GDR GDM 2025 - ONERA, 19-21 Novembre 2025

CINEMATIQUE DES MILIEUX GENERALISES
PAR LES REPERES MOBILES

Clement ECKER, Boris KOLEV, Rodrigue DESMORAT

Université Paris-Saclay, CentraleSupélec, ENS Paris-Saclay, CNRS, LMPS - Laboratoire de Mécanique Paris-Saclay,
91190, Gif-sur-Yvette, France. clement.ecker@ens-paris-saclay.fr

o 4 cole
universite Clé t ECKER - 19/11/2025 2S c’) 1 @
PARIS-SACLAY =" £ I b CentraleSupélec i‘iﬁﬁﬂigé?ay_



Qu’est-ce qu’un milieu généralisé ?

B Mécanique (de Cauchy) non linéaire en grandes déformations [Truesdell et Noll, 1965] :

® Le body B abstrait (labels des particules) ; B

® Une configuration 2 est I'image du body par un plongement p dans I'espace euclidien (&, q) ; Po p

® Pour deux configurations 2, (référence) et 12 (déformée) on définit ¢: 2y — 2 la transformation ;

® Son application linéaire tangente F est le gradient de la transformation ; QO ¥ , Q

® On suppose qu’il existe une énergie libre W avec une densité spécifique y du premier gradient en ¢ :

Wle] = j pop (@, T = F)volg

Qo
B Un milieu généralisé a une densité d’énergie libre dépendant d’autres quantités [Forest, 2006a] :
® D’un champ matriciel y, la micro-déformation, et son gradient - Milieux micromorphes ou milieux d’ordre supérieurs [Eringen, 1999] ;

® Du second gradient de ¢, VF - Milieux du second gradient ou milieux de degrés supérieurs [Mindlin et Eshel, 1968] ;
® Ses familles regroupent de tres nombreux sous modeéles (ex : [Cosserat et Cosserat, 1909] — x est une rotation) ;

® Les milieux du second gradient peuvent étre déduit de milieux micromorphes (ex : Strain-gradient y = F alors Vy = VF).
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Liens entre les théories 3D

Théories [Forest. 2006]

Premier
gradient
Micromorphes 3D . . oc
- L Ordre superieur | |Degre superieur
: . m Les théories (classiques) des coques et poutres peuvent étre
L_— rain-gradien Liens - vus comme des analogues 2D et 1D des théories de Cosserat
P . LIEns . et des Couples de contraintes :
i N ) )
: A 4 : = Diminution de la dimension ® Larotation des sections/fibres sont décrites par un champ
i Cosserat 3D v . Indépendance de supplémentaire ;
! Couples de v  [l'énergie élasfique ® Etsi cette rotation suit le champ de transformation de la ligne/surface
: L contraintes . o moyenne alors elle dépend du gradient de cette transformation.
i - W Contrainte cinematique
@ v Réduction d'un groupe
Cauchy 3D
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Liens entre les theories 3D, 2D et 1D

Théories [Forest. 2006]

Premier
gradient

Micromorphes 3D

Ordre supérieur | |Degré supérieur

Strain-gradient Qu ’a-t-O n | C | 9 Liens -

h 4 '

=P Diminution de la dimension

[mm———=——=——=——=r==

]
Cosserat 3D L 4

Couples de
contraintes

Reissner-Mindlin

Y

Cauchy 3D

!

»

Kirchhofi-Love
(grandes def)

Simo-Reissner

Membranes

Kirchhoff

Barres

\

—

Indépendance de
l'énergie élastique

Approximation
cinématigue

_} Contrainte cinématigue

Y Réduction d'un groupe
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Approche systématique par les reperes mobiles

m Fondée par [Cosserat et Cosserat, 1909] :
® Approche systématique (1D, 2D, 3D) ;
® Géomeétrie extrinseque [Darboux, 1889] ;
® Limitée aux repéres orthonormés.

B Théories (classiques) des coques et poutres :
® Peu de liens avec les milieux 3D généralisés mais a nuancer dans les approches récentes [Boyer et Renda, 2017] [Bousselmi, Chaouachi et all, 2019] ;
® Géométrie intrinséque [Breuneval, 1972] [Simo et Fox, 1989] [Antman, 2005] ;
® Limité aux repéres orthonormés mais a nuancer aussi dans les approches récentes [Choi, Kinkel et all, 2024] [Bousselmi, Chaouachi et all, 2019] .

