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Goal of this study :

Combine shell finite element and reduced order modeling (using DPIM :
Direct Parametrization of Invariant Manifold*) to model nonlinear
vibration dynamics of thin structures. * Touzé et al. 2021
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Goal of this study :

Combine shell finite element and reduced order modeling (using DPIM :
Direct Parametrization of Invariant Manifold*) to model nonlinear
vibration dynamics of thin structures. * Touzé et al. 2021

Common methodology

Nonlinear FRF
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Goal of this study :

Combine shell finite element and reduced order modeling (using DPIM :
Direct Parametrization of Invariant Manifold*) to model nonlinear
vibration dynamics of thin structures. * Touzé et al. 2021

Main idea of the work
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Structure Shell FEM model
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ROM + Nonlinear vibration analysis
(ROM and Harmonic Balance Method) :



Contexte et objectifs

Critical nonlinear vibration dynamics phenomena

Nonlinear FRF
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Contexte et objectifs

Example of internal resonance (energy transfer from modes, double natural frequency)
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Problem: A Large Algebraic Challenge
A second-order nonlinear dynamical system with N degrees of freedom can be written as
MU +CU + KU +F, (U, --)=Fe'™
Introducing the state-space formulation, it can be expressed as
By = Ay + CL(Y,’—) + w

nonlinear external force

where

U M 0 0 M
Y M {0 M} {—K —c}
» ye& R? :the system state

_ _ Aircraft aerodynamics
> A, B :2N X 2N matrices (linear parts)

> Q(y, --): nonlinear term (e.g., quadratic)

Issue : When [N becomes very large, it becomes
difficult to directly solve this dynamical system

Solution: Develop a reliable and robust model
reduction method

Cardiovascular FSI



ROM by Invariant Manifolds

From Theory to Numerical method

1. What is the Invariant Manifolds?
2. The Relationship between Invariant Manifolds and ROM

3. Direct parametrisation of invariant manifolds
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In the linear world Q(y, ---)=0 : By — Ay

» Solve the generalized eigenproblem: (\,B—A)¢®, =0

» Express the solution as a linear combination of eigenvectors

N

yt)= > z{®)e,

i=1

» Reduced order modeling (ROM) : keep d-th master mode

y (1)~ Z t) ¢,

This is mathematically valid because the dynamics are decoupled!

Here, we first consider a simplified two-degree-of-freedom model as follows

1 (X1 T 1 /X,
1 X, | 1| X,
1 v, | | -w Y,
i 1]\ ¢ — w2 Y, C. Touzé (2004)
Y,) ‘- .

Where X1:Y1 X2:Y2 (,(}1:]_ («UQ:\/§

Attimet=0, yo=(A 0 0 0)", A=0.02,0.04,0.06,0.1,0.2Gradually increasing the amplitude



Attimet=0 Yo=(A 0 0 0)

0.1 <

0.05

-0.05

0.1

Initial Idea: Linear Subspace

', A=0.02,0.04,06,0.1,0.2

Linear System Animation (Time: ¢ = 23.78 s)

3D Phase Space Trajectory
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The linear subspace fully decouples the modal responses, leading to successful model reduction



In the linear world Q(y, --)=0

» Solve the generalized eigenproblem: (\,B—A)¢®,=0

» Express the solution as a linear combination of eigenvectors

» Reduced order modeling (ROM) : keep d-th master mode

This is mathematically valid because the dynamics are decoupled!

We now introduce nonlinear terms into the governing equations

1 X,
1 X, |
1 Yl — W
1 Yg
Where X1:Y1

Attimet=0 yo=(A 0 0 0)", A=0.02,0.04,0.06,0.1,0.2

y(t)= Z (t) ¢

y (1)~ Z t) ¢,

X2:Y2

: By

Ay

Xy | (witwd)

2

(X7 +X5)

(X7 + X3)

