
Jw oK
ov Oe
0 0 G o0 v/ —WA 0 KG 0 v A 0 0 O v
0 0 0 H| |« I 0 —WJ EG KH| (w| |0 J 0 O w
G 0 0 O e GK GE -GW 0 el [0 0O G O €
0 H 0 O K’ 0 HK 0 0 K 0 0 0 H K

with non-linearities induced by the skew-matrices:

0 —w3 W2 0 —K3 K2 0 —(63 + 1) £2
W= | ws 0 —w1 K= k3 0 —K1 E=|es+1 0 —€1

—W?2 w1 0 —KR2 K1 0 —E&2 €1 0



Problem construction
[e]ele] ]

Three point of views

OCE _ 0hY Newton's laws
oS — ot
85% + (e +d3) A (Ge) = aéi;d Rotational analogues of Newton's laws
) +wAK= G compatibility of rotations
S T P i
A wAds = 03 compatibility of translations
as > T ot patibity
0 0 G O v/ —WA 0 KG 0 v A 0 0 O
0 0 0 H| |« i 0 —WJ EG KH| |w 0 J 0 O
G 0 0 of|€ GK GE -GW 0| |e 0 0 G O
0 H 0 O K 0 HK 0 0 K 0 0 0 H

X o & <-

Du +Y(w)u=Mi

D Symetric Y(u) Skew-symetric
Constant Non-linear

)

M Diagonal
Constant

=4




Motivation

o "The thread model does not exist" P.Seppecher, Ecole d'été d'Oleron.



Motivation

o "The thread model does not exist" P.Seppecher, Ecole d'été d'Oleron.

@ ... but some counterexample
e Tension/compression of bar : linear, dynamical

EAuY = pAiis, uz : longitudinal displacement
e String : ~linear, dynamical
Fui = pAii, F = EAuS, uy : transverse displacement

o Catenary : non-linear, static
e Rope jumped : non-linear, quasi-static

@ ... and intersting phenomena
o Non-unicity of the solution
o Non regularity of the solution
e Zero-Euler’s critical load



Motivation

o "The thread model does not exist" P.Seppecher, Ecole d'été d'Oleron.

@ ... but some counterexample
e Tension/compression of bar : linear, dynamical

EAuY = pAiis, uz : longitudinal displacement
e String : ~linear, dynamical
Fui = pAii, F = EAuS, u1 : transverse displacement

o Catenary : non-linear, static
e Rope jumped : non-linear, quasi-static

@ ... and intersting phenomena

o Non-unicity of the solution
e Non regularity of the solution
o Zero-Euler's critical load

@ Boundary condition plays a foundamental role

(L) = #(0)] ~ L (L) —(0)] <L (L) = (0)]| > L



Hypotheses

Circular cross-section < L =k
No shear or bending rigidity < Only longitudinal or torsional rigidity
GA—0, EA#0O, ElLb, -0, Eh—0, Ghi#0
0 0 O 00 O
G=(0 0 O H=[{0 0 O
0 0 EA 0 0 Gh
v
Application to standard structural mechanics

GA Eh 1 G
— k1 — k1 =h+1I K -1
EA<< GI3<< but B=h+£5h = 2<<A<<

Thread model exists, if one consider that
@ it's an effective model for a microstructured material

@ it's not only a 1D-manifold
Rq a thread is composed of an arrangement of filaments !l yes !l

.




