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introduction aux intégrateurs variationnels 2

système dynamique non linéaire d’ordre deux :

m d2q
dt2

+ ∂V
∂q (q(t)) = 0

schéma du second ordre implicite de Nathan Newmark (1959) :( dq
dt

)
j+1

=
( dq

dt

)
j
+ h

2

[( d2q
dt2

)
j
+
( d2q

dt2

)
j+1

]
+O(h2)

qj+1 = qj + h
( dq

dt

)
j
+ h2

4

[( d2q
dt2

)
j
+
( d2q

dt2

)
j+1

]
+O(h3)

introduire l’impulsion p ≡ m dq
dt ; alors dp

dt + V ′(q(t)) = 0

pj+1 = pj − h
2

(
V ′
j + V ′

j+1

)
m (qj+1 − qj) = h pj − h2

4

(
V ′
j + V ′

j+1

)
= h pj +

h
2 (pj+1 − pj) =

h
2 (pj+1 + pj)

schéma de Newmark pour un oscillateur harmonique non linéaire :
pj+1−pj

h + 1
2

(
V ′
j + V ′

j+1

)
= 0

m
qj+1−qj

h − 1
2 (pj+1 + pj) = 0
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le schéma de Newmark non linéaire est-il symplectique ? 3

réflexion initiée par Anthony Gravouil (novembre 2024)

schéma de Newmark
pj+1−pj

h + 1
2

(
V ′
j+1 + V ′

j

)
= 0, m

qj+1−qj
h − 1

2 (pj+1 + pj) = 0

système non linéaire à résoudre

pj+1 +
h
2 V

′
j+1 = pj − h

2 V
′
j

mqj+1 − h
2 pj+1 = mqj +

h
2 pj

différentier pour obtenir l’équation aux perturbations(
1 h

2V
′′
j+1

−h
2 m

)(
δpj+1

δqj+1

)
=

(
1 −h

2V
′′
j

h
2 m

)(
δpj
δqj

)
les deux matrices ont-elles le même déterminant (cas scalaire !) ?

det

(
1 h

2V
′′
j+1

−h
2 m

)
= m + h2

4 V
′′
j+1

det

(
1 −h

2V
′′
j

h
2 m

)
= m + h2

4 V
′′
j égalité dans le cas linéaire
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intégrateur variationnel de point milieu 4

Lagrangian “continu” L = Ec − V

énergie cinétique Ec = 1
2 m

( dq
dt

)2
énergie potentialle V = V (q)

V (q) = 1
2 k q

2 pour l’oscillateur harmonique (cas linéaire)

Lagrangien discret avec quadrature de point milieu

Ld ≡ Ld (qℓ, qr ) =
∫ (j+1) h)
j h (Ec − V ) dt

Ld (qℓ, qr ) =
h
2 m

(qr−qℓ
h

)2 − h V
(qℓ+qr

2

)
action discrète

SN =
∑j=N−1

j=0 Ld
(
qj , qj+1

)
integrateur variationnel

trouver des états discrets qj , qj+1 pour 0 ≤ j ≤ N − 1
de sorte que l’action discrèteSN est minimisée
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intégrateur variationnel de point milieu (ii) 5

Lagrangien discret : Ld = h
2 m

(qr−qℓ
h

)2 − h V
(qℓ+qr

2

)
impulsion discrète

pr =
∂
∂qr

Ld(qℓ, qr ) = m qr−qℓ
h − h

2 V
′(qℓ+qr

2

)
pj+1 =

∂
∂qr

Ld(qj , qj+1) = m
qj+1−qj

h − h
2 V

′(qj+qj+1

2

)
équations d’Euler-Lagrange

∂
∂qr

Ld(qj−1, qj) +
∂
∂qℓ

Ld(qj , qj+1) = 0

donc pj = − ∂
∂qℓ

Ld(qj , qj+1) = m
qj+1−qj

h + h
2 V

′(qj+qj+1

2

)
équations de Hamilton discrètes [Newmark]

pj+1−pj
h + V ′(qj+qj+1

2

)
= 0

pj+1−pj
h + 1

2

(
V ′
j + V ′

j+1

)
= 0

m
qj+1−qj

h − 1
2

(
pj + pj+1

)
= 0 m

qj+1−qj
h − 1

2 (pj+1 + pj) = 0

ce schéma est symplectique
dpj+1 ∧ dqj+1 = dpj ∧ dqj
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intégrateur variationnel de degré un (Juan Simo) 6

