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@ Quelques exemples introductifs

@ Détermination du groupe des symétries de Lie des EDP
@ Solutions invariantes

@ Théoreme de Noether

@ Application a la modélisation de la turbulence

@ Application aux schémas numériques

@ Application a la réduction de modeles



Quelques exemples introductives
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Solutions des ODE de premier ordre

@ Soit I'équation différentielle du premier ordre :

o ey =0 (1)
@ On suppose que la transformation :
g-: (x,¥) — (X = e**x,y = e%¢y), ol a # 0 vérifie :

~

a
ax
. On dira que c’est une symétrie de Lie (ou continue)

f(x,y) =0 quand (1) est vérifiée

@ Alors le changement de variables et de fonctions (x, y) — (&, u)

défini par :

1 oY

t=—Inx et u= y_

o x5
transforme I'équation (1) en une équation autonome que I'on sait
résoudre : g

u
— —g(u)=0 ()

dt



Quelques exemples introductives

Oe000

Exemple de I'’équation de Riccati

Y —xyt-2l (3)

@ Une symétrie simple : g. : (x,y) — (X = €°x,y = e~ %%y),
a=1letfg=-2

@ Le changement de variables et de fonctions :
(t = Inx, u = x?y) transforme (3) en :

o[V
E—u -1

@ A pour solution u = —tanh(t + a) ou a est une constante.



Quelques exemples introductives
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Exemple d’une forme différentielle : facteur intégrant

@ Soit une forme différentielle
w = P(x,y)dx + Q(x, y)dy

On cherche une fonction u(x, y) (facteur intégrant ) tg. : uw = dV On
montre qu’un facteur intégrant est :
. 1
F=ePina
ou £ et n "générateurs infinitésimaux” d’'une symétrie de w = 0.

@ Exemple :
w = (xy +y*)ax + (x* — xy)dy

@ Une symétrie simple est : g. : (x,y) — (X = €°x,y = €°y)

Ona:&=xetn=y
@ Alors on trouve :

1 1

u:m et V:E(/n(xy)—§)



Quelques exemples introductives
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EDP de la chaleur

@ Considérons I'équation de la chaleur :
du  d%u
ot~ oxt “)

@ Une symétrie continue élémentaire (la transformation d’échelle) :

g- : (x,t,u) —> (e°x,6%t,u)
est une symétrie de I'’équation de la chaleur (c’est un groupe a 1
paramétre).

@ Solution invariante par cette transformation (solution auto-similaire)
u(x,t) = u(e*x, e*t) :
ou ou

21‘E+x8—X:O:>u:f(n) avec n=

Sl

@ f est solution d'une EDO
a?f

ndf _
ar T aay 0



Quelques exemples introductives
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Détermination des symétries : exemples simples

Ecoulement 2D stationnaire
Considérons le systeme d’équations :

ou  ov
axtay =0
Ox oy — 0y?

Cherchons une symétrie de Lie de (5) sous la forme :

9-: (X, y,u,v) — (X,y,U,V) = (€™ x, ™y, e u, e v)

On obtient :
ou , ov _ gl me OV
ox = 9y \ - ° ox 7€ dy ,
,\@ ,\@ _ @ _ (2p—n)e @ (p+r—m)e @ _ (p72m)sﬂ
uay Va? V@?Z = e UE)X +e vay ve )2

Etdoncp—n=r—-m et 2p—n=p+r—m=p—-2m
Soitp=n—-2m et r=—m



Comment calculer le groupe de symétrie ?
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Détermination des symétries de Lie dans le cas
général : formulation géométrique des EDP

@ Espacedesjets: JO={&,w,w" ... wl  avecw = w(E), ex.
§= (ta X)

@ EDP: (E) F(&,w,w®,... w)=0 <«mmmp  sous variété
M de J*)

@ Transformation : g: g=(&w)—~g= (EA, w)
(& un paramétre si g = q(g, ¢) = g-(q))

J®



Comment calculer le groupe de symétrie ?
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Que ce que c’est une symétrie ?

@ g est une symétrie de (E) si

Few,....wky=0 = FEw,..,wh)=0

J

@ G est un groupe (local) de symétrie.



