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Solutions des ODE de premier ordre

Soit l’équation différentielle du premier ordre :

dy
dx

− f (x , y) = 0 (1)

On suppose que la transformation :
gε : (x , y) 7−→ (x̂ = eαεx , ŷ = eβεy), où α ̸= 0 vérifie :

dŷ
dx̂

− f (x̂ , ŷ) = 0 quand (1) est vérifiée

. On dira que c’est une symétrie de Lie (ou continue)

Alors le changement de variables et de fonctions (x , y) 7−→ (t ,u)
défini par :

t =
1
α

lnx et u =
yα

xβ

transforme l’équation (1) en une équation autonome que l’on sait
résoudre :

du
dt

− g(u) = 0 (2)
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Exemple de l’équation de Riccati

dy
dx

= xy2 − 2
y
x
− 1

x3 (3)

Une symétrie simple : gε : (x , y) 7−→ (x̂ = eεx , ŷ = e−2εy),
α = 1 et β = −2

Le changement de variables et de fonctions :
(t = lnx ,u = x2y) transforme (3) en :

du
dt

= u2 − 1

A pour solution u = −tanh(t + a) où a est une constante.
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Exemple d’une forme différentielle : facteur intégrant

Soit une forme différentielle

ω = P(x , y)dx + Q(x , y)dy

On cherche une fonction µ(x , y) (facteur intégrant ) tq. : µω = dV On
montre qu’un facteur intégrant est :

µ =
1

ξP + ηQ

où ξ et η ”générateurs infinitésimaux” d’une symétrie de ω = 0 .

Exemple :
ω = (xy + y2)dx + (x2 − xy)dy

Une symétrie simple est : gε : (x , y) 7−→ (x̂ = eεx , ŷ = eεy)

On a : ξ = x et η = y

Alors on trouve :

µ =
1

2x2y
et V =

1
2

(
ln(xy)− y

x

)
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EDP de la chaleur

Considérons l’équation de la chaleur :

∂u
∂t

=
∂2u
∂x2 (4)

Une symétrie continue élémentaire (la transformation d’échelle) :

gε : (x , t , u) 7−→ (eεx , e2εt , u)

est une symétrie de l’équation de la chaleur (c’est un groupe à 1
paramètre).

Solution invariante par cette transformation (solution auto-similaire)
u(x , t) = u(eεx , e2εt) :

2t
∂u
∂t

+ x
∂u
∂x

= 0 ⇒ u = f (η) avec η =
x√
t

f est solution d’une EDO

d2f
dη2 +

η

2
df
dη

= 0
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Détermination des symétries : exemples simples

Ecoulement 2D stationnaire
Considérons le système d’équations :

∂u
∂x

+
∂v
∂y

= 0

u
∂u
∂x

+ v
∂u
∂y

= ν
∂2u
∂y2

(5)

Cherchons une symétrie de Lie de (5) sous la forme :

gε : (x , y , u, v) 7−→ (x̂ , ŷ , û, v̂) = (enεx , emεy , epεu, erεv)

On obtient :
∂û
∂x̂

+
∂v̂
∂ŷ

= e(p−n)ε ∂u
∂x

+ e(r−m)ε ∂v
∂y

û
∂û
∂x̂

+ v̂
∂û
∂ŷ

− ν
∂2û
∂ŷ2

= e(2p−n)εu
∂u
∂x

+ e(p+r−m)εv
∂u
∂y

− νe(p−2m)ε ∂
2u

∂y2

(6)
Et donc p − n = r − m et 2p − n = p + r − m = p − 2m
Soit p = n − 2m et r = −m
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Détermination des symétries de Lie dans le cas
général : formulation géométrique des EDP

Espace des jets : J(k)= {ξ,w ,w (1), . . . ,w (k)} avec w = w(ξ), ex.