Lagrangian “continu” L = Ec − V

énergie cinétique Ec = 1
2 m

( dq
dt

)2
énergie potentialle V = V (q)

interpolation interne de degré 1

q(θ) = qℓ (1− θ) + qr θ, avec t = j h + θ h

calcul approché des intégrales avec la formule des trapèzes∫ 1
0 f (θ) dθ ≈ 1

2

(
f (0) + f (1)

)
Lagrangien discret

Ld ≡ Ld (qℓ, qr ) = h
2 m

(qr−qℓ
h

)2 − h
2

(
V (qℓ) + V (qr )

)
action discrète SN =

∑j=N−1
j=0 Ld

(
qj , qj+1

)
integrateur variationnel : minimiser l’action discrèteSN
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intégrateur variationnel de degré un (ii) 7

Lagrangien discret

Ld = h
2 m

(qr−qℓ
h

)2 − h
2

(
V (qℓ) + V (qr )

)
impulsion discrète

pr =
∂
∂qr

Ld(qℓ, qr ) = m qr−qℓ
h − h

2 V
′(qℓ)

pj+1 =
∂
∂qr

Ld(qj , qj+1) = m
qj+1−qj

h − h
2 V

′
j+1

équations d’Euler-Lagrange
∂
∂qr

Ld(qj−1, qj) +
∂
∂qℓ

Ld(qj , qj+1) = 0

donc pj = − ∂
∂qℓ

Ld(qj , qj+1) = m
qj+1−qj

h + h
2 V

′
j

équations de Hamilton discrètes [point milieu]
pj+1−pj

h + 1
2

(
V ′
j + V ′

j+1

)
= 0

pj+1−pj
h + V ′(qj+qj+1

2

)
= 0

m
qj+1−qj

h − pj+pj+1

2 − h
4

(
V ′
j+1 − V ′

j

)
= 0 m

qj+1−qj
h − pj+pj+1

2 = 0
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l’intégrateur variationnel de degré un est symplectique 8

équations de Hamilton discrètes
pj+1−pj

h + 1
2

(
V ′
j + V ′

j+1

)
= 0

m
qj+1−qj

h − pj+pj+1

2 − h
4

(
V ′
j+1 − V ′

j

)
= 0

système non linéaire à résoudre

pj+1 +
h
2 V

′
j+1 = pj − h

2 V
′
j

mqj+1 − h
2 pj+1 − h2

4 V ′
j+1 = mqj +

h
2 pj − h2

4 V ′
j

différentier pour obtenir l’équation aux perturbations(
1 h

2V
′′
j+1

−h
2 m − 1

4 h
2 V ′′

j+1

)(
δpj+1

δqj+1

)
=

(
1 −h

2V
′′
j

h
2 m − 1

4 h
2 V ′′

j

)(
δpj
δqj

)
les deux matrices ont-elles le même déterminant ?

oui ! (il vaut m)

le schéma est symplectique : dpj+1 ∧ dqj+1 = dpj ∧ dqj
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numérique du principe de moindre action 9

René De Vogelaere,
“Methods of integration
which preserve the contact
transformation property
of the Hamilton equations”,
non publié, 1956

J. M. Sanz-Serna, “Symplectic integrators for Hamiltonian
problems: an overview”, Acta Numerica, 1992

J. M. Wendlandt, J. E. Marsden, “Mechanical integrators derived
from a discrete variational principle”, Physica D, 1997

J. E. Marsden, M. West, “Discrete mechanics and variational
integrators”, Acta Numerica, 2001

E. Hairer, C. Lubich, G. Wanner, Geometric numerical integration,
structure-preserving algorithms for ordinary differential equations, 2006

curate.nd.edu
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outline 10

introduction aux intégrateurs variationnels

polynomial interpolation

Lobatto’s numerical integration of degree 3

dynamics

harmonic oscillator

previous work of S. Ober-Blöbaum and N. Saake

nonlinear pendulum

conclusion
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polynomial interpolation: initial function 11
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polynomial interpolation: degree zero 12
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polynomial interpolation: degree one 13
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polynomial interpolation: degree two 14
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polynomial interpolation: degree three 15

