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introduction aux intégrateurs variationnels 2

systeme dynamique non linéaire d'ordre deux :
m 58 + 92(q(t) = 0
schéma du second ordre implicite de Nathan Newmark (1959) :
d _(d h(d? d? 2
(T?)jﬂ - ( dct’)J +3 [(W)J + ( dtg)1+1] +0(h%)
d R2 1 d? d2q 3
Gj+1=qj +h ((Tq) +7 [(Tg)J + (W)Hl] +0O(h°)
introduire I'impulsion p=m-g; ; alors % + V’(q(t)) =0
i1 =p =3 (V) + V)
2
m(gj+1 —qj) = hp; *%(Vf+ Vi)
= hp;+ 4 (o1 — pj) = 4 (1 + 1))
schéma de Newmark pour un oscillateur harmonique non linéaire :
BB (V+ Vi) =0

9j+1—4q;

m 3= — 5 (pjs1 +pj) =0
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le schéma de Newmark non linéaire est-il symplectique ? 3

réflexion initiée par Anthony Gravouil (novembre 2024)

schéma de Newmark

P4 (Via+ V) =0, m35= =5 (pjya+p)) =0
systeme non linéaire a résoudre

pirit+aVii=p—-5V

maj+1— S pjr1=mai+ 5 p

différentier pour obtenir I'équation aux perturbations

h h
-2 m ) \dg1 3 m ) \dq
les deux matrices ont-elles le méme déterminant (cas scalaire 1) 7

1 v
det<_,2, 2 J+l>_m+h2\/JH+1

1 —hvr 2

det <h 27 > =m+ v/ égalité dans le cas linéaire
> m
2
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intégrateur variationnel de point milieu 4

Lagrangian “continu” L=E. -V
énergie cinétique E. = 2 m ( g‘;’)
énergie potentialle V= V(q)

V(q) = %k g®>  pour l'oscillateur harmonique (cas linéaire)

Lagrangien discret avec quadrature de point milieu
La=La(qe ar) = [$T7 (Ec— V) dt
Ld(qéa qr) Qm(thqz) _hv(qz;%)

action discrete
-1
Sy = Ld(qp q_]+l)

integrateur variationnel
trouver des états discrets qj, gj11 pour 0 < < N -1
de sorte que I'action discréte Sy est minimisée



introduction interpolation Lobatto dynamics harmonic oscillator Ober-Blobaum and Saake nonlinear pendulum conclusion bonus

intégrateur variationnel de point milieu (ii) 5

Lagrangien discret : Ly =2m (@)2 — h V(9

impulsion discréte

pPr = a%,Ld(CM,CIr) = m% _ g VI(W)

9 9+1=9 _ h qi+q;
Pi+1 = g La(qj, gj1) = m =L — 3 V! (I
équations d'Euler-Lagrange

)
o La(gj-1,47) + %Ld(qja gj+1) =0

—a g

done py = —fLala apea) = m B+ V()

équations de Hamilton discretes [Newmark]
Pj+1—Pj Gty _ Pi+1=P; | 1 _
S V() 20 AL (V4 V) =0
mIG =5 (1) =0 mITE — 5 (P +p) =0

ce schéma est symplectique
dpj+1 A dgj+1 = dp; A dg;



introduction interpolation Lobatto dynamics harmonic oscillator Ober-Blébaum and Saake nonlinear pendulum conclusion bonus

intégrateur variationnel de degré un (Juan Simo) 6

Lagrangian “continu” L=E. -V

7 . a_Zng 1 dg\2
énergie cinétique  Ec = 3 m (1)

énergie potentialle V= V/(q)

interpolation interne de degré 1
q0) =q/(1—0)+q,0, avect=jh+0h

calcul approché des intégrales avec la formule des trapézes
Jo (6) 46 ~ 3 (£(0) + £(1))