— 1 -

X1 1 Xl

X 3

Y2 - Wi X1 (U22 X1 Y.
1 1

2
Y2 w2 X, 3%)(2 Yz
- quatratic -
W, — 1 Wy — \/g

cubic

C. Touzé (2004)

increasing the amplitude



Initial Idea: Linear Subspace
Attimet=0 yo=(A 0 0 0)", A=0.02

Nonlinear System Animation (Time: t = 22.37 s)
3D Phase Space Trajectory

<102
0.02 2
0.01 1
w 0 = 0 daANe
-0.01 1
0,02 2
0 20 40 0 20 40
* 10'3 Time (s) Time (s)
«10°
2 2
1< .
05
-1
2 0
054 2
-1~ 20 40 0 20 40
Time (s) Time (s)
1.5
«10°
-2
& 2
1
0.02
0 Q
-1
2
Y, 0.02
- 002 0 0.02 2 0 2
X, X £10°

At small amplitudes, the linear subspace remains effective in decoupling the system
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Initial Idea: Linear Subspace

Attimet=0 yo=(A 0 0 0)", A=0.02,0.04,06,0.1,0.2

Nonlinear System Animation (Time: ¢ = 27.81 s)
3D Phase Space Trajectory
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In the linear world Q(y, ---)=0 : By — Ay

» Solve the generalized eigenproblem: (\,B—A)¢®, =0

» Express the solution as a linear combination of eigenvectors

N

yt)= > z{®)e,

i=1

» Reduced order modeling (ROM) : keep d-th master mode

y (1)~ Z t) ¢,

This is mathematically valid because the dynamics are decoupled!

In the nonlinear world Q(y, --©)#0:

» Nonlinear terms lead to coupling among the modes
» Even if the system is excited only in mode 1, the energy will still transfer to other modes

» Conclusion: The dynamics no longer lie on a linear subspace spanned by eigenvectors



Initial Idea: Linear Subspace

Nonlinear System Animation (Time: t = 44.25 s)
3D Phase Space Trajectory
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Problem: For nonlinear systems, does there exist a geometric manifold that constrains the
system trajectories to evolve within the same surface? 15



New Perspective: A d-Dimensional Invariant Manifold
The dynamics are confined to a d-dimensional invariant manifold A/

» “Invariant” means any trajectory starting on M stays onM forever
» The manifold M is tangent at the origin y, = 0 to the linear subspace spanned by the
2d-th dominant eigenvector

> Away from the origin, the nonlinear termsQ(y, :*-) bend this manifold

Nonlinear System Animation (Time: ¢ = 39.13 s)

Trajectory on Invariant Manifold

Coincide with the linear subspécé
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The Parametrization Method

Core idea: assume the d-dimensional manifold AA can be parametrised by a set of d-

III

dimensional “modal coordinates” z < C¢

We seek an (unknown) nonlinear mapping W :
y =W (z) with yc R*", zc C*
Simultaneously, we seek the (unknown) reduced dynamics f on the manifold:

7z—1f (z) This is our ROM!

Two unknowns : W and f{, to construct in the form of polynomial series :

We look for two polynomial series:
> Manifold map: y=W(z)=W%"z+ W?z>+ ...

> Reduced dynamic: z=f(z)=f"z+ £f@z> 4 --.

Question: How do we solve for W and f simultaneously? .



Polynomial Expansions: A Key Step

Let us recall the governing equations we have established
By=Ay+Q(y, ) y=W(z) z=1(z)
Invariance Equation
B-V,W(z) - f(z) = AW(z) + Q(W(z), )
Multi-index notation
A monomial in Z is written as

2% =2{" 25" 23", a=(ay,...,a,) € N?

d
with total degree |a|= Zo‘j =
=1

We expand both unknowns: = o
W(z)=>_ > Wroge
p=1 |a|=p )
SRS
i p=1 |af=p
Interpretation

> W@ tells how the manifold bends at order p \/

» f(».@) provides the nonlinear coupling in the ROM 18



Homological Equations via Order-by-Order Matching
Substitute the polynomial into the invariance equation and collect terms by monomial
B-V.,W(z)  f(z) =AW(z) + Q(W(z), ---)
with W (z Z > W g f(z) = f: > £ g with 20 =z 25" 28, @ =(au,...,as) € N?
p=1la[=p p=1la[=p

Each monomial yields a separate linear problem. For every degree p and multi-index Y :

(U(J?,a)B _ A) W ® ) 4+ B®~: £f»o) = R@a)

where o) = 04\ + -+ oy \; (combination frequency)
R(p’o‘) : known right-hand side from lower-order terms
> W (P>2): manifold coefficient at order p
> f(p>0‘) : ROM coefficient at order p