0.0 0.2 0.4 0.6 0.8 1.0
0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

given function
P0 interpolate
P1 interpolate
P2 interpolate
P3 interpolate



introduction interpolation Lobatto dynamics harmonic oscillator Ober-Blöbaum and Saake nonlinear pendulum conclusion bonus

basis functions for degree 3 interpolation 16

f3(θ) = fℓ φ0(θ) + fξ φξ(θ) + f1−ξ φ1−ξ(θ) + fr φ1(θ)

φ0(θ) = 5(θ − ξ) (θ − (1− ξ)) (1− θ)

φξ(θ) = −5
√
5 θ (1− θ) (θ − (1− ξ))

φ1−ξ(θ) = 5
√
5 θ (1− θ) (θ − ξ)

φ1(θ) = 5 θ (θ − ξ) (θ − (1− ξ))

ξ = 1
2 −

√
5

10
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Lobatto’s numerical integration of degree 3 17

interpolate a function from the 4 values fℓ, fξ, f1−ξ, fr

polynomial of degree 3
f ≈ f3(θ) = fℓ φ0(θ) + fξ φξ(θ) + f1−ξ φ1−ξ(θ) + fr φ1(θ)

evaluate the integral of the function on the interval [0, 1]∫ 1
0 f (θ) dθ ≈

∫ 1
0 f3(θ) dθ

the computation of the integral is exact for the function f3∫ 1
0 f3(θ) dθ = fℓ

∫ 1
0 φ0(θ) dθ + fξ

∫ 1
0 φξ(θ) dθ

+f1−ξ

∫ 1
0 φ1−ξ(θ) dθ + fr

∫ 1
0 φ1(θ) dθ

Lobatto’s quadrature formula∫ 1
0 f (θ) dθ ≈ 1

12

(
fℓ + fr

)
+ 5

12

(
fξ + f1−ξ

)
this relation is exact if f is a polynomial function of degree ≤ 5
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numerical integration for variational schemes 18

degree of internal interpolation
1 2 3

Juan Simo Thomas Simpson Rehuel Labatto
(1952-1994) (1710-1761) (1797-1866)
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3rd degree dynamic data interpolation 19

time step h = T
N

inside the interval [j h, (j + 1) h], t = j h + θ h with 0 ≤ θ ≤ 1

interpolate an unknown state function:
q(t) ≈ qℓ φ0(θ) + qξ φξ(θ) + q1−ξ φ1−ξ(θ) + qr φ1(θ)

differentiate relative to time:
dq
dt (t) ≈ 1

h

[
qℓ φ

′
0(θ) + qξ φ

′
ξ(θ) + q1−ξ φ

′
1−ξ(θ) + qr φ

′
r (θ)

]
discrete gradients at nodal points
dq
dt (j h) ≈ gℓ,

dq
dt ((j + ξ) h) ≈ gξ,

dq
dt ((j + 1− ξ) h) ≈ g1−ξ,

dq
dt ((j + 1) h) ≈ gr

gℓ =
1
h

[
qℓ φ

′
0(0) + qξ φ

′
ξ(0) + q1−ξ φ

′
1−ξ(0) + qr φ

′
r (0)

]
gξ =

1
h

[
qℓ φ

′
0(ξ) + qξ φ

′
ξ(ξ) + q1−ξ φ

′
1−ξ(ξ) + qr φ

′
r (ξ)

]
g1−ξ =

1
h

[
qℓ φ

′
0(1− ξ) + qξ φ

′
ξ(1− ξ) + q1−ξ φ

′
1−ξ(1− ξ)

+qr φ
′
r (1− ξ)

]
gr =

1
h

[
qℓ φ

′
0(1) + qξ φ

′
ξ(1) + q1−ξ φ

′
1−ξ(1) + qr φ

′
r (1)

]
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discrete Lagrangian 20

continuous Lagrangian L = Ec − V

kinetic energy Ec = 1
2 m

( dq
dt

)2
potential energy V = V (q)

V (q) = 1
2 k q

2 in the linear case of an harmonic oscillator

discrete Lagrangian

Ld ≡ Ld (qℓ, qξ, q1−ξ, qr ) =
∫ (j+1) h)
j h (Ec − V ) dt

Ld = h
2 m

[
1
12

(
g2
ℓ + g2

r

)
+ 5

12

(
g2
ξ + g2

1−ξ

)]
−h
[

1
12

(
V (qℓ) + V (qr )