Lagrangien discret )
La=La(qe, qr) =5 m(%5%)" = 5 (V(qe) + V(ar))

action discrete Sy = i(l)v_l Ld(Clj, qj+1)

integrateur variationnel : minimiser I'action discréte Sy
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intégrateur variationnel de degré un (ii) 7

Lagrangien discret

Ly = B m (959)2 _ B (V(q) + V(a)
impulsion discréte

pr = gg; Lalar ar) = m 95% — 3 V'(a1)

9j+1—4; h
Pj+1 = BT,Ld(CIja CIj+1) =m J+h e \/J/+1
équations d'Euler-Lagrange

ag; La(9-1,4) + 5, La(qj, gj1) = 0

__ 9 _ - 9+1-G | h
donc P = —5g;Ld(q), gj+1) = m =5+ 3 V]
équations de Hamilton discrétes [point milieu]
Pj+1—pj 1 / / _ Pj+1—pj 1(9tT9+1\ _
%+§(VJ+VJ+1)—0 P V() =0

9j+1—9i  PjtPj+1 / _ q9j+1—9;  PjtPj+1 __
== 2 (VJ+1 Vj)_o m =g 7 =0
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I'intégrateur variationnel de degré un est symplectique 8

équations de Hamilton discretes
Pj+1—Pj 1 / / _
%JFE(VJJFVJH)—O

q+1—9 _ PitPit1 /
; (V]

i 2

Jj+1 \/j) =0

systeme non Iinéaire a résoudre
Pi+1+ 3 VJ+1 i~ 3 Vi
M1 — 3 i1 — %2 Vii=ma+4p-5V
différentier pour obtenir I'équation aux perturbations
1h hl\/J/-/‘rl <5Pj+1) _ (1 _gvj/, (5Pj>
—L i h2 V'//jrl 5qj+1 g m— % h2 Vj// 5qj

les deux matrices ont-elles le méme déterminant ?
oui ! (il vaut m)

le schéma est symplectique :  dpjy1 A dgj11 = dp; A dgj



introduction interpolation Lobatto dynamics harmonic oscillator Ober-Blébaum and Saake nonlinear pendulum conclusion bonus

numérique du principe de moindre action 9

METHODS OF INTEGRATION WHICH PRESERVE
René De Vogelaere, TUE CONTACT TRANSFCRMATION PROPERTY
“Methods of integration OF THE HAMILTON EQUATIONS
which preserve the contact
transformation property S —
of the Hamilton equations”, T
non publié, 1956 APRIL, 195

(Internal Clessification$ me 2.1, pr 5.2, pr 5.L)

“ o c . . curate.nd.edu
J. M. Sanz-Serna, "Symplectic integrators for Hamiltonian

problems: an overview”", Acta Numerica, 1992

J. M. Wendlandt, J. E. Marsden, “Mechanical integrators derived
from a discrete variational principle”, Physica D, 1997

J. E. Marsden, M. West, “Discrete mechanics and variational
integrators”, Acta Numerica, 2001

E. Hairer, C. Lubich, G. Wanner, Geometric numerical integration,
structure-preserving algorithms for ordinary differential equations, 2006
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outline 10

introduction aux intégrateurs variationnels
polynomial interpolation

Lobatto’s numerical integration of degree 3
dynamics

harmonic oscillator

previous work of S. Ober-Blobaum and N. Saake
nonlinear pendulum

conclusion



introduction interpolation Lobatto dynamics harmonic oscillator Ober-Blobaum and Saake nonlinear pendulum conclusion bonus

polynomial interpolation: initial function 11
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polynomial interpolation: degree zero 12
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polynomial interpolation: degree one 13
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polynomial interpolation: degree two 14
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polynomial interpolation: degree three 15
2.50 1
2.25 4
2.00 1
1.75 A
1.50 1
1.25 A
EO0k given function
—— PO interpolate
0.75 - —— P1 interpolate
—— P2 interpolate
—— P3interpolate
0.50 =+ T T T T T