Key Point

A complicated nonlinear problem becomes a sequence of linear systems, one for each

multi-index (¥



Eigenproperties of First-Order System
Spectral properties of first order system Reality:
( - _1\7[_6 _____ 0_ - R/I_ T » Symmetry is lost in the first-order equation
: B :{ 0 M} b= {_ K - C} I » Direct computation of left eigenvectors

from the eigenvalue problem is not feasible

Generalized Eigenvalue Problem

P — e = =y, o= Em Em e e e =

|I \B—A)®*=0 ‘ Ideal Decouplmg (L) TAPE=A |
| || I Loss of bi-orthogonality

| (BT —AT)®I =0 |(<I>L)*B<I>R:I :
]

Spectral properties of second order system Right eigenvectors are constructed directly
from the displacement and velocit
(K — w?M) 1, =0 P Y

B _
Considering the case of Rayleigh damping, Py = ["pk Ner Y A 'Qbk]

based on the orthogonality relationship The left eigenvectors are constructed using

PiMap, =6, Pl K, =wib,  the bi-orthogonality property

Y CY, =28, w0k = Akq’bf ¢k_ )\kq’bf ¢k_
A=A M— A A — A A— A

The left and right eigenvectors satisfy

Moy Ay = — &y T iwp /1 — &F (") ' BE=1 (@) ABT=A

The conjugate eigenvalues can be expressed



Homological Equations via Order-by-Order Matching
Substitute the polynomial into the invariance equation and collect terms by monomial
B-V.,W(z)  f(z) =AW(z) + Q(W(z), ---)
with W (z Z > W g f(z) = f: > £ g with 20 =z 25" 28, @ =(au,...,as) € N?
p=1la[=p p=1la[=p

Each monomial yields a separate linear problem. For every degree p and multi-index Y :

(U(J?,a)B _ A) W ® ) 4+ B®~: £f»o) = R@a)

where o P = 04\ + -+ oy \; (combination frequency)
R(p’o‘) : known right-hand side from lower-order terms
> W (P>2): manifold coefficient at order p
> f(p>0‘) : ROM coefficient at order p

Key Point

A complicated nonlinear problem becomes a sequence of linear systems, one for each

multi-index (¥



Central Issue: Resonance Singular Matrix
(c®*B—A)W»*) 4 Bpfr) =R»*)

L

f~ T N Emm Em Em Em S O R S RS RS RS RS S S S S RS R R R S S RS S o -
; Key insight 1: Underdetermined equation |
I I
I Both variables W “)and f(?**)are unknown, but there is only one independent I
' equation, leading to an underdetermined problem :
e - - - ... e __————_ I
IrKey insight 2: When is the matrix [, = (o-(p’a) B — A) singular? I

I
I > o) s the combination frequency of the current monomial z“ at order p I
: (e.g., for p =3, case 2 = 222, then 0 =2\, + Xy ) |

I
I » L issingular if g(7-@) equals an eigenvalue A, of the system. o) ~ )\, |
L S i — -

Physics Algebra

A physical resonance (o-(p’a) ~ )\T) lead to an algebraic singularity ( [, is non-invertible )

Final Dilemma

At resonance (o7 ~ ),), how do we solve a system that is underdetermined (two
unknowns) and singular L ? 2



Resolution: Make ce (Parametrization Styles)
We must impose a constraint to ensure uniqueness. This choice defines the

W (0B —A)WF) L BHIfre) =R

The most direct approach is to impose the simplest reduced-order constraint on the system

| |:O.(p,oz)B_A B(I)R} W ;@) R (7 I singular?

" e s e s o s e s s s mm o s -l

 mm s emfs-er—s s s = s =

flpe 0 /iNoRrOM?

