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Kinematical configuration of a beam-like structure

Material coordinates

S ∈ [0, L] (ξ1, ξ2) local chart in S

Configuration in the ambiant space

Placement :

φ(S , t) = OG

Rotation : Q(S , t) ∈ SO(3)

di(S , t) = Q(S , t)ei

Place of a point P of the beam

(ξ1, ξ2,S , t) → OP = OG + GP

GP = ξ1d1 + ξ2d2

d2

ey

ex

d1

ez

d3

ξ2

ξ1G

S

C

d2 d1

P

E.Cosserat, F.Cosserat, Théorie des Corps déformables, 1909
S.P.Timoshenko, J.C.Gere, Theory of Elastic Stability, 1961

S is rigidly transformed

d3 is not tangent to C

G is the center of mass of S
{di} is an inertial principal basis
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Vectors on the tangent space TC

Speed v

v :=
∂φ

∂t

v = v1d1 + v2d2 + v3d3

Spin ω

∂di

∂t
= ω ∧ di

ω = axial
(
QT ∂Q

∂t

)
QT ∂Q

∂t
∈ so(3)

ω = ω1d1 + ω2d2 + ω3d3

Strain ε

ε :=
∂φ

∂S
− d3

ε = ε1d1 + ε2d2 + ε3d3

Curvature κ

∂di

∂S
= κ ∧ di

κ = axial
(
QT ∂Q

∂S

)
QT ∂Q

∂S
∈ so(3)

κ = κ1d1 + κ2d2 + κ3d3
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Associated moments and energy

Momentum p = ρAv

p :=

ρA 0 0
0 ρA 0
0 0 ρA

v1

v2

v3

 = Av

Moment of momentum σ

σ :=

ρI1 0 0
0 ρI2 0
0 0 ρI3

ω1

ω2

ω3

 = Jω

Kinetic energy density

T (v,ω) =
1
2
(vAv + ωJω)

Force N

N :=

GA 0 0
0 GA 0
0 0 EA

ε1

ε2

ε3

 = Gε

Torque M

M :=

EI1 0 0
0 EI2 0
0 0 GI3

κ1

κ2

κ3

 = Hκ

Deformation energy density

U(ε,κ) =
1
2
(εGε+ κHκ)

Lagrangian L(v,ω, ε,κ) :=

∫ L

0

1
2
vAv +

1
2
ωJω − 1

2
εGε− 1

2
κHκ dS

Hamiltonian H(v,ω, ε,κ) :=

∫ L

0

1
2
vAv +

1
2
ωJω +

1
2
εGε+

1
2
κHκ dS
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Application for (time) derivation of a quadratic form

Derivation of a vector

∂u
∂t

=
∂ui
∂t

di + ω ∧ u

f =
1
2
uXu, XT = X

∂f

∂t
=

∂ui
∂t

Xijuj

=

(
∂u
∂t

− ω ∧ u
)
· (Xu)

∂f

∂t
=

∂u
∂t

Xu − (u ∧ (Xu)) · ω

∂

∂t

(
1
2
uXu

)
̸= ∂u

∂t
Xu

∂u
∂t

− ω ∧ u is a corotational derivative
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Equilibrium

∂N
∂S

=
∂ Av
∂t

(1)

∂M
∂S

+
∂φ

∂S
∧ N =

∂ Jω
∂t

(2)

N := Gε

M := Hκ

v :=
∂φ

∂t
ω := axial(Q−1 ∂Q

∂t
) κ := axial(Q−1 ∂Q

∂S
) ε :=

∂φ

∂S
− d3

φ(S , t) and Q(S , t) are not used as explicite unknowns

Four vectors are the unknowns v, ω, κ, ε.

Ill-posed problem with 12 unknown components and 6 scalar equations

first order, non-linear, partial differential equations.