)
+ 5

12

(
V (qξ) + V (q1−ξ)

)]
discrete action

SN =
∑j=N−1

j=0 Ld
(
qj , qj+ξ, qj+1−ξ, qj+1

)
variational integrator

find a discrete state set by qj , qj+ξ, qj+1−ξ, qj+1 for 0 ≤ j ≤ N − 1
such that the discrete action SN is minimized



introduction interpolation Lobatto dynamics harmonic oscillator Ober-Blöbaum and Saake nonlinear pendulum conclusion bonus

local elimination of degrees of freedom 21

discrete action SN =
∑j=N−1

j=0 Ld
(
qj , qj+ξ, qj+1−ξ, qj+1

)
discrete state set by qj , qj+ξ, qj+1−ξ, qj+1 for 0 ≤ j ≤ N − 1

such that the discrete action SN is minimized

the internal degrees of freedon qj+ξ and qj+1−ξ

are internal to the interval [j h, (j + 1) h]

reduced Lagrangian
Lr (qℓ, qr ) = min

qξ, q1−ξ

Ld
(
qℓ, qξ, q1−ξ, qr

)
explicit expressions for the harmonic oscillator with V (q) = 1

2 mω2 q2

determinant δ = (h2ω2 − 30) (h2ω2 − 10)
δ > 0 for 0 < hω <

√
10: natural stability condition

qξ =
1
δ

[
− 5

(
h2ω2 − 30

)
(qr + qℓ) + 3

√
5
(
h2ω2 − 10

)
(qr − qℓ)

]
q1−ξ =

1
δ

[
− 5

(
h2ω2 − 30

)
(qr + qℓ)− 3

√
5
(
h2ω2 − 10

)
(qr − qℓ)

]
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harmonic oscillator: sixth order accuracy 22

Euler-Lagrange equations
∂
∂qr

Lr (qj−1, qj) +
∂
∂qℓ

Lr (qj , qj+1) = 0

harmonic oscillator: V (q) = 1
2 mω2 q2

(∗)
{

1
h2

(qj−1 − 2qj + qj+1) +
ω2

30

(
qj−1 + 28qj + qj+1

)
+ ω4 h2

1800

(
qj−1 − 92qj + qj+1

)
+ ω6 h4

1800 qj = 0

d2q
dt2

+ ω2 q = O(h2) ?
truncation error

replace the discrete variables qj+1, qj and qj−1

by the solution of the differential equation d2q
dt2

+ ω2 q = 0

qj+1 = qj +h dq
dt +

h2

2
d2q
dt2

+ h3

6
d3q
dt3

+ h4

24
d4q
dt4

+ h5

120
d5q
dt5

+ h6

720
d6q
dt6

+O(h7)

qj−1 = qj −h dq
dt +

h2

2
d2q
dt2

− h3

6
d3q
dt3

+ h4

24
d4q
dt4

− h5

120
d5q
dt5

+ h6

720
d6q
dt6

+O(h7)

the left-hand side of equation (∗) does not vanish
but defines the truncation error Th(qj)

we have Th(qj) = − 1
21600 ω

8 h6 qj +O(h8).
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harmonic oscillator: stability condition 23

Euler-Lagrange equations

(∗)
{

1
h2

(qj−1 − 2qj + qj+1) +
ω2

30

(
qj−1 + 28qj + qj+1

)
+ ω4 h2

1800

(
qj−1 − 92qj + qj+1

)
+ ω6 h4

1800 qj = 0

characteristic polynomial for equation (∗)
1
h2

(
1− 2r + r2

)
+ ω2

30

(
1+ 28r + r2

)
+ ω4h2

1800

(
1− 92r + r2

)
+ ω6h4

1800 r = 0

corresponding discriminant

∆ = ω2

h2

(
h2ω2 − 10

) (
h2ω2 − 30

) (
h2ω2 − 60

) (
h4ω4 − 84 h2ω2 + 720

)
polynomial

(
h4ω4 − 84 h2ω2 + 720

)
has two real roots

∆ < 0 when 0 < hω <
√

6 (7−
√
29) ≈

√
9.689 ≈ 3.11

stability condition 0 < hω < 3.11

a little more than two points per period of oscillation
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harmonic oscillator: symplectic structure 24