» At physical resonance (a(p’a) - /\T) , the first row of the system becomes singular,
causing the equations to remain underdetermined

» Because a null space exists, there exist infinite solutions WP | Ppr

Key issue: how to eliminate the null space?
Constrain W®* to have no free part along the dominant modal direction(®*) 'TBW® =@

[o®»B—A B®% 0 . :
: i [cPB— A B®E] /W) R (® )\
@) 0 of| PV |= 5 ( >:< )
il (@°)'B 0 £ 0 /

. Graph Style

0 0 1]\ f”




Resolution: Make a Choice (Parametrization Styles)

Normal Form style

Choice: we want the dynamics f£(?:®) to be
as simple as possible.
Constraint: enforce f(»>®) — () unless there
is resonance

fPO=0 (if s¢ R
Advantage:
» facilitating analytical computation
» able to bypass the geometric folding

Disadvantage: It may easily overlook
potential resonant terms
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Graph style

Choice: we wantw®*)to be as simple as possible

Constraint: force the components of W) in

the master subspace to be zero
(L) T BW®2 =0 (for all r)
Advantage: all resonance are considered

Disadvantage: The one-to-one mapping
between the high-dimensional and reduced
spaces inevitably leads to geometric folding
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Final Challenge: How to Handle External Forces?

“Invariant” means any trajectory starting on M stays on/M forever
z(t))e M=z(t)eM, Vt, MCC* :> @is— @, 0 ¢, Semigroup property

The semigroup property requires the system to remain autonomous z —f (Z)

Question: what if the system is externally forced?

By =Ay +Q(y, )+ Ye” > z=Ff(z)+ ()

Fiber bundle

The extended invariant manifold:

incorporating the time /_/\\4/ =U,(M Xt), /_/\\4/ C Cét?

V\/ M it
By = Ay +Q(y, )+ X2 “{\?

Z f(Z) » Generalized autonomous system LU
— . N~ e d
12z | » restoring the semigroup property =y McC

z
We have now completed the theoretical development and numerical implementation of the

entire parametrized model reduction framework!
25



Nonlinear dynamic for thin structure

From Single to Multi-Mode Resonance

1. Nonlinear dynamics in the frequency domain
2. Thin-structure modeling based on continuum shell elements

3. Parametrized model reduction for thin structures

26



Nonlinear Dynamics in Frequency Domain

Global Frequency Response: illustrates the relationship between the external excitation

frequency and the structural response amplitude

Invariant manifold governs local

Amplitude

Frequency

Question: Why is it sufficient to focus only on the local nonlinear dynamical behavior?



Nonlinear Dynamics in Frequency Domain
Why Focusing on Local Frequency Response Instead of Global Spectrum
(1] Key idea: Nonlinear dynamics live on the peak, not the whole spectrum

(2] Critical dynamic phenomena occur locally

» Backbone bending (hardening/softening)
» Bifurcations and multi-stability

> Internal resonances between modes
(3] Engineering interest lies at peak response

» Peak amplitude determines safety & failure risk
» Stability issues and flutter arise near resonance

» Control & design decisions depend on local behavior
(4] Computational efficiency

» Full-spectrum nonlinear continuation is expensive
» Local reduced-order models capture essential dynamics

» Focused analysis = lower cost, clearer physics Global FRF tells us where to look,
Local FRF reveals what actua/lyzl*glappens.



Some Typical Nonlinear Characteristics

Hardening behavior: The maximum response amplitude lags behind the natural frequency

Nonlinear FRF
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Some Typical Nonlinear Characteristics
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Some Typical Nonlinear Characteristics

Nonlinear FRF
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Some Typical Nonlinear Characteristics

Hardening behavior: The maximum response amplitude lags behind the natural frequency

Nonlinear FRF
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Some Typical Nonlinear Characteristics

Softening behavior: The maximum response amplitude leads the natural frequency

Nonlinear FRF
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Some Typical Nonlinear Characteristics

Internal resonance: Integer ratio relationships between the natural frequencies w; : w; =p 1 ¢q

Nonlinear FRF
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Some Typical Nonlinear Characteristics

Isolated solution: symmetry breaking of the system

Nonlinear FRF
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Nonlinear dynamic for thin structure

From Single to Multi-Mode Resonance

2. Thin-structure modeling based on continuum shell elements

36



Curved Shell Structure Modeling: Governing Equations

Positional relationship Green-Lagrange strain

-

Ll e .
X(0°,0%) =R (6°) + 6%a;(6),a=1,2 By=5 8= G G)