B Milieux généralisés 3D :
® Parfois étendus aux dimensions plus faible [Epstein et De Leon, 1998] [Rubin, 2000] ;
® Géomeétrie intrinséque [Kroner, 1968] [Yavari et Gorieli, 2012] ;
® Non limité aux repéres orthonormés [Eringen, 1999] [Forest et Sievert, 2006b].
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. ® Dans le but d’explorer les analogies entres les théories 1D,
® Milieux 3D 2D et 3D.
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Geomeétrisation des milieux generalises

- Théorie du repere mobile

B Unrepére ponctuel Ry en un point X de I'espace euclidien € est soit : |

1 0 0
® Une base non-orthonormale (v;) de I'espace tangent Ty € en X ; L .
. . o, l . U1::RX 0 vZ'_RX 1 U3.—RX 0
® Unisomorphisme linéaire de R3 dans T € ; 0 0 1
m Fibré des repéres R(€) :

R(E) = U{RX repere ponctuel en X € £ }
XEE

B Unrepére mobile est une application lisse R: X — Ry (section du fibré des repéres)

® R0 |e repére (mobile) canonique de € = R3, R : X — (eq, e;, €3)

m Trivialisation du fibré des repéres R(€) : G est la matrice de

R(E) - €& xXGL3(R) changement de base
Ry - (X, G) | entre Ry et R“®"

m Les transformations inversibles agissent a droite sur les repéres :

RyA - (X, GA) A € GL3(R)
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Configurations généralisees

m Unrepére mobile est une application lisse R: X — Ry B (labels of the neutral fiber)
I |
0 b L
Reference Deformed
m Une configuration généralisée K estun repére mobile sur la Ko (frames along the neutral fiber) K (frames along the neutral fiber)
configuration 2 (classique) de la fibre neutre [Cosserat et Cosserat, 1909]  ~~——_ [
® B =0,L] estle body (label des particules) ; \L. §
C
® »:B - Nestle plongement (classique) des origines des repéres ; \ b

.4 N—

X .1{ . generalised

A7 X > ‘
X, transformation

0N -

® P:B - K estle « plongement » généralisé.

““.'I\J\l\[«»tm.liiwm: “-_\
m Configurations de référence : Qp (neutral fiber)y Q) (neutral fibex
® Généralisée XK, / classique 2,

[ | Conflgu,ra,tlor.\s,deformee.s : R (canonical frame)
® Généralisée K / classique 2

& (Euclidean space)
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Transformation généralisée

m Un repéere mobile est une application lisse R: X — Ry

B Une configuration généralisée K est un repére mobile sur la
configuration (2 (classique) de la fibre neutre

B (labels of the neutral fiber)

0 b L

m La transformation généralisée ¢ .

® Envoie les repéres de K, sur les repéres de X ;

® L’image de tout repéres sur la fibre neutre peut étre déduit par :
®(RyA) = ®(Ry)A, VA € GL3(R)

B & contient aussi la transformation ¢: 2, - 2 de la fibre neutre
® Si Ry estun repére en X de 0, ;

® Alors @(Ry) estun repére en ¢(X) de Q.

m Existe et est unique entre deux configurations généralisées.

@-s
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Reference Deformed

Ko (frames along the neutral fiber) K (frames along the neutral fiber)

transformation

“transformation)

Qp (neutral fiber) 5?'
| R (canonical frame)

& (Euclidean space)
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Transformation généralisée

- Définition geometrique de la micro-deformation

m Latransformation généralisée @:1~1(2y) - n71(2) n(Ry) = X B (labels of the neutral fiber)
I |
0 b L
m La transformation généralisée induit une transformation entre les Reference Deformed
espaces tangents des Conﬁgurations CIaSSiqueS différente de F = T(p Ko (frames along the neutral fiber) K (h.ll\;'zﬂnug the nentral fiber)
. P . . . . h’ -.\.‘-‘.\ (I) \
B La micro-déformation xx:TxE — T, x)€ [Eringen, 1999] : \X . —— )
B g allsc [, :"
Pour Ry un repére en X € 0 : (”m»~1*”'”--"wm)

\

XX = (D(RX)R)?l % transformation)

m xy nedepend que de X car: YA € GL3(R) §o (neutral fiber) SF' Q (neutral fibex

XX = @ (RX) R)? ! =& (RXA) (RXA) - ﬁ:&" (canonical frame)

& (Euclidean space)
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Transformation généralisée

- Représentation matricielle de la micro-déformation

m La micro-déformation xx: TxE - Ty €

B (labels of the neutral fiber)

Sa représentation matricielle [xy] dans le repére R?" ;

0] = RO () ™Hx RO (X)

®: £ XGL3;(R) - & XGL3(R)
= p(X)
()(g) - (;C= E)D(X]G)