quadratic potential V (q) = 1
2 mω2 q2

right-hand generalized moment pr =
∂Lr
∂qr

(
qℓ, qr

)
= pj+1

determinant δ = (h2ω2 − 30) (h2ω2 − 10)

pr = m qr−qℓ
h + m

6 δ

[
−300 hω2

(
qℓ+2 qr

)
+5 h3 ω4

(
qℓ+8 qr

)
− 1

2 h
5 ω6qr

]
Euler-Lagrange equation pj = −∂Lr

∂qℓ

(
qj , qj+1

)
discrete Hamilton equations

pj+1−pj
h +mω2 (60−h2 ω2)

6 (10−h2 ω2)

(qj+qj+1

2

)
= 0

m
qj+1−qj

h − 24 30−h2 ω2

h4 ω4−84h2 ω2+720

(pj+pj+1

2

)
= 0

symplectic scheme

(
pj+1

qj+1

)
= Φ

(
pj
qj

)
with det Φ = 1

preservation of a discrete energy Hd ≈ 1
2m p2 +m ω2

2 q2
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first numerical experiments 25

harmonic oscillator or nonlinear pendulum

initial conditions: q(0) =
π

2
; p(0) = 0

analytical references:
trigonometric functions

Jacobi elliptic functions (see e.g. A. Chenciner (2000))
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harmonic oscillator: numerical experiments 26

0 0.2 0.4 0.6 0.8 1

−π
2

−π
4

0

π
4

π
2 p Exact

p Implicit midpoint

p Simpson

p Lobatto

q Exact

q Implicit midpoint

q Simpson

q Lobatto

one period, N = 3 mesh points

[momentum data have been rescaled]
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harmonic oscillator: mesh convergence 27

errors for the discrete maximum norm

number of meshes 10 20 40 order

momentum p 8.952 10−6 1.393 10−7 2.170 10−9 6

state q 7.640 10−7 1.194 10−8 1.876 10−10 6

energy H(p, q) 6.619 10−5 1.098 10−6 1.699 10−8 6

discrete energy Hd(p, q) 2.665 10−15 1.332 10−15 2.220 10−15 exact

integration time: 5 periods
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harmonic oscillator: long time integration 28

0 50 000 100 000

0

2

4

6

·10−5 ℓ∞ energy error norm evolution (harmonic oscillator)

h = 0.1 (max error: 6.87 × 10−5)

h = 0.05 (max error: 1.10 × 10−6)

h = 0.025 (max error: 3.04 × 10−8)

integration time: 105 periods

the error for the total energy remains bounded

it tends to zero at 6th order for the Lobatto scheme ?
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very basic ideas! 29

work unknown to our team until April 2025

Sina Ober-Blöbaum and Nils Saake
“Construction and analysis of higher order

Galerkin variational integrators”
Advances in Computational Mathematics, 2015

very similar ideas presented in a completely different way

numerical convergence for a harmonic oscillator
with symplectic schemes of accuracy up to order 10

choosing a nonlinear pendulum
so as not to merely reproduce already known results
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nonlinear pendulum: numerical scheme 30

discrete Lagrangian

Ld = h
2 m

[
1
12

(
g2
ℓ + g2

r

)
+ 5

12

(
g2
ξ + g2

1−ξ

)]
− h

12

[
Vℓ + Vr + 5

(
Vξ + V1−ξ

)]
with Vℓ = V (qℓ), Vξ = V (qξ), V1−ξ = V (q1−ξ), Vr = V (qr )

Ld = m
12 h

[
26
(
qℓ

2 + qr
2
)
− 2 qℓqr + 50

(
qξ

2 − qξq1−ξ + q1−ξ
2
)

−25 (qℓ + qr )(qξ + q1−ξ)− 15
√
5(qℓ − qr )(qξ − q1−ξ)