Comment calculer le groupe de symétrie ?
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Comment calculer le groupe de symétrie d’'une EDP ?
Action infinitésimale

@ On cherche les groupes a 1 parmétre g..
@ On détermine les générateurs infinitésimaux :

9:(q) =q =q+eX(q) +o(c) etdonc q(q.c) = exp(eX)(q)

@ Onnote:

X= Xfag +Xwaw

@ On prolonge l'action de X aux dérivées w® : X par :

X = +Xw—+ + X,

Xege w0

avec

- DXW(k—1) W(k)%
- D¢ 23

Xk

w



Comment calculer le groupe de symétrie ?
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Condition de symmétrie

@ Prolongementd’ordre 1en 1D :

X (axw ax5> 0%

X Ea aw

w(l) = 875
C’est un polynéme de dg 2 en w

@ g. est une symétrie de Lie de E, supposée localement
solvable (définie par F = 0 sur J*) ) ssi :

F=0=X®F=0

@ On trouve un systeme d’équations algébriques par rapport
w!) conditionné par F = 0

@ La résolution de systeme se fait par calcul formel(on utilse
la librairie Gem).



Comment calculer le groupe de symétrie ?
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Exemples

Equation de la chaleur

Le groupe des symétries de Lie, est un groupe de dimension 6 + groupe de
dimension infinie :
X1—E (t,x +¢e,u)
¥
X277 (t+E,X,U)
8t8
Xs = u@ ) (t, x, e°u)
Xy = xa—5 e 2t5 (e*t, e°x, u)
Xs = 21‘8—)é - xu% (t,x + 2et,u exp (—ex — €°t))
9 9 x o
Xo = 4ixg +4f o — (O +20)ug- (2 i uvT —deterp (7255
Xa :a(t,X)% (t,X,U+€C¥(t,X))
« solution de I'équation
)

V.




Comment calculer le groupe de symétrie ?
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Groupe des symétries de Lie des équations de
Navier—Stokes

@ Les équations de Navier—Stokes (NS)

divu =20

ou

1
ot + div(u® U)—i—;Vp: divr

T=2vS, S:letenseur des taux de déformation



Comment calculer le groupe de symétrie ?
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Générateurs du groupe de symétrie de (NS)

1o}
Xo = e ,
Yo = C(t)afp
Xji x-a x»8 +u'8 u'a i=1,2, j>i
i = Xk I@X/ i 5y Iaiuja =he J
0 , 0 .
)(’ = Oé,(t) 87)(, + C(,(t) aiul pX,Of, (t) 8p7 I_13233
0
o= 2fa+2fax ;“faﬂ‘zpa*p'

Si v se modifie on a en plus :
3 3
7] 7] 7] 7]
:ﬂ(l/) 1221)(]87)(1 + j§:1 Ujaiuj +2p87p +2I/$

(3 étant une fonction arbitraire de v, généralement pris égal a 1.



Comment calculer le groupe de symétrie ?
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Le groupe de symétrie de NS

@ Translations temporelles : (t,x,u,p) — (t+a,x,u,p)
(a=¢€)

@ Translations de pression: (¢, x,u,p) — (t,x,u, p+ ¢(t))

@ Rotations : (t,x,u,p) — (t, Rx, Ru, p)

@ Transformations galiléennes généralisées :
(t.x,U,p) = (t, X+ alt), u+a/(t), p— px.a/(t))

@ Premiers changements d’échelle :
(t,x,u,p) — (&°t, ax, a 'u, a 2p)

@ Seconds changements d’échelle :
(t,x,u,p,v) — (t, ax, au, ap, a°v)

@ Autres : reflexion, indifférence matérielle 2D



Comment calculer le groupe de symétrie ?
00000000e000

Groupe des symétries de Lie pour les écoulements
avec convection thermique

Considérons un fluide visqueux newtonien, incompressible et
anisotherme.

(

ou ) .
Bt + diviu® u) + %Vp —2vdivS—pgheg =0

06 8
a+ div(uf ) — kdiv(Ve ) =0 ®)

divu=20

ou 6 la température.



Comment calculer le groupe de symétrie ?
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Groupe de symétrie des écoulements anisothermes

@ Le groupe des translations temporelles Xy

(t,X,U,H,p)—>(t+a,X,U,6,p) (9)
0
Xo—a, (10)

@ Le groupe des translations par rapport a la pression Yj

(t7x’u797p)—>(t7x7u70’p+c(t)) (11)

0

Yo = C(f)%, (12)



Comment calculer le groupe de symétrie ?
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@ Le groupe des translations pression-température Z

(t,x,u,0,p) —> (t,X,u,0+ §,p+aﬁng) (13)
0 10
Z—BQX3%+E%, (14)

