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Fluid-structure interaction Thin films system
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Engineering applications

Goal of this study :

Combine shell finite element and reduced order modeling (using DPIM : 
Direct Parametrization of Invariant Manifold*) to model nonlinear 
vibration dynamics of thin structures. * Touzé et al. 2021 
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Common methodology

Structure Simplified model Nonlinear vibration analysis
(Harmonic Balance Method)

Goal of this study :

Combine shell finite element and reduced order modeling (using DPIM : 
Direct Parametrization of Invariant Manifold*) to model nonlinear 
vibration dynamics of thin structures. * Touzé et al. 2021 
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Goal of this study :

Combine shell finite element and reduced order modeling (using DPIM : 
Direct Parametrization of Invariant Manifold*) to model nonlinear 
vibration dynamics of thin structures. 

Main idea of the work

Structure Shell FEM model ROM + Nonlinear vibration analysis
(ROM and Harmonic Balance Method)

ROM

* Touzé et al. 2021 



Critical nonlinear vibration dynamics phenomena

Backbone bending (hardening) Backbone bending (softening)

Internal resonanceIsolated solution



Example of internal resonance (energy transfer from modes, double natural frequency)



A second-order nonlinear dynamical system with        degrees of freedom can be written as

Introducing the state-space formulation, it can be expressed as

where

➢                   : the system state

➢               :                  matrices (linear parts)

➢                 : nonlinear term (e.g., quadratic)  

Aircraft aerodynamics

Cardiovascular FSI

Issue : When       becomes very large, it becomes 

difficult to directly solve this dynamical system

Solution: Develop a reliable and robust model 

reduction method
7



ROM by Invariant Manifolds
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From Theory to Numerical method

1. What is the Invariant Manifolds?

2. The Relationship between Invariant Manifolds and ROM

3. Direct parametrisation of invariant manifolds



In the linear world                        :

➢ Solve the generalized eigenproblem :

➢ Express the solution as a linear combination of eigenvectors

➢ Reduced order modeling (ROM) : keep d-th master mode 

This is mathematically valid because the dynamics are decoupled!

Here, we first consider a simplified two-degree-of-freedom model as follows

where

C. Touzé (2004)

At time t = 0, Gradually increasing the amplitude9



The linear subspace fully decouples the modal responses, leading to successful model reduction

At time t = 0
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In the linear world                        :

➢ Solve the generalized eigenproblem :

➢ Express the solution as a linear combination of eigenvectors

➢ Reduced order modeling (ROM) : keep d-th master mode 

This is mathematically valid because the dynamics are decoupled!

We now introduce nonlinear terms into the governing equations

where
C. Touzé (2004)

At time t = 0 increasing the amplitude11



At time t = 0

At small amplitudes, the linear subspace remains effective in decoupling the system
12



At time t = 0

Increasing amplitude, the motion deviates from the linear subspace
13



In the linear world                        :

➢ Solve the generalized eigenproblem :

➢ Express the solution as a linear combination of eigenvectors

➢ Reduced order modeling (ROM) : keep d-th master mode 

This is mathematically valid because the dynamics are decoupled!

In the nonlinear world                        :

➢ Nonlinear terms lead to coupling among the modes

➢ Even if the system is excited only in mode 1, the energy will still transfer to other modes

➢ Conclusion: The dynamics no longer lie on a linear subspace spanned by eigenvectors
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Problem: For nonlinear systems, does there exist a geometric manifold that constrains the 

system trajectories to evolve within the same surface? 15



The dynamics are confined to a d-dimensional invariant manifold

➢ “Invariant” means any trajectory starting on        stays on       forever

➢ The manifold        is tangent at the origin               to the linear subspace spanned by the 

2d-th dominant eigenvector

➢ Away from the origin, the nonlinear terms                bend this manifold



The Parametrization Method

Core idea: assume the d-dimensional manifold         can be parametrised by a set of d-

dimensional “modal coordinates”  

We seek an (unknown) nonlinear mapping :

Simultaneously, we seek the (unknown) reduced dynamics f on the manifold:

This is our ROM!