0.0 0.2 0.4 0.6 0.8 1.0
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basis functions for degree 3 interpolation 16

f3(0) = fo po(0) + fe () + g v1-¢(0) + fr 1(6)

po(f) = 5(0-8)(0—-(1-¢)(1-0)
pe(0) = —5V50(1-0)(0—(1-¢))
p1-¢(0) = 5V50(1—0)(0—¢)

p1(0) = 50(0-¢)(0—-(1-9))

0.8

0.6

0.44

0.21

0.0

-0.24

0.0 0.2 0.4 0.6 0.8 1.0
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Lobatto’s numerical integration of degree 3 17

interpolate a function from the 4 values fy, f¢, fi_¢, f;

polynomial of degree 3
fB(0) = fo po(0) + fe 0e(0) + fig w1-¢(0) + f 1(0)

evaluate the integral of the function on the interval [0, 1]
Jo £(6) 46 ~ [5 £:(6) d6
the computation of the integral is exact for the function f3

Jo 5(0) 40 = fi [3 po(0) A0 + £ [ pe(6) df
tHhoe Jy r-e(0) A9+ [ p(0) df

Lobatto's quadrature formula
1
Jo f(0) db~ g5 (fi+ ) + 33 (fe + fie)

this relation is exact if f is a polynomial function of degree <5
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numerical integration for variational schemes 18

degree of internal interpolation

Juan Simo Thomas Simpson Rehuel Labatto
(1952-1994) (1710-1761) (1797-1866)
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3rd degree dynamic data interpolation 19

time step h = %
inside the interval [jh, (j+1)h], t=4h+60h with 0<0<1
interpolate an unknown state function:

q(t) = qe po(0) + e pe(0) + qr—e P1-¢(0) + ar ¢1(6)
dlfFerentlate relative to time:

2(e) ~ 3 [aeeh(8) + ae 24(0) + a1 ¥ _e(6) + a4, 41(6)]

discrete gradients at nodal points
HUn ~g GG+ ~g FU+1-h~g
LU+Dh =g
= % (90 06(0) + g¢ £ (0) + g1 ¥ _(0) + gr ©,(0)]
g =1% [CM 0(£) + e 0(8) + qr-¢ P1_¢(€) + ar £} (£))]
= 7 (90 00(1 =) + qe p(1 = &) + qre ) _¢(1 =€)
+9r 9 (1 = £)]
g = 7 [qep(1) + e 0(1) + q1—e ¥1_¢ (1) + q- £}(1)]
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discrete Lagrangian 20
continuous Lagrangian L=E. -V
kinetic energy E. = % m (%)2
potential energy V= V(q)

V(q) = 4 kq? in the linear case of an harmonic oscillator

discrete Lagrangian '
Ly = La(qe g6, q1-¢ ar) = [ST7 (B — V) dt
La=4m|% (ef +82) + 5 (6 +22)]
~h | V(@) + V(@) + 5 (V(ae) + Viae)) |

discrete action
i=N—1
Sy = j‘:o Ld(CIj, qj+¢5 dji+1-¢; CIj+1)

variational integrator
find a discrete state set by g, gjt¢, gjy1—¢, Gjy1 for 0 < <N -1
such that the discrete action Sy is minimized
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local elimination of degrees of freedom 21

. . i=N—1

discrete action Sy = j’:o Ld(qj, Qjt¢s Gjr1—¢s qj+1)

discrete state set by g, gjt¢, gjr1—¢, Gjy1 for 0 < <N -1
such that the discrete action Sy is minimized

the internal degrees of freedon ;¢ and gji1—¢
are internal to the interval [j h, (j + 1) h]

reduced Lagrangian
L = min L _
(qe, qr) Sy a(qe, Ge, q1—¢, qr)

explicit expressions for the harmonic oscillator with V(q) = 3 mw? ¢°

determinant ¢ = (hw? — 30) (h>w? — 10)

§>0 for 0< hw<+/10: natural stability condition
e = 3[ — 5 (hPw? — 30) (g + q¢) + 3v5(h°w? — 10)(qr — qu)]
qie = [ — 5 (hPw? —30) (qr + q¢) — 3V/5 (hPw? — 10) (qr — q¢)]
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harmonic oscillator: sixth order accuracy 22

Euler-Lagrange equations
o) o)
aq; Lr(gj-1, 9j) + 5. Lr(qj, gj+1) =0

harmonic oscillator: V(q) = 3 mw? ¢?