[xx] et xy sont en général confondus.
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S’identifie a la transformation généralisée ® dans la trivialisation :

b L

Reference

Ko (frames along the neutral fiber)

X ARy
W *

e
generalised
transformation

“transformation)

Qy (neutral fiber) }FV Q (ncutmlxﬁbex

Deformed

o

| R (canonical frame)

& (Euclidean space)
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Transformation généralisée

- Relevement de la transformation

m La micro-déformation xy = c[)(RX)R)?l B (labels of the neutral fiber)
’ . . . L ]
m Releve (canonique) @, de la transformation ¢ : 0 > 7
®,(Rx) = FxRy Reference Deformed
P (D(p(RX) est le repére convecté de Ry par la transformation ¢ [Boyer et Renda, 2017].)(,[‘. (frames along the neutral fiber) K (frames along the neutral fiber)
® C’est une transformation généralisée différente de ® mais induisant la méme e \1"
transformation classique ¢. D
m On définit la « torsion généralisée » eulérienne @, == ® o d1: \X T encralind N2
b ..{“'\- (l];\’H.\jillll].-llicm)
/\ \ \'. :.
_ l (I) © . 1 q)h s 1 ) ‘\‘ : - ““\“
m (QO) : ™ (Q) > T (Q) ‘.:'IMHN[HHM.LMH: ._\
Qy (neutral fiber) : §2 (neutral hbﬂ-)?\
I |
@)
—_— _ .
o Q | R (canonical frame)
B Qui induit un isomorphisme d’espaces tangents «.:T,.€ - T, &, la « micro-torsion » :

& (Euclidean space)
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Classification des milieux généralises

- Milieux 3D micromorphes

m La micro-déformation xx:TxE = Tyx)E ; B (labels of the neutral fiber)

m Pour H un sous groupe fermé de GL3(R) : (I) b }J

® Sl existe un ensemb_le de repéres_ sur _quue;l toute paire de reperes mobiles est reliée Reference Deformed

par une unique fonction de transition lisse a valeurs dans H; Ky (frames along the neutral fiber) K (frames along the neutral fiber)

® Alors on peut limiter les configurations généralisées a ces repéres et [y, | € H ; \1/

® Possible si H vérifie une certaine condition [Kobayashi, 1995]. L P
m Laréduction du groupe structural donne une famille de théories micromorphes : \Xﬁ‘mj\

Micromorphe [Eringen, 1999] GL3(R)

Micromorphe Incompressible SL3(R) ® SL;(R) = Spécial Linéaire (det = 1) transformation)
“Micro-strain” [Forest et Sievert, 2006b] Diag;(R}) ® Diags(R>) = Diagonal 3x3 défini positian (neutral fiber) 5?' €2 (neutral hb@l‘)?\‘
“Micro-stretch” [Eringen, 1999] CO(3) ® CO@3) ~ R x S0(3) = Conforme
Cosserat [Cosserat et Cosserat, 1909] S0(3) . (Canonica‘] fmme)
Micro-dilatations [Cowin, 1985] R% Lb
Cauchy {idgL, ) £ (Euclidean space)
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Classification des milieux généralises

- Milieux 3D du second gradient

B La micro-déformation xx:Tx€E — T(p(X)g : B (labels of the nentral fiber)
m Par contraintes cinématiques entre y, et F (gradient de la transformation) : (I) b E
® x = F donne la théorie du « Strain-gradient ». Reference Deformed

Ko (frames along the neutral fiber) K (frames along the neutral fiber)

m On obtient d’autres théories avec la réduction du groupe structural et la

décomposition polaire (RU) L \ﬂ/’

® Entre x| et lareprésentation matricielle de Fy ; d
+ \\\“ /‘_.______\
0B3) XS5 (R) — GLs(R) N ETN
(R, U) = RU S§(R) = Symétrique définie positive W R

Milieu micromorphe Milieu du second gradient contraint

W transformation)
)

Micromorphe [Eringen, 1999] GL3(R) “Strain-gradient” [Mindlin et Eshel, 1968] i v
- : Qp (neutral fiber) 2 Q) (nentral fiber)
Micromorphe Incompressible SL3(R) ?
“Micro-strain” [Forest et Sievert, 2006b] Diagz(R%) “Stretch-gradient” [Auffray, 2013]
“Micro-stretch” [Eringen, 1999] CO(3) ? Rran (canonical frame)
Cosserat [Cosserat et Cosserat, 1909] SO(3) Couples de contraintes [Toupin, 1962] £ (E’ lid )
ucliaear space
Micro-dilatations [Cowin, 1985] R% “Dilatation gradient” [Auffray, 2013]
Y école—m8 —
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Classification des milieux generalises