Additional closure relations

∂κ

∂t
=

∂ω

∂S
+ ω ∧ κ

∂ε

∂t
=

∂v
∂S

− ω ∧ d3
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Equilibrium

∂ Gε
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∂ Av
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Equilibrium
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Additional closure relations

∂κ

∂t
=

∂ω

∂S
+ ω ∧ κ

∂ε

∂t
=

∂v
∂S

− ω ∧ d3

obtained from
∂

∂t

∂di

∂S
=

∂

∂S

∂di

∂t

∂

∂t

∂φ

∂S
=

∂

∂S

∂φ

∂t
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Two systems

First system: unknowns v, ω, κ, ε

∂Gε

∂S
=

∂ Av
∂t

(3)

∂Hκ

∂S
+ (ε+ d3) ∧ (Gε) =

∂ Jω
∂t

(4)

∂ ω

∂S
+ ω ∧ κ =

∂ κ

∂t
(5)

∂ v
∂S

− ω ∧ d3 =
∂ ε

∂t
(6)

Second system: unknowns Q, di and φ

ω := axial(Q−1 ∂Q
∂t

) κ := axial(Q−1 ∂Q
∂S

) v :=
∂φ

∂t
ε :=

∂φ

∂S
− d3

One second order PDE ⇒ Two first order PDE

!! Initial and boundary conditions
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Numerical point of view

∂Gε

∂S
=

∂ Av
∂t

(7)

∂Hκ

∂S
+ (ε+ d3) ∧ (Gε) =

∂ Jω
∂t

(8)

∂ ω

∂S
+ ω ∧ κ =

∂ κ

∂t
(9)

∂ v
∂S

− ω ∧ d3 =
∂ ε

∂t
(10)


0 0 G 0
0 0 0 H
G 0 0 0
0 H 0 0



v ′

ω′

ε′

κ′

+


−WA 0 KG 0

0 −WJ EG KH
GK GE −GW 0
0 HK 0 0



v
ω
ε
κ

 =


A 0 0 0
0 J 0 0
0 0 G 0
0 0 0 H



v̇
ω̇
ε̇
κ̇


with non-linearities induced by the skew-matrices:

W =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 K =

 0 −κ3 κ2

κ3 0 −κ1

−κ2 κ1 0

 E =

 0 −(ε3 + 1) ε2

ε3 + 1 0 −ε1

−ε2 ε1 0


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Three point of views

∂Gε

∂S
=

∂ Av
∂t

Newton’s laws

∂Hκ

∂S
+ (ε+ d3) ∧ (Gε) =

∂ Jω
∂t

Rotational analogues of Newton’s laws

∂ ω

∂S
+ ω ∧ κ =

∂ κ

∂t
compatibility of rotations

∂ v
∂S

− ω ∧ d3 =
∂ ε

∂t
compatibility of translations


0 0 G 0
0 0 0 H
G 0 0 0
0 H 0 0



v ′

ω′

ε′

κ′

+


−WA 0 KG 0

0 −WJ EG KH
GK GE −GW 0
0 HK 0 0



v
ω
ε
κ

 =


A 0 0 0
0 J 0 0
0 0 G 0
0 0 0 H



v̇
ω̇
ε̇
κ̇



D u′ + Y(u) u = M u̇

D Symetric
Constant

Y(u) Skew-symetric
Non-linear

M Diagonal
Constant
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Motivation

"The thread model does not exist" P.Seppecher, Ecole d’été d’Oleron.

... but some counterexample
Tension/compression of bar : linear, dynamical

EAu′′3 = ρAü3, u3 : longitudinal displacement

String : ∼linear, dynamical

Fu′′1 = ρAü1, F = EAu′3, u1 : transverse displacement

Catenary : non-linear, static
Rope jumped : non-linear, quasi-static

... and intersting phenomena
Non-unicity of the solution
Non regularity of the solution
Zero-Euler’s critical load

Boundary condition plays a foundamental role

∥φ(L)−φ(0)∥ ∼ L ∥φ(L)−φ(0)∥ < L ∥φ(L)−φ(0)∥ > L
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Fu′′1 = ρAü1, F = EAu′3, u1 : transverse displacement

Catenary : non-linear, static
Rope jumped : non-linear, quasi-static

... and intersting phenomena
Non-unicity of the solution
Non regularity of the solution
Zero-Euler’s critical load