2
(+) { ,le (Clj—14—h22qj +gjy1) + %(%—1 + 22321, + qj'+1)
+ %500 (-1 — 92q; + gj1) + °1J800 q =0
. +w?qg=0(n) ?
truncation error dt2 q=0(h")
replace the discrete variables g1, g; and qJ 1
by the solution of the differential equation dt2 +uw?q= O
d m d? n d3 ht d* m d5 hS
qjr1 = qj+h-g + 2 ?tg_}— 6 d3t§’+24 d4t4q+ 120 d5tg+7260 d6t6 +0(h")
o dg , K2 d°q h3 d3q , K* d%q r° d°g h®  d°q
G1=q—hq+% @ % o+ 2 a1 0 + 72 i TO(h")
the left-hand side of equation (x) does not vanish
but defines the truncation error 7p(q;)

we have Th(qj) = — 57855 w® h° q; + O(h®).
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harmonic oscillator: stability condition 23

Euler-Lagrange equations
2
(%) { = (q1-714—h22qj +qjt1) + %5 (g1 + 2?;’1 + qjt1)
+ 4500 (91 — 92j + qjs1) + %505 9 = O

characteristic polynomial for equation (x)

L (1—2r4+r2) + 9 (1428 + 1) + % (1-02r +12) 4 &bty — 0
corresponding discriminant

A = 9 (hw? — 10) (hw? — 30) (hPw? — 60) (h*w* — 84 h2w? + 720)

polynomial (h4 4 _ 84 h2u? + 720) has two real roots

A <0 when 0<hw<4/6(7—+v29)~+9.689~ 3.11

stability condition 0 < hw < 3.11

a little more than two points per period of oscillation



introduction interpolation Lobatto dynamics harmonic oscillator Ober-Blobaum and Saake nonlinear pendulum conclusion bonus

harmonic oscillator: symplectic structure 24

quadratic potential  V(q) = 3 mw? ¢?

right-hand generalized moment p, = gé: (9¢,9r) = pPjt1

determinant & = (h?w? — 30) (h?w? — 10)
pr = m27% 4 B |-300 he? (q,+2,) +5 b (qu+8q,) - o woq,]
Euler-Lagrange equation  p; = —g—é;(qj, qj+1)

discrete Hamilton equations
Pi+1=P; 2 (60—h*w?) (gitGiy _
L+ mw ( )=0

6 (10— M2 w?) 2
G+1=9; _ 30—h? w? pitpj+1Y _
) == 24 o aan w2+720( 2 ) =0

symplectic scheme (ij) =0 <pj> with det ® =1
gj+1 g

a & 2
preservation of a discrete energy  Hy ~ 5 p> + m % ¢°
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first numerical experiments 25

harmonic oscillator or nonlinear pendulum

Z p(0)=0

initial conditions: ¢(0) = >

analytical references:
trigonometric functions

Jacobi elliptic functions (see e.g. A. Chenciner (2000))
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harmonic oscillator: numerical experiments 26
g n - p Exact
- —a— p Implicit midpoint
4 || —— p Simpson
—e— p Lobatto
O | q Exact
- L & | —&— q Implicit midpoint
! —— ¢ Simpson
*g = | —&— q Lobatto