ξ = (t , x)
E.D.P. : (E) F (ξ,w ,w (1), . . . ,w (k)) = 0 ◀ ▶ sous variété
M de J(k)

Transformation : g : q = (ξ,w) 7→ q̂ = (ξ̂, ŵ)

(à un paramètre si q̂ = q̂(q, ε) = gε(q))

J(k)
M

▶
g

M
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Que ce que c’est une symétrie?

g est une symétrie de (E) si

F (ξ,w , . . . ,w (k)) = 0 ⇒ F (ξ̂, ŵ , . . . , ŵ (k)) = 0

J(k)
M

▶
g

M

G est un groupe (local) de symétrie.
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Comment calculer le groupe de symétrie d’une EDP?
Action infinitésimale

On cherche les groupes à 1 parmètre gε.

On détermine les générateurs infinitésimaux :

gε(q) = q̂ = q + εX (q) + o(ε) et donc q̂(q, ε) = exp(εX )(q)

On note :
X = Xξ

∂

∂ξ
+ Xw

∂

∂w

On prolonge l’action de X aux dérivées w (k) : X (k) par :

X (k) = Xξ
∂

∂ξ
+ Xw

∂

∂w
+ · · ·+ Xw(k)

∂

∂w (k)

avec
Xw(k) =

DXw(k−1)

Dξ
− w (k) DXξ

Dξ
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Condition de symmétrie

Prolongement d’ordre 1 en 1 D :

Xw (1) =
∂Xw

∂ξ
+ ẇ

(
∂Xw

∂w
−

∂Xξ

∂ξ

)
− ẇ2∂Xξ

∂w

C’est un polynôme de dg 2 en ẇ
gε est une symétrie de Lie de E , supposée localement
solvable (définie par F = 0 sur J(k) ) ssi :

F = 0 ⇒ X (k).F = 0

On trouve un système d’équations algébriques par rapport
w (j) conditionné par F = 0
La résolution de système se fait par calcul formel(on utilse
la librairie Gem).
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Exemples

Equation de la chaleur
Le groupe des symétries de Lie, est un groupe de dimension 6 + groupe de
dimension infinie :

X1 =
∂

∂x
(t , x + ε, u)

X2 =
∂

∂t
(t + ε, x , u)

X3 = u
∂

∂u
(t , x , eεu)

X4 = x
∂

∂x
+ 2t

∂

∂t
(e2εt , eεx , u)

X5 = 2t
∂

∂x
− xu

∂

∂u
(
t , x + 2εt , u exp

(
−εx − ε2t

))
X6 = 4tx

∂

∂x
+ 4t2 ∂

∂t
− (x2 + 2t)u

∂

∂u

(
t

1−4εt ,
x

1−4εt , u
√

1 − 4εtexp
(

−εx2

1−4εt

))
Xα = α(t , x) ∂

∂u (t , x , u + εα(t , x))
α solution de l’équation

(7)
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Groupe des symétries de Lie des équations de
Navier–Stokes

Les équations de Navier–Stokes (NS)
divu = 0

∂u
∂t

+ div(u ⊗ u) +
1
ρ
∇p = divτ

τ = 2νS, S : le tenseur des taux de déformation
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Générateurs du groupe de symétrie de (NS)

X0 =
∂

∂t

Y0 = ζ(t)
∂

∂p

Xij = xj
∂

∂xi
− xi

∂

∂xj
+ uj

∂

∂ui
− ui

∂

∂uj
, i = 1, 2, j > i

Xi = αi(t)
∂

∂xi
+ α′

i (t)
∂

∂ui
− ρ xi α

′′
i (t)

∂

∂p
, i = 1, 2, 3

Y1 = 2t
∂

∂t
+

3∑
j=1

xj
∂

∂xj
−

3∑
j=1

uj
∂

∂uj
− 2p

∂

∂p
.

Si ν se modifie on a en plus :

Y2 = β(ν)

 3∑
j=1

xj
∂

∂xj
+

3∑
j=1

uj
∂

∂uj
+ 2p

∂

∂p
+ 2ν

∂

∂ν


β étant une fonction arbitraire de ν, généralement pris égal à 1.
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Le groupe de symétrie de NS

Translations temporelles : (t , x ,u,p) 7→ (t + a, x ,u,p)
(a = eε)

Translations de pression : (t , x ,u,p) 7→ (t , x ,u,p + ζ(t))

Rotations : (t , x ,u,p) 7→ (t ,Rx ,Ru,p)

Transformations galiléennes généralisées :
(t , x ,u,p) 7→

(
t , x + α(t), u + α′(t), p − ρx � α′′(t)

)
Premiers changements d’échelle :
(t , x ,u,p) 7→ (a2t , ax , a−1u, a−2p)

Seconds changements d’échelle :
(t , x ,u,p, ν) 7→ (t , ax , au, a2p, a2ν)

Autres : reflexion, indifférence matérielle 2D
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Groupe des symétries de Lie pour les écoulements
avec convection thermique

Considérons un fluide visqueux newtonien, incompressible et
anisotherme.