Two unknowns : W and f, to construct in the form of polynomial series :

We look for two polynomial series:

➢ Manifold map: 

➢ Reduced dynamic:

Question: How do we solve for         and        simultaneously?
17
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Let us recall the governing equations we have established

Invariance Equation

Multi-index notation

A monomial in        is written as

with total degree 

We expand both unknowns:

Interpretation

➢ tells how the manifold bends at order p

➢             provides the nonlinear coupling in the ROM



Substitute the polynomial into the invariance equation and collect terms by monomial

Each monomial yields a separate linear problem.  For every degree p and multi-index        :

where (combination frequency)

➢                   : known right-hand side from lower-order terms

➢                   : manifold coefficient at order p 

➢                   : ROM coefficient at order p   

Key Point

A complicated nonlinear problem becomes a sequence of linear systems, one for each 

multi-index 19



Spectral properties of first order system

Generalized Eigenvalue Problem

Ideal Decoupling

Reality:

➢ Symmetry is lost in the first-order equation

➢ Direct computation of left eigenvectors 

from the eigenvalue problem is not feasible

Spectral properties of second order system

Loss of bi-orthogonality

The conjugate eigenvalues can be expressed

Considering the case of Rayleigh damping, 
based on the orthogonality relationship

Right eigenvectors are constructed directly 
from the displacement and velocity

The left eigenvectors are constructed using 
the bi-orthogonality property

The left and right eigenvectors satisfy

20



Substitute the polynomial into the invariance equation and collect terms by monomial

Each monomial yields a separate linear problem.  For every degree p and multi-index        :

where (combination frequency)

➢                   : known right-hand side from lower-order terms

➢                   : manifold coefficient at order p 

➢                   : ROM coefficient at order p   

Key Point

A complicated nonlinear problem becomes a sequence of linear systems, one for each 

multi-index 21



Key insight 1: Underdetermined equation

Both variables               and             are unknown, but there is only one independent 

equation, leading to an underdetermined problem

Key insight 2: When is the matrix                                                singular?

➢                is the combination frequency of the current monomial         at order p

 

➢       is singular if             equals an eigenvalue         of the system.

Physics             Algebra

A physical resonance                           lead to an algebraic singularity   ( is non-invertible )

Final Dilemma

At resonance                        , how do we solve a system that is underdetermined (two 

unknowns) and singular      ? 22



We must impose a constraint to ensure uniqueness. This choice defines the 
“style”

The most direct approach is to impose the simplest reduced-order constraint on the system

singular?

➢ At physical resonance                            , the first row of the system becomes singular, 

causing the equations to remain underdetermined

➢ Because a null space exists, there exist infinite solutions 

Key issue: how to eliminate the null space?

Constrain             to have no free part along the dominant modal direction

Normal Form Style Graph Style 
23

No ROM ?



Normal Form style Graph style 

Choice: we want          to be as simple as possible

Constraint: force the components of              in 
the master subspace to be zero

Advantage: all resonance are considered

Disadvantage: The one-to-one mapping 
between the high-dimensional and reduced 
spaces inevitably leads to geometric folding

Choice: we want the dynamics to be 
as simple as possible.
Constraint: enforce                     unless there 
is resonance

Advantage: 
➢ facilitating analytical computation
➢ able to bypass the geometric folding

Disadvantage: It may easily overlook 
potential resonant terms

24



Question: what if the system is externally forced?

“Invariant” means any trajectory starting on        stays on       forever

Semigroup property

The semigroup property requires the system to remain autonomous

The extended invariant manifold: 

➢ Generalized autonomous system

➢ restoring the semigroup property

We have now completed the theoretical development and numerical implementation of the 

entire parametrized model reduction framework!
25

incorporating the time

Fiber bundle



Nonlinear dynamic for thin structure
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From Single to Multi-Mode Resonance

1. Nonlinear dynamics in the frequency domain

2. Thin-structure modeling based on continuum shell elements

3. Parametrized model reduction for thin structures



Global Frequency Response： illustrates the relationship between the external excitation 

frequency and the structural response amplitude

Invariant manifold governs local 

Question: Why is it sufficient to focus only on the local nonlinear dynamical behavior?27