0.2

0.4

one

0.6 0.8 1

period, N = 3 mesh points

[momentum data have been rescaled]
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harmonic oscillator: mesh convergence 27
errors for the discrete maximum norm
number of meshes 10 20 40 order
momentum p 8.952107° [ 1.393 107 | 2.170 10°° 6
state g 76401077 | 1.19410°° [ 1876 107 | 6
energy H(p, q) 6.619 10° | 1.098 10~° | 1.699 10~8 6
discrete energy Hy(p, q)| 2.665 10~ | 1.332 1015 | 2.220 10~ *° | exact
integration time: 5 periods
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harmonic oscillator: long time integration 28

1075 £ energy error norm evolution (harmonic oscillator)
T T

6

—— h = 0.1 (max error: 6.87 x 1075)
41 ----h=0.05 (max error: 1.10 x 1079)
2
0

L e h = 0.025 (max error: 3.04 x 1078) |

TR T T T T T T T TR T T ST TR T T LT T ~ —

| |
0 50000 100000

integration time: 10° periods

the error for the total energy remains bounded

it tends to zero at 6th order for the Lobatto scheme ?
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very basic ideas! 29

work unknown to our team until April 2025

Sina Ober-Blobaum and Nils Saake
“Construction and analysis of higher order
Galerkin variational integrators”
Advances in Computational Mathematics, 2015

very similar ideas presented in a completely different way

numerical convergence for a harmonic oscillator
with symplectic schemes of accuracy up to order 10

choosing a nonlinear pendulum
so as not to merely reproduce already known results
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nonlinear pendulum: numerical scheme 30

discrete Lagrangian
La=3ms (67 +&7) + 35 (6 +8i¢)] —12 Vit Ve +5(Ve+Vag)]
with V; = V(qr), Ve = V(q¢), Vi—e = V(q1—¢), V, = V(qr)
Ly =135 [26 (9e® + 9r%) —2qeGr + 50 (qe® — Geqr¢ + qi—e?)
—25(qr + q,)(ge + q1-¢) — 15v5(q0 — 9-)(qe — ql_g)}
-5 [Ve +5(Ve+ Vig) + Vr:|

discrete equations for the internal variables: 9bs — o, 2L —

0qe " 0qr_¢
ac — (V{ §+2V/) 5+\[q + 1(\)fqr
ai-¢ — 30m (2\// + Vgl) = _1(\)[% + SJioqu

with V) :( )(qx)
the evaluation of L,(qy, g-) needs the implicit function theorem
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nonlinear pendulum: numerical scheme (ii) 31

Euler-Lagrange equations
‘3&;: (gj-1, gi-116> Gie> q) + %’(qj» Qives Qi1 Gjr1) =0
or equivalently g—é:(qj_l, qj) + g—é;(qj, qj+1) =0
i (G-1 = 2¢5 + Gi1) + 545 [(6 = VB) VI_1 e + (B +VB) V.,
+4V/ + 5+ V)V, + (65— VBV, ] =0

right-hand generalized moment

Pr = gL' (%Qr) = ng (%Q& di—¢, qr) = Pj+1
ar qr
oL
then  pj = —52(qj, Gjses G+1i-¢s Gjt+1)

discrete Hamiltonian dynamics
F(Pir =) + 5[V +5 (Ve + Vi e) + V] =0
2
m (g1 — Gj) = 5(pj + pir1) = 5[V + VB (Vie — Vi) — V]
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nonlinear pendulum: numerical scheme (iii) 32

internal degrees of freedom

5 5 5—v5

) = =2 g + 252 g
h2 5—+/b 5 5

Gir1-¢ — 3m (Ve + Vie) = S0 4+ P g

h2
Gjre = 30m (Vii1—e +2Vie

discrete Hamiltonian dynamics
Pivt = P+ 15[V + 5 (Vie + Viiag) + V] =0
gj+1—4q;j — %[leﬂ + \/5( j/+1—§ - j/+5) - VJ,] - %(PJH + Pj) =0
nonlinear system of 4 equations with 4 unknowns
Fi(gj+es djri-¢ Pit1s Gi+1) =0