∂u
∂t

+ div(u ⊗ u) + 1
ρ∇p − 2ν divS−βgθeg = 0

∂θ

∂t
+ div(uθ )− κdiv(∇θ ) = 0

divu = 0

(8)

où θ la température.
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Groupe de symétrie des écoulements anisothermes

Le groupe des translations temporelles X0

(t , x ,u, θ, p) −→ (t + a, x ,u, θ, p) (9)

X0 =
∂

∂t
, (10)

Le groupe des translations par rapport à la pression Y0

(t , x ,u, θ, p) −→ (t , x ,u, θ, p + ζ(t)) (11)

Y0 = ζ(t)
∂

∂p
, (12)
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Le groupe des translations pression-température Z

(t , x , u, θ, p) −→ (t , x , u, θ +
a
ρ
, p + aβgx3) (13)

Z = βgx3
∂

∂p
+

1
ρ

∂

∂θ
, (14)

Le groupe des rotations horizontales X12, d’angle a

(t , x , u, θ, p) −→ (t ,Rx ,Ru, θ, p) (15)

X12 = x2
∂

∂x1
− x1

∂

∂x2
+ u2

∂

∂u1
− u1

∂

∂u2
, (16)

Le groupe des transformations galiléennes généralisées Xi , i = 1, 2, 3

(t , x , u, θ, p) −→ (t , x + α(t), u + α̇(t), θ, p + ρx � α̈i(t)) (17)

Xi = αi(t)
∂

∂xi
+ α̇i(t)

∂

∂ui
− ρxi α̈i(t)

∂

∂p
, (18)
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Premier groupe de changements d’échelle Y1

(t , x , u, θ, p) −→ (a2t , ax , a−1u, a−3θ, a−2p) (19)

Y1 = 2t
∂

∂t
+

3∑
j=1

xj
∂

∂xj
−

3∑
j=1

uj
∂

∂uj
− 2p

∂

∂p
− 3θ

∂

∂θ
, (20)

Le second groupe de changements d’échelle Y2

(t , x , u, θ, p, ν, κ) −→ (t , ax , au, aθ, a2p, a2ν, a2κ). (21)

Y2 = xj
∂

∂xj
+ uj

∂

∂uj
+ 2p

∂

∂p
+ θ

∂

∂θ
+ 2ν

∂

∂ν
+ 2κ

∂

∂κ
. (22)
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Solutions auto-similaires ou invariantes

Définition
f est une solution auto-similaire ou invariante de l’équation (E)
associée au groupe à 1 paramètre gε ssi :

X .f = 0

où X est le générateur du groupe.

Exemple

Pour l’équation de la chaleur, u est invariante par le groupe à 1
paramètre associé à X4 ssi :

2t
∂u
∂t

+ x
∂u
∂x

= 0
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Autres exemples de détermination de solutions
invariantes

Écoulement isotherme

u(x , y) = x1−2αF (η) et v(x , y) = x−αG(η) où η =
y

xα
et α = m/n

Associée à :

X = x
∂

∂x
+ αx

∂

∂y
+ (1 − 2α)u

∂

∂u
− αv

∂

∂v

F et G vérifient alors un système d’ODE caractéristique de nombreux
écoulements de couches minces (jet, couche limite, couche de mélange,
canal, ..).
Le coefficient α est lié à la nature de l’écoulement. Par exemple, pour un jet
plan on a α = 2/3 et pour une couche limite : α = 1/2
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Un exemple important : lois d’échelle pour les
écoulements turbulents