1 ou ou ou Ou
x(0°,03)=r(0°)+ 0%a;(0°),a=1, 2 Ew:§<‘="i 597 TG awaeiam)

\

Covariant base tensor Constitutive relation

G.=X_—a,+0%,, Be=%a=a,+0%;, S=DF
G; =X;=ay g:=x,3=a, E{) + 03 EB{Y) ~ —

Lead to locking issues

D 334
_D 3333

(B +6°ES))

Enhanced assumed strain
Efull :E—|—E with /S:(SEdQ:
Hu-Washizu functional

I (u,EM™ . S)= / pu - udQ+/1Ef““ D:

@ / S:(E™ —E)dQ —F(¢

pu (5udQ—|— SéEdQ F(t)-6u=0

/S:éEdQ:O
Q

\

Extend equations to avoid locking issues




@

Finite Element Procedure

After finite element discretization, the second-order dynamical system can be written as

"0 et wer wl{aot ="}
0 0] la@ (k)" k9] la'® 0
EAS terms enhanced by static compression
m{u'} 4 [k (u'))]{u'} = {f5)(¢)}
k()] =[kis) (u'))] — ki (0] k] (ki (a)])”
After assembling the elements and categorizing the order according to the displacement
MJ{U} +[CI{U} +[K.]{U} +{G(U,U)} +{H(U,U,U)} = {F(¢)}
By =Ay+Q(y, =)+ Ye"”

y=W(z) withye R*", ze C?*!

7z —f(2)

Everything is now ready!



Nonlinear dynamic for thin structure

From Single to Multi-Mode Resonance

3. Parametrized model reduction for thin structures

39



Shell vs. Solid Elements: Single Mode Reduction
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012
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Soild (Fine mesh) O(z°, €®)
Shell (Coarse mesh) O(z°, €°)
——— Shell (Fine mesh) O(z°, €°)
""""" Full order

0.14

1.005

1.01 1.015 1.02 1.025 1.03
w/ws

0.115

’ Pl

" | —— Shell (Fine mesh) O(z%, €°) T

Soild (Coarse mesh) O(z°, €°)
Soild (Fine mesh) O(z°, €°)
Shell (Coarse mesh) O(z°, €°)

1.015
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1"’; 1 1 1 1 1
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From Flat Plates to Curved Shells: Single Mode Reduction

Jain S et al. Exact 1:2 internal resonance &, =16.4609
. )4--1\\& ;
s >

-
-
-

w; =23.71136

-
-

Normal Form-Based Single-Mode ROM

2 =29 2(2f 4+ 23) Stabileetal.
Zo=—2x Q(z12+z22)

Polynomial Expansion of Frequency
N=FKy+ K, A2+ K, A* + -+

Backbone Curve Expression
What happened here?

K, ,

K, AT

(.UNL:Q(AQ):KO ].—l_ %A2+
0 41
T



Dual-Master-Mode Reduced-Order Model Substitute into the reduced system

21 = w121 T 1032223 + 18113 2i 23+ 10124212224 p1=— 50423,01,025111(92 —20,)

2y = lwy 2y + iy 27 + 13123212223 1+ Zﬂ224Z22 <4 Lo R T I
. ) 01 w5 052302003(92 20,)+ 6113,01 -+ 5124/02 I
23 — — w123 — ZOA23 ZAR1 Zﬁllg Z3 21— Z,812423 24 22._ ...........................
: : : : : 1

24 = — Wy 2y — t0u1 25 — 10123232421 — 102242820 P2 o A pi 'sin( 0, — 26,) ’Y( ) ( ) o 201( )
Express the ROM coordinates in polar form : 1 p? ,

1 i0 1 i0 Oy =ws+ 5 9 Q11 _COS( —20,)+ 3123 pi + — ,3224/02
Z1:§p1€ Y Z2:§p26 : P2

The backbone curve of the first mode g, =0

A fixed point is defined as p; = p, =5 =0

The backbone curve is defined by a hyperbolic

whi = w; + a223 P2+ 52113 2 4 541124
(U]I\}Ijzwl_ a223 2+ /8:‘:13 2_|_ /821:24

The amplitudes are subject to a constraint

a1

A 9124‘602_2001}92"‘17 9 Pl—o

(/8224 42/8124) — DQgs p2 _|_ |:(/8123 o 2/8113)