- Poutres
B La micro-déformation xx:TxE - Tyx)E ;
w
m Une configuration 3D 0 d’une poutre est donnée par : 5X
BxXS - Océ B (Body) b

P(D)

® Lasection dela poutre S (dans R?) ;

(bw) — p(b)+P(b) (3})=x+ax

® Py Iesl« plongements » généralisé et classique ; 0 (ﬁhl‘f‘: nmltl‘f::]
® P(b) (0) doit étre tangent a la fibre neutre Q.
0 Tw
m La transformation 3D ¢ s’exprime alors : B (Body)
Q: Qo - Q b 6X

® 46X estl'unique vecteur positionnant un point de I'espace
relativement au barycentre de la section en X = p,(b).

—

2 (surface moyenne

CentraleSupélec paris—saclay
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Classification des milieux généralises

- Poutres et Coques

B La micro-déformation xx:TxE - Tyx)E ;
m Une configuration 3D () donnée par :

BXS = OcéE
(byw) = pb)+PLYWw)=X+86X

B (Body)| |,

m En utilisant les résultats de réduction structurale et de
contraintes cinématique on obtient les théories suivantes :

Micromorphe

Rods with incompatible warping
strains [Choi, Kinkel et all, 2024]

Uniformément déformées
et rotation libre

Micromorphe
incompressible

Macroshear beam [Bousselmi,
Chaouachi et all, 2019]

Uniformément déformées
avolume constant et
rotation libre

“Micro-stretch”

Macrodilatation beam [Bousselmi,

Chaouachi et all, 2019]

Dilatation isotrope et
rotation libre

Cosserat Reissner-Mindlin Simo-Reissner Rigides et rotation libre
Couplgs de Kirchhoff-Love Kirchhoff Rigides et orthogonale &
contraintes la fibre neutre

Cauchy Membranes Barres

PARIS-SACLAY

Rigides et@%s_

) (fibre neutre)

Clément ECKER - 24/06/2025 — 16/18

0X

2 (surface moyenne)

Y école
° normale
B supérieure
CentraleSupélec paris—saclay




Conclusion

m Nous proposons une définition rigoureuse des configurations généralisés d’'un milieu généralisé :

® Par un « plongement » généralisé P : un repere mobile le long d’'un plongement p du body B dans £ ;
® Par la transformation généralisé ®:m71(Q2,) » 771(Q) ;

® Par la définition géométrique de la micro-déformation yx:Tx€ = T )€ ;

# Cette définition donne les cinématiques enrichies des coques et poutres.

m Nous proposons une classification unifiée de la cinématiques des milieux généralisée en toute dimension :
® Baseé sur le groupe de transformation des repéres mobiles (réduction du groupe structural) ;

® Les milieux du second gradient sont obtenus par contrainte cinématique entre y et F.
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Conclusion

Milieu du
Milieu 3D ClREE ;saij?ggt Poutres Hypotheses physiques sur les sections
Micromorphe [Eringen, 1999] GL3(R) - ? [Choi, Kinkel et all, 2024] Uniformément déformées et rotation libre
_ “St_rain-gradient” GLs(R) oul ” ” Déformation induite par aIIongem‘ent et courbure de la fibre
[Mindlin et Eshel, 1968] neutre et orthogonale a la fibre neutre
Micromorphe Incompressible SL3(R) - ? [Bousselmi, Chaouachi et all, 2019] Uniformément déformées a volume constant et rotation libre
“Micro-strain” [Forest et Sievert, 2006b] | Diags(R%) - ? ? Uniformément déformées et sans rotations
“S[tArE:;g;/?r;g;‘egr]t" Diags(R%) oul ” ” Déformation indui;eelrj){arreaelic;r;%zn:g?;tie;ncsourbure de lafibre
“Micro-stretch” [Eringen, 1999] CO(3) - ? [Bousselmi, Chaouachi et all, 2019] Dilatation isotrope et rotation libre
Cosserat [Cosserat et Cosserat, 1909] S0(3) - Reissner-Mindlin Simo-Reissner Rigides et rotation libre
Couples de contraintes [Toupin, 1962] S0(3) oul Kirchhoff-Love Kirchhoff Rigides et orthogonale a la fibre neutre
Micro-dilatations [Cowin, 1985] R% - ? ? Dilatation isotrope et sans rotations
“Dilatation gradient” R oul ” ” Dilatation isotrope induite par allongement de la fibre neutre
[Auffray, 2013] + et sans rotations
Cauchy {idGLg(]R)} - Membranes Barres Rigides et sans rotations
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