Cette approche peut être utilisée pour déterminer des lois d’échelle du
champ de vitesse moyen des écoulements turbulents anisothermes de
type ”couche minces”

On utilise la décomposition de Reynolds pour les champs de vitesse, de
pression et de température : u = U + u′, θ = θ + θ′ et p = p + p′

On calcule le groupe de symétrie pour les équations des champs
fluctuants. On trouve un groupe de symétrie de dimension 15 (calcul
fastidieux)

Cela donne toute une zoologie de lois d’échelle dont une partie est
inédites.
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Lois de conservation : théorème d’Emmy Noether

Emmy Noether : Problèmes variationnels invariants (1918)

Valable pour des problèmes qui dérivent d’un lagrangien :

δL = δ

∫
Ω

L(ξ,w ,w (1), . . . ,w (n))dξ = 0 (23)

Notons U = Ω×F ensemble des q = (ξ,w). Et soit G un groupe de Lie
agissant sur U :

(ξ̂, ŵ) = g.(ξ,w)

On s’intèresse aux symétries variationnelles (i.e. les g qui laissent
invariante L) :

L =

∫
Ω

L(ξ,w ,w (1), . . . ,w (n))dξ =

∫
Ω̂

L̂(ξ̂, ŵ , ŵ (1), . . . , ŵ (n))d ξ̂
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Théorème de Noether

Caractérisation des symétries variationnelles

Un groupe à un paramètre gε de générateur X = Xξ
∂

∂ξ
+ Xw

∂

∂w
est une

symétrie variationnelle de L de densité L ssi :

X (n).L + L divXξ = 0

Proposition

Si GL est un groupe de symétrie variationnelle de L à m paramètres, alors à
chaque sous-groupe à un paramètre correspond une loi de conservation
pour chaque solution d’Euler-Lagrange associée L, de type :

divT = 0 (24)

Pour n = 1, en notant γ = ∇w , on a

T = LXξ +

(
∂L
∂γ

)T

(Xw − γXξ)
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Exemple

Exemple en mécanique classique :

Translation temporelle −→ énergie
Translation spatiale −→ quantité de mouvement
Rotation −→ moment cinétique

L’intégrale J en théorie de la rupture est une conséquence du théorème
de Noether.

Il existe un deuxième théorème de Noether (théories des jauges)

Extension du théorème de Noether dans le cas hamiltonien : J. M.
Souriau et B. Kostant : moment d’un groupe dynamique

Extension pour les problèmes non variationnels.
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Exemple : l’intégrale J en théorie de la rupture

Soit Ω un ouvert de R3. On considère une action lagrangienne

L =

∫
Ω

L(F )dx

où F est le gradient de la transformation x 7→ ϕ(x) = x + u(x).
Alors cette action est invariante par l’action de :

X i = Φi
j
∂

∂x j +Ψi
j
∂

∂u j

On a alors :

T i
j = LΦi

j −
(
∂L
∂F

)i

k
(F k

l Φ
l
j −Ψk

j ) (25)

et l’intégration de divT = 0 donne le résultat.
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Les équations des écoulements anisotherme filtrées



∂u
∂t

+ div(u ⊗ u) + 1
ρ∇p − 2ν divS − βgθeg + div τsm = 0

∂θ

∂t
+ div(uθ )− κdiv(∇θ ) + div hsm = 0

divu = 0
(26)

Où
τsm = u ⊗ u − u ⊗ u est le tenseur des tensions de
sous-maille

hsm = θu − θu le flux de sous-maille.
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Symétries et modèles de sous-maille : principe

Problème initial, −→ F
(
ξ, u, θ,D|α|u,D|β|θ

)
= 0 ▶ G

Modèle sous-maille, −→ G
(
ξ, u, θ,D|α|u,D|β|θ, τsm, hsm

)
= 0 ▶ Gsm

τsm et hsm à modéliser

◀G ⊂ Gsm

▼
Lois de conservation, lois de paroi,

solutions exactes, spectre de Kolmogorov, ...
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Une classe de modèles préservant les symétries

On note T = ∇θ

Et on cherche une classe de modèles sous la forme :
−τsm = F(S,T) et −hsm = G(S,T)

Grâce à la théorie des invariants on montre que :



−τ d
sm = νF1S + νX− 1

2 F2 Adj
d S + νX− 3

2 F3(T⊗ T)d+

νX−2F4[S(T⊗ T)]d + νX− 5
2 F5

[
S(T⊗ T)S

]d

−hsm = κ
(

F6I3 + X−1/2F7S + X−1F8S
2
)
T.