Newton iterations with
h? h? —5+56
1- 215m 5” _30m2 V1IL£ 0 10[
h h 5+/5
ar = | TEpae Dgmiee 1
Fz‘/ﬁ ?‘gl—s 1 Y (9)
5h 5h h h
24m Vsl/ ~ 4m Vlll—g R T A C)
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nonlinear pendulum: symplectic structure 33

differentiate the equations for the internal degrees of freedom
8q+e = % [30m? ((5+ V5)dq; — (=5 + v/5) 6qj41)
—mh? V', ((5+3V5)dq; + (5 —3V5)dqji1)]
8qj+1-¢ = 2 [—30m* ((—=5+ v5)dq; — (5+ V5) dqj41)
—m bV} ((5—3V5)dq; + (5 +3v5) dqj11)]

— 2 2 4
A =300m* —20mh* (Vf\ .+ V)i o)+ VI VI,

differentiate the discrete Hamilton equations
replace dqgj¢ and dqj;1—¢ by their values

then A <§p> —B <§p>
9/ j1 9/ ;

det A =det B = g [1800 m®+30 m h? (V! .+ V1 _)+h* VI VI, (]

Opjr1 99in1 _ Opiy1 9911 _ 1
op;  0gqj dq;  Op;
the Lobatto scheme defined page 25 is symplectic

the relation is established
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nonlinear pendulum: momentum and state evolutions 34

o INE T ST

ASE

INJE]

p Exact
q Exact

—a— p Implicit midpoint ~—e— p Simpson

—a— g Implicit midpoint  —¢— ¢ Simpson

—e— p Lobatto
—o— q Lobatto

5 periods, N =5 mesh points per period
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nonlinear pendulum: mesh convergence

35

errors for the discrete maximum norm

number of meshes 50 100 200 order
momentum p 2.832107° | 4567 10711 [ 7.070 10~ 13 6
state q 421810719 [ 6.692 10712 | 1.057 1073 | 6
energy H(p, q) |6.2341071° | 1.028 10~ [ 1.580 1013 [ 6
integration time: 5 periods
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nonlinear pendulum: long time integration 36

1075 £ energy error norm evolution (nonlinear pendulum)

3 T T =
21 .
—— h = 0.05 (max error: 2.92 x 107°)
1r ----h =0.025 (max error: 1.01 x 10~7)
o —— h = 0.0125 (max error: 1.55 x 10~9)

|
0 2500 5000

integration time: 10° periods

£°° energy error growth rate
477107° when h=0.05
2.3610712 when h = 0.025
1.021071" when h = 0.0125.
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conclusion 37

sixth-order variational integrator

Lobatto's quadrature (cubic Lagrange polynomials)
least action principle

harmonic oscillator

nonlinear integrator tested on the nonlinear pendulum
symplectic and conditionally stable method

future work: top, multi-degrees of freedom
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references with Juan-Antonio Rojas-Quintero 38

“A variational symplectic scheme based on Lobatto’s quadrature”
7th international conference on Geometric Science of
Information, Saint-Malo, 29 - 31 october 2025
Lecture Notes in Computer Science, volume 16034, pages 332-342.

“Simpson’s variational integrator for systems with quadratic
Lagrangians”, with José Guadalupe Cabrera-Diaz
Axioms, volume 12, article 255, 2024.

“Simpson’s quadrature for a nonlinear variational symplectic scheme”
Finite Volumes for Complex Applications X
Strasbourg, 30 october - 03 november 2023.
Springer Proceedings in Mathematics & Statistics,
volume 433, pages 83-92, 2023.
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bonus : symplecticité discrete 42

Proposition 1 [Sanz-Serna (1992)]
regular transformation P = P(p, q), Q@ = Q(p, q)
symplectic transformation: dP A dQ = dp A dg

Jacobian matrix a = 2(P.Q) _ <a b>,

-1 0
classical symplecticity condition: o' Ja = J
that can be written

S dl . <0 I)
imaginary” matrix J =

(i) a'c and b'd are symmetric: a'c = c'a, b'd = d'b
(i) a'd — b'c is the identity matrix: a'd — c'b=1.