Boundary condition plays a foundamental role

∥φ(L)−φ(0)∥ ∼ L ∥φ(L)−φ(0)∥ < L ∥φ(L)−φ(0)∥ > L



11/20

Parametrisation Problem construction Thread Properties Paradigm shift Conclusion

Hypotheses

Circular cross-section ⇔ I1 = I2

No shear or bending rigidity ⇔ Only longitudinal or torsional rigidity

GA → 0, EA ̸= 0, EI1 → 0, EI2 → 0, GI3 ̸= 0

G =

0 0 0
0 0 0
0 0 EA

 H =

0 0 0
0 0 0
0 0 GI3


Application to standard structural mechanics

GA

EA
≪ 1

EI1
GI3

≪ 1 but I3 = I1 + I2 ⇒ 1
2
≪ G

A
≪ 1

Thread model exists, if one consider that

it’s an effective model for a microstructured material

it’s not only a 1D-manifold

Rq a thread is composed of an arrangement of filaments !! yes !!!
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Degeneracy

G =

0 0 0
0 0 0
0 0 EA

 H =

0 0 0
0 0 0
0 0 GI3




0 0 G 0
0 0 0 H
G 0 0 0
0 H 0 0



v ′

ω′

ε′

κ′

+


−WA 0 KG 0

0 −WJ EG KH
GK GE −GW 0
0 HK 0 0



v
ω
ε
κ

 =


A 0 0 0
0 J 0 0
0 0 G 0
0 0 0 H



v̇
ω̇
ε̇
κ̇


Problem

Lines 7,8,11 and 12 of this algebraic problem are 0 = 0
⇒ No possibility to express some compatibility condition

First alternative
Do not multiply compatibility condition by G and H

⇒ The structure of the problem is broken :
D is no more symetric, Y(u) is no more skew-symetric,

Second alternative
Consider EI1 = ϵ, EI2 = ϵ, GA = ϵ, with ϵ → 0

⇒ Critic for the numerical purpose

lim
ϵ→0

uϵ
?
= u0



12/20

Parametrisation Problem construction Thread Properties Paradigm shift Conclusion

Degeneracy

G =

0 0 0
0 0 0
0 0 EA

 H =

0 0 0
0 0 0
0 0 GI3




0 0 G 0
0 0 0 H
1 0 0 0
0 1 0 0



v ′

ω′

ε′

κ′

+


−WA 0 KG 0

0 −WJ EG KH
K E −W 0
0 K 0 0



v
ω
ε
κ

 =


A 0 0 0
0 J 0 0
0 0 1 0
0 0 0 1



v̇
ω̇
ε̇
κ̇


Problem

Lines 7,8,11 and 12 of this algebraic problem are 0 = 0
⇒ No possibility to express some compatibility condition

First alternative
Do not multiply compatibility condition by G and H

⇒ The structure of the problem is broken :
D is no more symetric, Y(u) is no more skew-symetric,

Second alternative
Consider EI1 = ϵ, EI2 = ϵ, GA = ϵ, with ϵ → 0

⇒ Critic for the numerical purpose

lim
ϵ→0

uϵ
?
= u0



12/20

Parametrisation Problem construction Thread Properties Paradigm shift Conclusion

Degeneracy

G =

0 0 0
0 0 0
0 0 EA

 H =

0 0 0
0 0 0
0 0 GI3




0 0 G 0
0 0 0 H
1 0 0 0
0 1 0 0



v ′

ω′

ε′

κ′

+


−WA 0 KG 0

0 −WJ EG KH
K E −W 0
0 K 0 0



v
ω
ε
κ

 =


A 0 0 0
0 J 0 0
0 0 1 0
0 0 0 1



v̇
ω̇
ε̇
κ̇


Problem

Lines 7,8,11 and 12 of this algebraic problem are 0 = 0
⇒ No possibility to express some compatibility condition

First alternative
Do not multiply compatibility condition by G and H

⇒ The structure of the problem is broken :
D is no more symetric, Y(u) is no more skew-symetric,