(27)

où Fi = Fi(v1, v2, v3, v4) avec

v1 =
ξ

X 3/2 , v2 =
ϑ

X 2 , v3 =
ω1

X 5/2 , v4 =
ω2

X 3 .

et X = trS
2
, ξ = detS, ϑ = T2

, ω1 = T � S T, ω2 = S T � S T
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Modèles dérivant d’un potentiel

Pour que le modèle dérive d’un potentiel, on montre que :

−τ d = ν

[
2gm − 3v1

∂gm

∂v1
− 4v2

∂gm

∂v2
− 5v3

∂gm

∂v3
−6v4

∂gm

∂v4

]
S+

ν

[
X− 1

2
∂gm

∂v1
Adjd S +X− 3

2
∂gm

∂v3
(T⊗ T)d + 2X−2 ∂gm

∂v4
[S(T⊗ T)]d ,

]

−h = κ

(
∂gt

∂v2
I3 + X−1/2 ∂gt

∂v3
S + X−1 ∂gt

∂v4
S

2

)
T,

(28)
Où
gm et gt sont des fonctions des invariants vi .
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Exemples :

Modèle fortement couplé, gm et ht fonctions de v1 =
detS

||S||3
et

v2 =
T2

||S||4
: −τ = ν(2gm − 3v1

∂gm

∂v1
− 4v2

∂gm

∂v2
)S + ν

1

||S||
∂gm

∂v1
Adjd S,

−h = κhtT.
(29)

Modèle non couplé, gm dépend de v = v1 et ht de v2 : −τ = ν(2gm − 3vg′
m)S + ν

1

||S||
g′

mAdjd S,

−h = κht T,
(30)

Modèle linéaire, gm et ht sont des fonctions linéaires de v :
−τ = νCm(−detS 1

∥S∥3 S+Adjd S 1
∥S∥ ),

−h = κCtdetS 1

∥S∥3 T,
(31)
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Exemple : convection mixte

Figure – Cavité chauffée et ventilée (Wei Zhang and Q. Chen, IJHMT
2000)
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Profils de la vitesse moyenne dans le plan x = 0.502

Vitesse moyenne U1,
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Profils de la température moyenne dans le plan x = 0.502

Temp. moy. en fonction de y
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Profils de la température moyenne

Temp. moy. filtrée en fonction de x
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Exemple de construction de schémas invariants par
l’action d’un groupe de Lie

Définiton

Soit (N,Φ) un schéma numérique d’une EDP admettant G comme
groupe de symétrie. Alors (N,Φ) est G-symétrique si :

N(z) = 0 ⇒ N(g · z) = 0, Φ(z) = 0 ⇒ Φ(g · z) = 0, ∀g ∈ G

Un repère mobile (à droite) relativement à G est une application
ρ : M 7−→ G tq. :

ρ(g · z) = ρ(z)g−1 ∀z ∈ M,∀g ∈ G (équivariance)

g

g −1
ρ =

Orb(z)
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Théorème fondamental d’invariatisation

Théorème
Soit (N,Φ) un schéma numérique pour F (z) = 0, et G un
groupe de symétrie de cette équation. Alors l’application (Ñ, Φ̃)
la transformée de (N,Φ) par le repère mobile ρ associé à G :

Ñ(z) = N
(
ρ(z) · z

)
Φ̃(z) = Φ

(
ρ(z) · z

)
est un schéma numérique G-invariant pour F (z) = 0.