Proposition 2 [Lewis & Simo (1995), Wendlandt & Marsden (1997)]
A numerical scheme obtained with a discrete set of
Euler-Lagrange equations is symplectic.
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discrete symplecticity (ii) 43

Proof of Proposition 1
dP; = & dp; + bj d¢/,  dQ' = ¢ dpy + dj dq*
dP A dQ = (a dp; + by d¢) A (¢ dpy + df dgf)
= a ¢ dp;A dpe+by d} dg/ A dgt+al dj dpiAdgt+byj ¢t dg/Adpy
= (a'c)! dp;A dpg+(btd);, dg/ A dg’ + [(atd),—(ctb), ] dpjA dg!
= dp; A d¢/  if and only if
(i) a'c and b'd are symmetric: a'c = c'a, b'd = d'b
(i) a'd — b'c is the identity matrix: a'd — c'b =1
then

tJ_atctOIab_atctcd
G = At dt)\-1 0)\c d) T\t dt)\-a —b

_[(ac—cta a'd—c'b [0 T\ 0
“ \btc—dta b'd—d'b)  \-1 0]
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discrete symplecticity (iii) 44

Proposition 2 [Lewis & Simo (1995), Wendlandt & Marsden (1997)]
A numerical scheme obtained with a discrete set of Euler-Lagrange
equations is symplectic.

discrete action Sy = .. + La(qj—1, q;) + La(qj, gj+1) + --.

discrete Euler-Lagrange equations: gg‘: (gj-1, qj) + %ﬂ‘% gj+1) =0

right momentum p, = 3:¢(qr, q,) or pj = 5c(qj 1, 4))
discrete Euler-Lagrange equations:  p; + g—Z‘Z(qj, gj+1) =0
discrete Hamiltonian Hy = p, q, — Lq(qe, qr)

then dHy = dp, qr+pr dg, — 9Ly

aqz d% pr dgr = aqe dge+ dpr gr

Hq = Ha(qe, Pr)v 8q; (qﬁv pr) = aq[ 4(qe, qr), Bpr (qév pr) = qr
discrete Euler-Lagrange becomes discrete (implicit) Hamllton

OH,
pi — gt (), piv1) =0, g1 = G2(q), pis1)

8pj+1 apj+1
f ¢ _ | .9p dgj |. _t — [
Jacobian matrix a = oq1 g |1 @ Ja=J"1

“Opj agq;
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discrete symplecticity (iv) 45

differentiate the discrete Hamilton equations

. O%Hy . 0?Hy o
dp; — aq? dgj — 99z Ops dpj+1=0

9%H, 0°H

dgj+1 = 5509, 49 + ng dpj+1

the Hessian matrix is symmetric
1 — 9%Hy i _ 0%Hy _ 0PHy . .

Hq = 5 Hp = B2 V= agop 2re symmetric matrices

hypothesis: the matrix  is invertible. Then
— A1 -1
dpjy1 =7""dpj =77 Hg dg;

—Hy dpjy1 + dgjr1 =7 dg
) -1 _—1pgn .
ae (g (-0 ) ()
oo ()= (2 2) (1) =0 (i) v
e (L D)=y
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discrete symplecticity (v) 46
(b ) C 800 727)
—H; 1) \c d 0 ~y
4 relations a=~v1
—Hja+c=0
b=—4"1 Hy
—H b+d=1v
3 conditions to satisfy alc = cta, b'd = d'h, atd — ctb =1

(i) c=H)a then a'c = a'H, a is symmetric

(i) d=~+Hyb
d* =~ 4 b'H] because v and H, are symmetric
d'b=~vyb+b"'H b= —H]+ b"'H/ b symmetric
(i) a'd—c'b=a"(y+H,b)—a" Hyb

=aty=1 because a=~"". O
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