]
− h

12

[
Vℓ + 5 (Vξ + V1−ξ) + Vr

]
discrete equations for the internal variables: ∂Ld

∂qξ
= 0, ∂Ld

∂q1−ξ
= 0

qξ − h2

30m

(
V ′
1−ξ + 2V ′

ξ

)
= 5+

√
5

10 qℓ +
5−

√
5

10 qr

q1−ξ − h2

30m

(
2V ′

1−ξ + V ′
ξ

)
= 5−

√
5

10 qℓ +
5+

√
5

10 qr

with V ′
x ≡

(
∂V
∂q

)
(qx)

the evaluation of Lr (qℓ, qr ) needs the implicit function theorem
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nonlinear pendulum: numerical scheme (ii) 31

Euler-Lagrange equations
∂Ld
∂qr

(
qj−1, qj−1+ξ, qj−ξ, qj

)
+ ∂Ld

∂qℓ

(
qj , qj+ξ, qj+1−ξ, qj+1

)
= 0

or equivalently ∂Lr
∂qr

(
qj−1, qj

)
+ ∂Lr

∂qℓ

(
qj , qj+1

)
= 0

1
h2

(qj−1 − 2qj + qj+1) +
1

24m

[
(5−

√
5)V ′

j−1+ξ + (5 +
√
5)V ′

j−ξ

+4V ′
j + (5 +

√
5)V ′

j+ξ + (5−
√
5)V ′

j+1−ξ

]
= 0

right-hand generalized moment

pr =
∂Lr
∂qr

(
qℓ, qr

)
= ∂Ld

∂qr

(
qℓ, qξ, q1−ξ, qr

)
= pj+1

then pj = −∂Ld
∂qℓ

(
qj , qj+ξ, qj+1−ξ, qj+1

)
discrete Hamiltonian dynamics

1
h

(
pj+1 − pj

)
+ 1

12

[
V ′
j + 5 (V ′

j+ξ + V ′
j+1−ξ) + V ′

j+1

]
= 0

m (qj+1 − qj)− h
2 (pj + pj+1) =

h2

24

[
V ′
j+1 +

√
5 (V ′

j+1−ξ − V ′
j+ξ)− V ′

j

]



introduction interpolation Lobatto dynamics harmonic oscillator Ober-Blöbaum and Saake nonlinear pendulum conclusion bonus

nonlinear pendulum: numerical scheme (iii) 32

internal degrees of freedom

qj+ξ − h2

30m

(
V ′
j+1−ξ + 2V ′

j+ξ

)
= 5+

√
5

10 qj +
5−

√
5

10 qj+1

qj+1−ξ − h2

30m

(
2V ′

j+1−ξ + V ′
j+ξ

)
= 5−

√
5

10 qj +
5+

√
5

10 qj+1

discrete Hamiltonian dynamics

pj+1 − pj +
h
12

[
V ′
j + 5 (V ′

j+ξ + V ′
j+1−ξ) + V ′

j+1

]
= 0

qj+1−qj − h2

24m

[
V ′
j+1+

√
5 (V ′

j+1−ξ −V ′
j+ξ)−V ′

j

]
− h

2m (pj+1 + pj) = 0

nonlinear system of 4 equations with 4 unknowns

FL
(
qj+ξ, qj+1−ξ, pj+1, qj+1

)
= 0

Newton iterations with

dFL =


1− h2

15mV ′′
ξ − h2

30mV ′′
1−ξ 0 −5+

√
5

10

− h2

30mV ′′
1−ξ 1− h2

15mV ′′
1−ξ 0 −5+

√
5

10
5h
12V

′′
ξ

5h
12V

′′
1−ξ 1 h

12V
′′(q)

√
5h2

24m V ′′
ξ −

√
5h2

24m V ′′
1−ξ − h

2m 1− h2

24mV ′′(q)


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differentiate the equations for the internal degrees of freedom

δqj+ξ =
1
∆

[
30m2

(
(5 +

√
5) δqj − (−5 +

√
5) δqj+1

)
−mh2 V ′′

j+1−ξ

(
(5 + 3

√
5) δqj + (5− 3

√
5) δqj+1

)]
δqj+1−ξ =

1
∆

[
− 30m2

(
(−5 +

√
5) δqj − (5 +

√
5) δqj+1

)
−mh2 V ′′

j+ξ

(
(5− 3

√
5) δqj + (5 + 3

√
5) δqj+1

)]
∆ = 300m2 − 20mh2 (V ′′

j+ξ + V ′′
j+1−ξ) + h4 V ′′

j+ξ V
′′
j+1−ξ

differentiate the discrete Hamilton equations
replace δqj+ξ and δqj+1−ξ by their values