@ Le groupe des rotations horizontales Xiz, d’angle a

(t, x,u,0,p) — (t, Rx, Ru,0,p) (15)
0 0 0 0
Xi2 = Xo-— o 87)(2 + Up— M — U ER (16)

@ Le groupe des transformations galiléennes généralisées X;,i =1,2,3
(t, x,u,0,p) — (t,x + a(t), u+ &(t),0,p+ px . &(t)) (17)

0 0 0
= Oé,(t) + Oé/(t) ou; lea/(t)%7 (18)



Comment calculer le groupe de symétrie ?
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@ Premier groupe de changements d’échelle Y;

(t,x,u,0,p) — (&°t,ax,a 'u,a 0,a °p) (19)
0 = 0 = 0 B d

@ Le second groupe de changements d’échelle Ya

(t,x,u,0,p,v,k) — (t,ax,au, ad,ap, & v, ax). (21)

Voex L v d vop? 192 10,2 0.0 (22)
2 = ’87)(,- j%+ Pafp-i- % V@"‘ K%.



Solutions invariantes
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Solutions auto-similaires ou invariantes

Définition
f est une solution auto-similaire ou invariante de I'’équation (E)
associée au groupe a 1 parametre g. ssi:

Xf=0

ou X est le générateur du groupe.

W
Pour I'équation de la chaleur, u est invariante par le groupe a 1
parameétre associé a Xy ssi :

ou ou

.




Solutions invariantes
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Autres exemples de détermination de solutions
invariantes

Ecoulement isotherme

u(x,y) = x""2*F(n) et v(x,y)=x"“G(n) ou n= Xla et a=m/n
Associée a :
) ) ) )
X = Xax I axa—y +(1 - 2a)u% —avgs

F et G vérifient alors un systeme d’ODE caractéristique de nombreux
écoulements de couches minces (jet, couche limite, couche de mélange,
canal, ..).

Le coefficient « est lié a la nature de I'écoulement. Par exemple, pour un jet
plan on a a = 2/3 et pour une couche limite : o = 1/2



Solutions invariantes
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Un exemple important : lois d’échelle pour les
écoulements turbulents

@ Cette approche peut étre utilisée pour déterminer des lois d’échelle du
champ de vitesse moyen des écoulements turbulents anisothermes de
type "couche minces”

@ On utilise la déecomposition de Reynolds pour les champs de vitesse, de
pression et de température :u=U+ U, 0 =0+ 60" etp=p+p

@ On calcule le groupe de symétrie pour les équations des champs
fluctuants. On trouve un groupe de symétrie de dimension 15 (calcul
fastidieux)

@ Cela donne toute une zoologie de lois d’échelle dont une partie est
inédites.



Solutions invariantes
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Lois de conservation : théoreme d’Emmy Noether

@ Emmy Noether : Probléemes variationnels invariants (1918)
@ Valable pour des problémes qui dérivent d’un lagrangien :

5&:5/ugmwQHWM%@:o (23)
Q

@ Notons U = Q x F ensemble des q = (£, w). Et soit G un groupe de Lie
agissant sur U/ : R
(& w)=g.(&w)
On s’intéresse aux symétries variationnelles (i.e. les g qui laissent
invariante L)

Q



Théoréme de Noether
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Théoreme de Noether

Caractérisation des symétries variationnelles

Un groupe a un parametre g. de générateur X = Xg% + Xwaiw est une

symétrie variationnelle de £ de densité L ssi :

XM L4 L divXe =0

.

Proposition

Si G, est un groupe de symétrie variationnelle de £ a m parameétres, alors a
chaque sous-groupe a un parametre correspond une loi de conservation
pour chaque solution d’Euler-Lagrange associée £, de type :

divT =0 (24)

Pour n =1, en notant v = Vw, on a

oL\’
T= I_Xg + (87’}/) (XW — ’ng)

A\




Théoréme de Noether
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@ Exemple en mécanique classique :

Translation temporelle — énergie
Translation spatiale —  quantité de mouvement
Rotation — moment cinétique

@ Lintégrale J en théorie de la rupture est une conséquence du théoréme
de Noether.

@ |l existe un deuxieéme théoréme de Noether (théories des jauges)

@ Extension du théoreme de Noether dans le cas hamiltonien : J. M.
Souriau et B. Kostant : moment d’un groupe dynamique

@ Extension pour les problemes non variationnels.