Properties
@000

Degeneracy

0 0 O 0 0 O

G=10 0 O H=10 0 0

0 0 EA 10 0 Gh
0 0 G o][v -WA 0 KG 07][v A 0 0 0][v
0 0 0 Hf || | 0 -WI EG KH| |wl_|0J 0 0fl&
G 0 0 of|€ GK GE -GW o0 el |0 0O G 0] |¢
0 H 0 0 |K 0 HK 0 0] |» 0 0 0 H| [k

@ Problem

e Lines 7,8,11 and 12 of this algebraic problem are 0 =0
= No possibility to express some compatibility condition
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Degeneracy
0 0 O 00 O
G=10 0 O H=1]0 0 O
0 0 EA 0 0 Gh
0 0 G O v/ —WA 0] KG 0 v A 0 0 Of |v
000Hw'+0—WJIEGKHw_0JOOw
1 0 0 of|¢ K E -Ww 0 el |0 0 1 0] |e
0 1 0 O K 0 K 0 0 K 0 0 0 1§ |k
o Problem

e Lines 7,8,11 and 12 of this algebraic problem are 0 =0
= No possibility to express some compatibility condition

o First alternative
e Do not multiply compatibility condition by G and H
= The structure of the problem is broken :
D is no more symetric, Y(u) is no more skew-symetric,



Properties

Degeneracy
0 0 O 00 O
G=10 0 O H=1]0 0 O
0 0 EA 0 0 Gh
0 0 G O v/ —WA 0] KG 0 v A 0 0 Of |v
000Hw'+0—WJIEGKHw_0JOOw
1 0 0 of|¢ K E -Ww 0 el |0 0 1 0] |e
0 1 0 O K 0 K 0 0 K 0 0 0 1§ |k
o Problem

e Lines 7,8,11 and 12 of this algebraic problem are 0 =0
= No possibility to express some compatibility condition

o First alternative

e Do not multiply compatibility condition by G and H
= The structure of the problem is broken :
D is no more symetric, Y(u) is no more skew-symetric,

@ Second alternative
o Consider El, = ¢, Elb = ¢, GA=¢, withe — 0
= Critic for the numerical purpose

5
lim ue = ug
e—0



Properties
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Bi-dimensional analysis in the plane (di,d3) = (ey,e;), do = e,

Vi 0 0 0 0 O 0 O

V3 0 0 00O 0O EA O

u w2 P 0 0 0 0 O 0 O

T e /1 0 0 0 O 0 O

€3 01 00 0 0 O

K2 10 0 1 0 O 0 O
[0 —pAwsz 0 0 0 EAk, O
pAws 0 o 00 0 0
e . |o 0 0 0 0 —EAs 0
PutY(wu=Mdi — Ju)=1| , ke —l—e3 0 0 0 0
— K2 0 E1 0 0 0 0
0 0 0 0 0 0 0

A 0 0 0 0 0

0 pA 0 0 0 0

~ o 0 ps 0 0 0

M= 0 0 0 1 0 O

0 0 0 0 1 0

0 0 0 0 0 1
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Reorganisation of the plane problem

The problem is cast into two subproblem.

@ The first preserve a standard transport equation structure

0O 0 0 ©O vi 0 —pAwz 0 EArz Vi pA 0 0 O Vi
0 0 0 EA||V pAva 0 0 0 ||w| |0 pa 0 of]vs
o 0o o oflw | o 0 0 —EAe| |w2| — |0 0 pis 0f |2
0 EA 0 0] |< “EArs 0 EAer 0 | |es 0 0 0 EA| |é

@ The second is composed of the two last compatibility equation

Vi + kavs — (1 +e3)we = é1

12 .
Wy = K2

Rg These two problems are coupled



Properties
oooe

Euler-Bernoulli hypothesis

@ No sheare; — 0

@ The conservation of angular momentum is neglected (like for string)
The problem is cast into two subproblem.

@ The first preserve a standard transport equation structure

0 O 0 vi 0 —pAws  EAk> Vi pA 0 0 Vi
0 0 EA| |v4| + | pAw2 0 0 vsl=1]0 pA 0 V3
0 EA O = —EAko> 0 0 €3 0 0 EA| |&3

@ The second is composed of the two last compatibility equation

vi + Kavs — (14+e3)w2=0

/ .
W = k2

= The problem persists : additional kinematical hyptheses looks not to be a
solution to preserve the structure of the problem.