Le théorème ne dit rien sur l’ordre de consistance !
L’existence de ρ est assurée si l’action de G est libre et
régulière.
Construction de ρ par la méthode de normalisation (P. Kim
and P. J. Olver 2004 ; P. Kim 2008), en imposant en plus la
consistance un certain ordre (M. Chhay et A. Hamdouni 2011)
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Exemple : équation de Burgers

Equation de Burgers :

∂u
∂t

+ u
∂u
∂x

= ν
∂2u
∂x2

Le groupe de symétrie est composé de :

Translation spatial :
(x , t ,u) 7→ (x + ε1, t ,u)
Translation temporelle :
(x , t ,u) 7→ (x , t + ε2,u)
Projection :
(x , t ,u) 7→
( x

1−ε3t ,
t

1−ε3t , (1 − ε3t)u + ε3x)

Transformation d’échelle :
(x , t ,u) 7→ (xeε4 , te2ε4 ,ue−ε4)

Transformation Galiléenne :
(x , t ,u) 7→ (x + ε5t , t ,u + ε5)
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Schéma FTCS invariant

Partant d’un schéma FTCS (Forward-Time Central-Space) :

un+1
j − un

j

∆t
+ un

j
(un

j+1 − un
j−1

2∆x
)
= ν

un
j+1 − 2un

j + un
j−1

∆x2

On peut construire par la procédure du repère mobile un schéma invariant
d’ordre O(∆t ,∆x2) (M. Chhay et A. Hamdouni 2011)) :

0 =
un+1

j (1 − ε3∆t)− un
j

∆t
(1 − ε3∆t)

+(un
j + ε5)

(un
j+1 − un

j−1

2h
+ ε3

)
− ν

un
j+1 − 2un

j + un
j−1

h2

avec

ε3 = −
un

j+1 − un
j−1

2∆x
ε5 = dun

j+1 + eun
j + fun

j−1 with d = f and d + e + f = −1
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Pseudo-choc : Burgers avec viscosité
Solution de l’équation de Burgers (CAL non homogène), sur ]− 1; 1[×[1; 2] :

uexact(x , t) =
sinh( x

2ν )

cosh( x
2ν ) + exp(− t

4ν )

Schéma FTCS explose
Comparaison entre schémas classique de Crank-Nicolson le schéma
invariant IFTCS :

ν = 75 × 10−5, CFL = 1/2.
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Explication possible

IFTCS capture de la solution auto-similaire associée à la
projection :

(x , t ,u) 7−→
( x

1 − ε3t
,

t
1 − ε3t

, (1 − ε3t)u + ε3x
)

qui a la forme générale :

arctan

(
k3 v√

k1

)
= (y + k2)(k3

√
k1)

La solution auto-similaire correspond au choc !
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Invariance galiléenne
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Système dynamique dans M

Soit G un groupe de Lie (g son algèbre de Lie) qui agit sur
une variété différentielle M
On considère un système dynamique dans M :

u̇ = X (u) et u(0) = u0

où X est un champ de vecteurs équivariant par G sur M :

X (g.u) = g ⋆ X (u)
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Système dynamique dans le repère mobile

La solution du problème u(t) peut être cherché sous la forme :

u(t) = g(t).r(t)

Idée : séparer la forme du transport

Ecrire le système dynamique dans le repère mobile (dynamique de la
forme)

Projection sur la bas POD pour obtenir le ROM-POD dans le repère
mobile

Reconstruire la solution en effectuant le transport
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Système dynamique dans le repère mobile

Comme X est équivariant, il facile de montrer que r(t) est solution de

dr
dt

= X (r)− ξM(r)

où
ξ = TLg−1

dg
dt

Il reste alors à déterminer ξ et ensuite g(t).

Si l’action de G est libre et propre (M/G est donc une variété
différentielle) et si M est une variété riemannienne, alors on peut
déterminer ξ grâce à la ”connexion mécanique” (d’un fibré principal) :

A : TM 7→ g

(voir C. W. Rowley et J. E. Marsden, Physica D, 2000 )
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Conclusion

Les symétries de Lie sont un bon outil pour la modélisation en
mécanique

Elles permettent la construction de modèles consistants physiquement

Obtention des lois d’échelles

Lois de conservation et leurs conséquences

Modèles de turbulence respectant les invariances du problème

Schémas numériques robustes (théorème de Noether discret !)

Nombreuses applications possibles (réduction de modèles, IA, ..).
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