Théoréme de Noether
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Exemple : I'intégrale J en théorie de la rupture

@ Soit Q un ouvert de R®. On considére une action lagrangienne

L:Auﬂm

ou F est le gradient de la transformation x — ¢(x) = x + u(x).
Alors cette action est invariante par I'action de :

i 0 i 0
X' =g T Vigg
@ Onaalors:
i i aL I

et l'intégration de divT = 0 donne le resultat.



Les équations des écoulements anisotherme filtrées

ou = 5
a5 T div(u ® U) + %Vﬁ — 2vdivS — Bgleg + div Tem =0

0 _ _
a1 + div(uf ) — kdiv(VO ) + div hs; =0
\ divu=0
(26)
Ou
@ Tsm = U®U— U U est le tenseur des tensions de
sous-maille

@ hgm = Ou — 60U le flux de sous-maille.



Symétries et modeles de sous-maille : principe

Probleme initial, — — f(@u,g,plawu,owg):o — > G

Modeéle sous-maille, — & (g,m 6,D'°1t, DP9, o, hsm) =0 —> Gsn —

Tsm €t hsm @ modéliser

(62 G <
v

Lois de conservation, lois de paroi,

solutions exactes, spectre de Kolmogorov, ...



Une classe de modéles préservant les symétries

@ OnnoteT = V@

@ Eton chercﬁheﬁune classe de rnogéles sous la forme :
—7sm = F(S,T) et —hsm = G(S, T)

Grace a la théorie des invariants on montre que :
18 =vF S+ vX 2R A’ S+ vX 2 F(T @ T)+
— = 5 - _ _7d
VX 2RST T + v i F [S(T ® 'Jl‘)S}

—hsm =K (FSI3 + X71/2F7§+ X71F8§2) T.
ou F; = Fi(v1, v2, v3, v4) avec

¢ 9 Wy )
M= e T BT s T xs
ot X =tr S,

£=detS, 9=T, w =T.ST




Modeles dérivant d’'un potentiel

@ Pour que le modéle dérive d'un potentiel, on montre que :

O9m O9m O9m o9m | —
— d — — - - _
T V|:ng SV18V 4262 53(93 6484 S+
y [X 99m p S a3 V’" (TeT) +2x2 " L0 BT T,
83

Ou
gm et g: sont des fonctions des invariants v;.




Exemples :

det S
@ Modéle fortement couplé, gm et h; fonctions de v4 = ”%”3 et
p— Tz .
IS+
OGm 09m .= 1 0gm
= — 3 — — 44— A
{ T =v(2gm — 3vy v, Vo v )S+v HS|| v, dj’s, (29)
—h= //ihpT.
@ Modele non couplé, gm dépend de v = v; et h, de v :
—7 = v(29m — 3Vglh)S + v— g.,Ad]?S
—h = Iiht T

@ Modéle linéaire, gm et h; sont des fonctions linéaires de v :

7= vCa(~detS s s S+AA’S L),
(31)
—/»@C;detS !
HSlI



Exemple : convection mixte

Figure — Cavité chauffée et ventilée (Wei Zhang and Q. Chen, [JHMT

2000)

Inlet height = 0,018 m
Air velocity = 0,57 m/s

H=1,04m

Tw=15°C

[—

D=07m

Outlet height = 0,024 m
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@ Profils de la vitesse moyenne dans le plan x = 0.502

7

4
4
i
F
Ju
)
£
53
J
> Sl
S
FF
FE
/¥
SiF
§id
:n
Fi

Vitesse moyenne Uy,

o
ut sy
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@ Profils de la température moyenne dans le plan x = 0.502

T e S—
T

Temp. moy. en fonction de y



Une ar
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@ Profils de la température moyenne

T

Y

x

Temp. moy. filirée en fonction de x



Exemple de construction de schémas invariants par
I'action d’un groupe de Lie

Soit (N, ®) un schéma numérique d’'une EDP admettant G comme
groupe de symétrie. Alors (N, ®) est G-symétrique si :

NZz)=0=N(g-2)=0, ¢(2)=0=%(g-2)=0, VgeG

v

Un repére mobile (a droite) relativement a G est une application
p:M— Gtq.:
p(g-2)=p(2)g~" VzeM,NYge G (équivariance)
g

Orb(z)




Théoréme fondamental d’invariatisation

Théoréme

Soit (N, ®) un schéma numerique pour F(z) =0,et Gun
groupe de symétrie de cette équation. Alors I'application (N, ®)
la transformée de (N, ) par le repére mobile p associé a G :

N@Z) = N(p(z)-2)
d(z) = P(p(2)-2)

est un schéma numérique G-invariant pour F(z) = 0.