then A

(
δp
δq

)
j+1

= B

(
δp
δq

)
j

detA = detB = 1
6∆

[
1800m2+30mh2 (V ′′

j+ξ+V ′′
j+1−ξ)+h4 V ′′

j+ξ V
′′
j+1−ξ

]
the relation

∂pj+1

∂pj

∂qj+1

∂qj
− ∂pj+1

∂qj

∂qj+1

∂pj
= 1 is established

the Lobatto scheme defined page 25 is symplectic
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nonlinear pendulum: momentum and state evolutions 34

0 1 2 3 4 5

−π
2

−π
4

0

π
4

π
2

p Exact p Implicit midpoint p Simpson p Lobatto

q Exact q Implicit midpoint q Simpson q Lobatto

5 periods, N = 5 mesh points per period
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nonlinear pendulum: mesh convergence 35

errors for the discrete maximum norm

number of meshes 50 100 200 order

momentum p 2.832 10−9 4.567 10−11 7.070 10−13 6

state q 4.218 10−10 6.692 10−12 1.057 10−13 6

energy H(p, q) 6.234 10−10 1.028 10−11 1.589 10−13 6

integration time: 5 periods
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nonlinear pendulum: long time integration 36

0 2500 5000

0

1

2

3
·10−5 ℓ∞ energy error norm evolution (nonlinear pendulum)

h = 0.05 (max error: 2.92 × 10−5)

h = 0.025 (max error: 1.01 × 10−7)

h = 0.0125 (max error: 1.55 × 10−9)

integration time: 105 periods

ℓ∞ energy error growth rate
4.77 10−9 when h = 0.05
2.36 10−12 when h = 0.025
1.02 10−17 when h = 0.0125.
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conclusion 37

sixth-order variational integrator

Lobatto’s quadrature (cubic Lagrange polynomials)

least action principle

harmonic oscillator

nonlinear integrator tested on the nonlinear pendulum

symplectic and conditionally stable method

future work: top, multi-degrees of freedom
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Lagrangians”, with José Guadalupe Cabrera-D́ıaz
Axioms, volume 12, article 255, 2024.

“Simpson’s quadrature for a nonlinear variational symplectic scheme”
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“A variational symplectic scheme based on Simpson’s quadrature”
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“École des Meuniers”

“Méthodes nouvelles de la Physique mathématique” (≈ 1948)

ingénieur à l’ONERA
“Sur la stabilité des avions”, Thèse d’État (1952)
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merci de votre attention ! 41

onera.fr
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bonus : symplecticité discrète 42

Proposition 1 [Sanz-Serna (1992)]

regular transformation P = P(p, q), Q = Q(p, q)

symplectic transformation: dP ∧ dQ = dp ∧ dq

Jacobian matrix α ≡ ∂(P,Q)
∂(p,q) =

(
a b
c d

)
,

“imaginary” matrix J =

(
0 I
−I 0

)
classical symplecticity condition: αt J α = J
that can be written

(i) atc and btd are symmetric: atc = cta, btd = d tb
(ii) atd − btc is the identity matrix: atd − ctb = I.

Proposition 2 [Lewis & Simo (1995), Wendlandt & Marsden (1997)]
A numerical scheme obtained with a discrete set of

Euler-Lagrange equations is symplectic.
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discrete symplecticity (ii) 43

Proof of Proposition 1

dPi = aji dpj + bij dq
j , dQ i = c iℓ dpℓ + d i

ℓ dqℓ

dP ∧ dQ = (aji dpj + bij dq
j) ∧ (c iℓ dpℓ + d i

ℓ dqℓ)

= aji c
iℓ dpj∧ dpℓ+bij d

i
ℓ dqj∧ dqℓ+aji d

i
ℓ dpj∧ dqℓ+bij c

iℓ dqj∧ dpℓ

= (atc)jℓ dpj∧ dpℓ+(btd)jℓ dqj∧ dqℓ+
[
(atd)jℓ−(ctb)jℓ

]
dpj∧ dqℓ

≡ dpj ∧ dqj if and only if

(i) atc and btd are symmetric: atc = cta, btd = d tb
(ii) atd − btc is the identity matrix: atd − ctb = I

then

αt J α =

(
at ct

bt d t

)(
0 I
−I 0

)(
a b
c d

)
=

(
at ct

bt d t

)(
c d
−a −b

)
=

(
atc − cta atd − ctb
btc − d ta btd − d tb

)
=

(
0 I
−I 0

)
= J □
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discrete symplecticity (iii) 44