£ =13.0980 £=16.1786 £=16.3725 £<(&—€0)

£ =16.5503 £ =16.7532 £=21.2843 ¢c(&,& +e€)

» The single-mode reduced-order model captures the dominant resonance behavior
> The dominant resonance switches between p*and p~

» With moving away from the resonance, influence of internal resonance gradually weakens
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Symmetry breaking: Uniform = Non-Uniform Thickness

MU + CU + KU + G (U, U)+H(U,U,U)=0.18M ¢y, cos (Qt)

max ( umz’d/ hmin )

max ( umz’d/ hmin)

0.07

0.06+

0.057

0.04 -

0.03+

0.02+

0.01r

0

0.07

0.06 t

0.05 ¢

0.04

0.03 ¢

0.02 ;

0.01

BAIS

0.97 09 0.99 1 1.01 1.02

1.01 1.014 1.018 1.022

w/w;

N

k=

K

=

g

]
N

g

1.03
1.026

£=0.15 0(25%€%)
£=0.16 O(2°,¢e")
k=0.17 0(2%,®)
£=0.18 O(2%,€%)

0.06

0.05 4

0.04 -

0.03

0.02 ~

0.01

1.01

— O(5) E=E,®E,

— O(5) E=E,®E,® Ejq
O(3) E=E,® E,® E; ® E;

— O(5) E=FE,® E,® Es ® Eq
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Symmetry breaking: Uniform = Non-Uniform Thickness

MU + CU + KU + G (U, U)+H(U,U,U)=0.32M ¢z, cos ()

0.15
[N=—— x=0.29 0(z°¢%)
— £ =0.30 0(2%¢£°)
- — 5 =0.31 0(25¢%)
.E 0.1 0.15 § —_— . =0.32 0(2°¢%)
\‘; /-.E
5 o
0.05t S
g )
é 0.05 4
£
0
0.94

max (uméd/hmin)

1.02 1.025 1.03 1.035 1.04 1.045 105 Full order .

1.02 - w/w
— O(5) E=E, D E,
— O(5) E=E,® E,® E;
O5) E=E, DE,DFE;QE,
— O(5) E=E, & E,® E; & E, & Ej

w/ws

1.05
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Master Mode Selection: A User Guideline

CPU time (s)

Master modes Order of DPIM ROM FOM Time radio
O3 6.42 14 452.95
FEF=F, (3) 92788
O(5) 49.39 1878.70
O(3) 17.07 7594.55
E =FE{®E, 129639
O(5) 376.68 344.16
O(3) 72.52 2384.86
E=FE ®FE;®FE5©D Eyg 172950
O(5) 3685.24 46.93
O(3) 122.89 1238.47
EFE=F,®FE;® FEs® FE; ® FEyg 152196
O(5) 6507.12 23.39

\

The choice of master modes is a key determinant of the performance and efficiency of a ROM !

The guiding principle is to pre-identify the key resonant terms !
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Master Mode Selection: A User Guideline

For the conventional CNF method )\, = Zmi)‘“ A =w; or w,;, with m; =0 and Zm =p

For h,;,, —=0.009 h_..=0.01
Order 2 of DPIM

Identifying the invariance-breaking terms is an efficient way to find the master modes !

Master modes selectedas ' = F, D £, D F. D Ey
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Master Mode Selection: A User Guideline

For h,,=0.008 h,..=0.01
Order 2 of DPIM

2wy T Wy = Wy, 2wy T Wy = W, 2w1 + W = Wy
2w1+@9%&4,wl+wQ+(;}7%51,W1+WQ+@8%&1...
Master modes selectedas F = F, D L, D E- B E, D Ey

We have previously validated that these selected master modes are sufficient to reconstruct
the FOM results
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Open-Source Code & Resources

evry-dynamics (Structure dynamics research group )

DPIM ROM based on solid-shell element

Metamaterial with hydro-elastic effect

(a) (b)

» Invariant-manifold implementation in MATLAB and Julia

> nonlinear equations solved via Harmonic Balance for both ROM and FOM o1


https://github.com/evry-dynamics

Thanks for your listening