@ Le théoréme ne dit rien sur I'ordre de consistance !

@ Lexistence de p est assurée si I'action de G est libre et
réguliere.

@ Construction de p par la méthode de normalisation (P. Kim
and P. J. Olver 2004 ; P. Kim 2008), en imposant en plus la
consistance un certain ordre (M. Chhay et A. Hamdouni 2011)



Exemple : équation de Burgers

Equation de Burgers :

ou oo
at " ax  Vox?

Le groupe de symétrie est composé de :

@ Translation spatial : @ Transformation d’échelle :
(x,t,u) = (X +e1,t,U) (x,t,U) — (xe, te®*+, ue™*)
@ Translation temporelle : @ Transformation Galiléenne :
(x,t,u) — (x,t+ e2,U) (x,t,u) — (X +est, t,u+es5)
@ Projection :
(x,t,u) —

(250 7250 (1 — e3t)u + e3x)



Schéma FTCS invariant

Partant d’'un schéma FTCS (Forward-Time Central-Space) :

n+1 n n n n n n
uy -y 1~ Ui ) = Ui —2u + Uy
At AXx?

On peut construire par la procédure du repére mobile un schéma invariant
d'ordre O(At, Ax?) (M. Chhay et A. Hamdouni 2011)) :

Ut (1 —esAt) — uf

0 = A L (1 —esAt)
uty —ul uly —2u’ + U,
+(ulf7 + 85)(/+T/ + 63) _ %
avec
g3 = _ujn+1 B an—1
2AXx

es = duly+eu + fuly withd =fandd +e+f=—1



Pseudo-choc : Burgers avec viscosité

Solution de I'équation de Burgers (CAL non homogeéne), sur ] — 1;1[x[1;2] :

sinh(3-)

uexact(X7 t) =

@ Schéma FTCS explose

cosh(Z) + exp(—2)

@ Comparaison entre schémas classique de Crank-Nicolson le schéma

invariant IFTCS :

v=75x10"°% CFL =1/2.

CRANK-NICOLSON ——
INVARIANTFTCS  =+--+-
EXACTE 4

CRANK-NICOLSON ——
INVARIANT FTCS ===+~

Ax
At=5x10"* Ax=10"°

05 1

A X
At=1072%, Ax =2 x 1072



Explication possible

IFTCS capture de la solution auto-similaire associée a la
projection :
X t
1 —631” 1 —531"
qui a la forme générale :
srean (5.2) = (v + ek VK

La solution auto-similaire correspond au choc!

(X,t,u) — ( (1—€3T)U—|—€3X)

£ o
g




Invariance galiléenne

o

Schéma FTCS Schéma Crank-Nicolson (CN)

Schéma invariant IFTCS  Schéma invariant Crank-Nicolson
Ax=2x10"2. v =5x 103.



Systéme dynamique dans M

@ Soit G un groupe de Lie (g son algebre de Lie) qui agit sur
une variété différentielle M

@ On considere un systéeme dynamique dans M :
u=X(u) et u(0)=u
ou X est un champ de vecteurs équivariant par G sur M :

X(g.u) = g+ X(u)



Systeme dynamique dans le repere mobile

@ La solution du probleme u(t) peut étre cherché sous la forme :
u(t) = g(t).r(t)

@ Idée : séparer la forme du transport

@ Ecrire le systeme dynamique dans le repére mobile (dynamique de la
forme)

@ Projection sur la bas POD pour obtenir le ROM-POD dans le repére
mobile

@ Reconstruire la solution en effectuant le transport



Systeme dynamique dans le repere mobile

@ Comme X est équivariant, il facile de montrer que r(t) est solution de

ar

&= X(r) - ulr)
ou 4
€=TlLy F?

Il reste alors a déterminer £ et ensuite g(t).

@ Sil'action de G est libre et propre (M/G est donc une variété
différentielle) et si M est une variété riemannienne, alors on peut
déterminer £ grace a la "connexion mécanique” (d’'un fibré principal) :

A:TM—g
(voir C. W. Rowley et J. E. Marsden, Physica D, 2000 )



Conclusion

@ Les symétries de Lie sont un bon outil pour la modélisation en
mécanique

@ Elles permettent la construction de modeéles consistants physiquement
@ Obtention des lois d’échelles

@ Lois de conservation et leurs conséquences

@ Modéles de turbulence respectant les invariances du probléme

@ Schémas numériques robustes (théoréme de Noether discret )

@ Nombreuses applications possibles (réduction de modéles, IA, ..).
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