Proposition 2 [Lewis & Simo (1995), Wendlandt & Marsden (1997)]
A numerical scheme obtained with a discrete set of Euler-Lagrange
equations is symplectic.

discrete action Sd = ..+ Ld(qj−1, qj) + Ld(qj , qj+1) + ...

discrete Euler-Lagrange equations: ∂Ld
∂qr

(qj−1, qj) +
∂Ld
∂qℓ

(qj , qj+1) = 0

right momentum pr =
∂Ld
∂qr

(qℓ, qr ) or pj =
∂Ld
∂qr

(qj−1, qj)

discrete Euler-Lagrange equations: pj +
∂Ld
∂qℓ

(qj , qj+1) = 0

discrete Hamiltonian Hd = pr qr − Ld(qℓ, qr )

then dHd = dpr qr +pr dqr − ∂Ld
∂qℓ

dqℓ−pr dqr = −∂Ld
∂qℓ

dqℓ+ dpr qr

Hd = Hd(qℓ, pr ),
∂Hd
∂qℓ

(qℓ, pr ) = −∂Ld
∂qℓ

(qℓ, qr ),
∂Hd
∂pr

(qℓ, pr ) = qr

discrete Euler-Lagrange becomes discrete (implicit) Hamilton

pj − ∂Hd
∂qℓ

(qj , pj+1) = 0, qj+1 =
∂Hd
∂pr

(qj , pj+1)

Jacobian matrix α =

(∂pj+1

∂pj

∂pj+1

∂qj
∂qj+1

∂pj

∂qj+1

∂qj

)
; αt J α = J ?
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discrete symplecticity (iv) 45

differentiate the discrete Hamilton equations

dpj − ∂2Hd

∂q2ℓ
dqj − ∂2Hd

∂qℓ ∂pℓ
dpj+1 = 0

dqj+1 =
∂2Hd

∂pr ∂qℓ
dqj +

∂2Hd
∂p2r

dpj+1

the Hessian matrix is symmetric

H ′′
q ≡ ∂2Hd

∂q2ℓ
, H ′′

p = ∂2Hd
∂p2r

, γ ≡ ∂2Hd
∂qℓ ∂pℓ

are symmetric matrices

hypothesis: the matrix γ is invertible. Then

dpj+1 = γ−1 dpj − γ−1H ′′
q dqj

−H ′′
p dpj+1 + dqj+1 = γ dqj

id est

(
I 0

−H ′′
p I

)(
dpj+1

dqj+1

)
=

(
γ−1 −γ−1H ′′

q

0 γ

)(
dpj
dqj

)
with

(
dpj+1

dqj+1

)
≡
(
a b
c d

)(
dpj
dqj

)
≡ α

(
dpj
dqj

)
, we have

we have

(
I 0

−H ′′
p I

)(
a b
c d

)
=

(
γ−1 −γ−1H ′′

q

0 γ

)
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discrete symplecticity (v) 46(
I 0

−H ′′
p I

)(
a b
c d

)
=

(
γ−1 −γ−1H ′′

q

0 γ

)
4 relations a = γ−1

−H ′′
p a+ c = 0

b = −γ−1H ′′
q

−H ′′
p b + d = γ

3 conditions to satisfy atc = cta, btd = d tb, atd − ctb = I

(i) c = H ′′
p a then atc = atH ′′

p a is symmetric

(ii) d = γ + H ′′
p b

d t = γ + btH ′′
p because γ and H ′′

p are symmetric

d tb = γ b + btH ′′
p b = −H ′′

q + btH ′′
p b symmetric

(iii) atd − ctb = at (γ + H ′′
p b)− atH ′′

p b

= at γ = I because a = γ−1. □
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jmsouriau.com 47


	introduction
	interpolation
	Lobatto
	dynamics
	harmonic oscillator
	Ober-Blöbaum and Saake
	nonlinear pendulum
	conclusion
	bonus