Second alternative
Consider EI1 = ϵ, EI2 = ϵ, GA = ϵ, with ϵ → 0

⇒ Critic for the numerical purpose

lim
ϵ→0

uϵ
?
= u0



13/20

Parametrisation Problem construction Thread Properties Paradigm shift Conclusion

Bi-dimensional analysis in the plane (d1, d3) = (ex, ez), d2 = ey

u =


v1

v3

ω2

ε1

ε3

κ2

 D̂ =


0 0 0 0 0 0 0
0 0 0 0 0 EA 0
0 0 0 0 0 0 0
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0



D̂ u′ + Ŷ(u)u = M̂ u̇ Ŷ(u) =


0 −ρAω2 0 0 0 EAκ2 0

ρAω2 0 0 0 0 0 0
0 0 0 0 0 −EAε1 0
0 κ2 −1 − ε3 0 0 0 0

−κ2 0 ε1 0 0 0 0
0 0 0 0 0 0 0



M̂ =


ρA 0 0 0 0 0
0 ρA 0 0 0 0
0 0 ρI3 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


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Bi-dimensional analysis in the plane (d1, d3) = (ex, ez), d2 = ey

u =


v1

v3

ω2

ε1

ε3

κ2
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0 EA 0 0 0 0 0
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

D̂ u′ + Ŷ(u)u = M̂ u̇ Ŷ(u) =


0 −ρAω2 0 0 0 EAκ2 0

ρAω2 0 0 0 0 0 0
0 0 0 0 0 −EAε1 0
0 κ2 −1 − ε3 0 0 0 0

−EAκ2 0 EAε1 0 0 0 0
0 0 0 0 0 0 0


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D̂ u′ + Ŷ(u)u = M̂ u̇ Ŷ(u) =
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Reorganisation of the plane problem

The problem is cast into two subproblem.

The first preserve a standard transport equation structure
0 0 0 0
0 0 0 EA
0 0 0 0
0 EA 0 0



v ′
1
v ′
3

ω′
2

ε′3

+


0 −ρAω2 0 EAκ2

ρAω2 0 0 0
0 0 0 −EAε1

−EAκ2 0 EAε1 0



v1

v3

ω2

ε3

 =


ρA 0 0 0
0 ρA 0 0
0 0 ρI3 0
0 0 0 EA



v̇1

v̇3

ω̇2

ε̇3


The second is composed of the two last compatibility equation

v ′
1 + κ2v3 − (1 + ε3)ω2 = ε̇1

ω′
2 = κ̇2

Rq These two problems are coupled
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Euler-Bernoulli hypothesis

No shear ε1 → 0

The conservation of angular momentum is neglected (like for string)

The problem is cast into two subproblem.

The first preserve a standard transport equation structure0 0 0
0 0 EA
0 EA 0

v ′
1
v ′
3
ε′3

+

 0 −ρAω2 EAκ2

ρAω2 0 0
−EAκ2 0 0

v1

v3

ε3

 =

ρA 0 0
0 ρA 0
0 0 EA

v̇1

v̇3

ε̇3


The second is composed of the two last compatibility equation

v ′
1 + κ2v3 − (1 + ε3)ω2 = 0

ω′
2 = κ̇2

⇒ The problem persists : additional kinematical hyptheses looks not to be a
solution to preserve the structure of the problem.
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Paradigm shift

Important remark

The loose of symetry of matrices Y and D is related to

Compatibility conditions:

∂κ

∂t
=

∂ω

∂S
+ ω ∧ κ

∂ε

∂t
=

∂v
∂S

− ω ∧ d3

obtained from
∂

∂t

∂Q
∂S

=
∂

∂S

∂Q
∂t

∂

∂t

∂φ

∂S
=

∂

∂S

∂φ

∂t

If the variable are not (only) vectors {v,ω, ε,κ} ∈ TC but (also) kinematical
quantities {φ,Q} ∈ C , the compatibility condition are imediately satisfied!

Ben justement, c’est ce que l’on a fait avec Oscar !!!