Why Focusing on Local Frequency Response Instead of Global Spectrum

1️⃣ Key idea: Nonlinear dynamics live on the peak, not the whole spectrum

2️⃣ Critical dynamic phenomena occur locally

➢ Backbone bending (hardening/softening)

➢ Bifurcations and multi-stability

➢ Internal resonances between modes

3️⃣ Engineering interest lies at peak response

➢ Peak amplitude determines safety & failure risk

➢ Stability issues and flutter arise near resonance

➢ Control & design decisions depend on local behavior

4️⃣ Computational efficiency

➢ Full-spectrum nonlinear continuation is expensive

➢ Local reduced-order models capture essential dynamics

➢ Focused analysis = lower cost, clearer physics Global FRF tells us where to look,
Local FRF reveals what actually happens.
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Hardening behavior: The maximum response amplitude lags behind the natural frequency

Primary resonance peak

Backbone curve

29
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Hardening behavior: The maximum response amplitude lags behind the natural frequency

Unstable

Stable

Superharmonic resonance
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Softening behavior: The maximum response amplitude leads the natural frequency

33



Internal resonance: Integer ratio relationships between the natural frequencies

34



Isolated solution: symmetry breaking of the system
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Nonlinear dynamic for thin structure
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From Single to Multi-Mode Resonance

1. Nonlinear dynamics in the frequency domain

2. Thin-structure modeling based on continuum shell elements

3. Parametrized model reduction for thin structures



Positional relationship

Covariant base tensor

Green-Lagrange strain

Constitutive relation

Lead to locking issues

Hu-Washizu functional

Enhanced assumed strain

with

Extend equations to avoid locking issues37



After finite element discretization, the second-order dynamical system can be written as

EAS terms enhanced by static compression

After assembling the elements and categorizing the order according to the displacement

Everything is now ready! 38



Nonlinear dynamic for thin structure
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From Single to Multi-Mode Resonance

1. Nonlinear dynamics in the frequency domain

2. Thin-structure modeling based on continuum shell elements

3. Parametrized model reduction for thin structures



Ramme Shell (from coarse mesh to fine mesh)

Solid element (from coarse mesh to fine mesh)
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Exact 1:2 internal resonanceJain S et al.

Normal Form-Based Single-Mode ROM

Polynomial Expansion of Frequency

Backbone Curve Expression

Stabile et al.

What happened here?
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Dual-Master-Mode Reduced-Order Model

Express the ROM coordinates in polar form

Substitute into the reduced system

A fixed point is defined as

The backbone curve is defined by a hyperbolic

The amplitudes are subject to a constraint

The backbone curve of the first mode

42



➢ The single-mode reduced-order model captures the dominant resonance behavior

➢ The dominant resonance switches between 𝒑+and 𝒑−

➢ With moving away from the resonance, influence of internal resonance gradually weakens
43



➢ It has been confirmed that 

capturing the system's 

dynamics accurately in the 

reduced-order model 

necessitates the inclusion of 

the first four bending modes

44
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➢ With a further 

reduction in the thickness 

of the thinner region, the 

frequency ratio between 

the first and second modes 

increases to 2.04

46
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The choice of master modes is a key determinant of the performance and efficiency of a ROM !

The guiding principle is to pre-identify the key resonant terms !

48



For the conventional CNF method

For

Order 2 of DPIM

Order 3 of DPIM

Identifying the invariance-breaking terms is an efficient way to find the master modes !

Master modes selected as
49



For

Order 2 of DPIM

Order 3 of DPIM

Master modes selected as

We have previously validated that these selected master modes are sufficient to reconstruct 
the FOM results

50



evry-dynamics (Structure dynamics research group )

Metamaterial with hydro-elastic effect

DPIM ROM based on solid-shell element

➢ Invariant-manifold implementation in MATLAB and Julia

➢ nonlinear equations solved via Harmonic Balance for both ROM and FOM 51

https://github.com/evry-dynamics


我们毕业啦
其实是答辩的标题地方

Thanks for your listening
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