Paradigm shift
[ Jelele]

Paradigm shift

Important remark

The loose of symetry of matrices ) and D is related to

Compatibility conditions:

a—M—a—w—l-u.v/\llq %—@—w/\d

ot~ aS ot _ dS 3
- 00Q _ 9 9Q 00p _ 0 0
= 9t9S S ot 9t 9S _ S ot

If the variable are not (only) vectors {v,w,e,k} € TC but (also) kinematical
quantities {¢, Q} € C, the compatibility condition are imediately satisfied!




Paradigm shift
[ Jelele]

Paradigm shift

Important remark

The loose of symetry of matrices ) and D is related to

Compatibility conditions:

Ok _ Ow Je  Ov

5r = g5 @Ak E‘%‘“’A‘h
- 00Q _ 9 9Q 00p _ 0 0
= 9t9S S ot 9t 9S _ S ot

If the variable are not (only) vectors {v,w,e,k} € TC but (also) kinematical
quantities {¢, Q} € C, the compatibility condition are imediately satisfied!

Ben justement, c'est ce que I'on a fait avec Oscar !l

Timoshenko beam under finite and dynamic transformations: Lagrangian
coordinates and Hamiltonian structures, Communications in Analysis and
Mechanics, 17(4), 2025




Paradigm shift

[e] le]e]

First formulation

L
1 1 1 1
H(p,o,s,/@):/ EPA o+ EGJ 1a+§5G5+§/@H/{ ds
0

Poisson bracket, for any f and g functions of the variables {p, o, ¢, k}:
of 0 (Og og 0 [Of
{fe} = / ap’ as< )> <ap’as(aa>>

+<af 0 (%8, __98 0 (0f)
o’ 8S \ Ok 0o’ 0S \ Ok

6g of og Of Of Og
+ <oz Ao >+ <p o2 /\5‘p aG/\ap>
0, of Of 0
t<etds, BEAL _ZLNZE

ds 0o 0Oe Oo




Paradigm shift
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Second formulation

L
HpQpE) =3 [ <pA™p >+ <JQE).I QD) >
0

Op Oy
+ < d3’G(65 ds) >

aS
.10 .10
+<j@'ShH w17 > ds.

Poisson bracket, for any f and g functions of the variables {¢, Q, p, X }:

L
{f,g}=/ <g,a—g> < g Of
0

dp’ dp ~ " O’ Op
of g _ 08 OF
+ <L 5Q’ o > - 3Q’ % > dS.

where

Y =0Qj " (Ji(Q Q)



Paradigm shift

[e]ele] ]

Third formulation

1 [t _ _
H(cp,p,Q,a):§/ <pAp>+<o,J 0>
0

+ < (a—(p —ds), G(a"o ds) >

S
1 3@ 1 5‘@

+ <j(Q ) j(Q™ )>d5

Poisson bracket, for any f and g functions of the variables {cp, p,Q,o}:

of g __ 8 Of

tf.e1 = /<8ga Bp <8go 8p>
—1 ag . f

+<<—,QJ ( )>> <<a ,Qj” (—U)>>d5

oQ Q




Conclusion

Conclusion

o Le modeéle de fil existe, il y'en a méme deux (avec ou sans cisallement). Il
suffit de le considérer comme une dégénérescence d'une variété matérielle
unidimensionnelle particuliére : un fibré des repéres.

@ Un fil est un milieu microstructuré
o La dégénérescence induit une perte de structure du probléme...

o Cette étude n'est qu'un début.
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Conclusion

o Le modeéle de fil existe, il y'en a méme deux (avec ou sans cisallement). Il
suffit de le considérer comme une dégénérescence d'une variété matérielle
unidimensionnelle particuliére : un fibré des repéres.

@ Un fil est un milieu microstructuré
o La dégénérescence induit une perte de structure du probléme...

o Cette étude n'est qu'un début.

La vie ne tient qu’a un fil !
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