Timoshenko beam under finite and dynamic transformations: Lagrangian
coordinates and Hamiltonian structures, Communications in Analysis and
Mechanics, 17(4), 2025
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First formulation

{p, σ, ε, κ}

H(p, σ, ε, κ) =

∫ L

0

1
2
pA−1p +

1
2
σJ−1σ +

1
2
εGε+

1
2
κHκ dS

Poisson bracket, for any f and g functions of the variables {p, σ, ε, κ}:

{f , g} =

∫ L

0
<

∂f

∂p
,
∂

∂S

(
∂g

∂ε

)
> − <

∂g

∂p
,
∂

∂S

(
∂f

∂ε

)
>

+ <
∂f

∂σ
,
∂

∂S

(
∂g

∂κ

)
> − <

∂g

∂σ
,
∂

∂S

(
∂f

∂κ

)
>

+ < κ,
∂g

∂ε
∧ ∂f

∂p
− ∂f

∂ε
∧ ∂g

∂p
>

+ < σ,
∂g

∂σ
∧ ∂f

∂σ
> + < p,

∂g

∂σ
∧ ∂f

∂p
− ∂f

∂σ
∧ ∂g

∂p
>

+ < ε+ d3,
∂g

∂ε
∧ ∂f

∂σ
− ∂f

∂ε
∧ ∂g

∂σ
>

+ < κ,
∂g

∂κ
∧ ∂f

∂σ
− ∂f

∂κ
∧ ∂g

∂σ
> dS .
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Second formulation

{φ,Q, p,Σ}

H(φ,Q, p,Σ) =
1
2

∫ L

0
< p,A−1p > + < j(Q−1Σ), J−1j(Q−1Σ) >

+ <
∂φ

∂S
− d3,G(

∂φ

∂S
− d3) >

+ < j(Q−1 ∂Q
∂S

),Hj(Q−1 ∂Q
∂S

) > dS .

Poisson bracket, for any f and g functions of the variables {φ,Q, p,Σ}:

{f , g} =

∫ L

0
<

∂f

∂φ
,
∂g

∂p
> − <

∂g

∂φ
,
∂f

∂p
>

+ ≪ ∂f

∂Q
,
∂g

∂Σ
≫ − ≪ ∂g

∂Q
,
∂f

∂Σ
≫ dS .

where
Σ = Qj−1 (Jj(Q−1δQ)

)



19/20

Parametrisation Problem construction Thread Properties Paradigm shift Conclusion

Third formulation

{φ, p,Q,σ}

H(φ, p,Q,σ) =
1
2

∫ L

0
< p,A−1p > + < σ, J−1σ >

+ < (
∂φ

∂S
− d3),G(

∂φ

∂S
− d3) >

+ < j(Q−1 ∂Q
∂S

),Hj(Q−1 ∂Q
∂S

) > dS

Poisson bracket, for any f and g functions of the variables {φ, p,Q,σ}:

{f , g} =

∫ L

0
<

∂f

∂φ
,
∂g

∂p
> − <

∂g

∂φ
,
∂f

∂p
>

+ ≪ ∂f

∂Q
,Qj−1(

∂g

∂σ
) ≫ − ≪ ∂g

∂Q
,Qj−1(

∂f

∂σ
) ≫ dS
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Conclusion

Le modèle de fil existe, il y’en a même deux (avec ou sans cisallement). Il
suffit de le considérer comme une dégénérescence d’une variété matérielle
unidimensionnelle particulière : un fibré des repères.

Un fil est un milieu microstructuré

La dégénérescence induit une perte de structure du problème...

Cette étude n’est qu’un début.
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Conclusion

Le modèle de fil existe, il y’en a même deux (avec ou sans cisallement). Il
suffit de le considérer comme une dégénérescence d’une variété matérielle
unidimensionnelle particulière : un fibré des repères.

Un fil est un milieu microstructuré

La dégénérescence induit une perte de structure du problème...

Cette étude n’est qu’un début.

La vie ne tient qu’à un fil !


	Parametrisation
	Problem construction
	From beam to thread
	Properties
	Paradigm shift
	Conclusion

