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Motivation: ODE y' = F(y), F € X(M)

Dynamics on a manifold M: .

-05

Figure: Non-geometric versus geometric methods for y’ = A(y)y, AT = —A.

Idea: dynamics come with geometric invariants and the numerical methods
should try to preserve invariants as much as possible.
Challenge: a geometry is not just a manifold. The numerical approaches have to
satisfy that their definition, convergence analysis, and implementation all
rely on the same geometric framework as the model.
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Motivation: ODE y' = F(y), F € X(M)

Figure: Numerical simulations of a Brownian motion on the sphere.

Idea: dynamics come with geometric invariants and the numerical methods
should try to preserve invariants as much as possible.

Challenge: a geometry is not just a manifold. The numerical approaches have to
satisfy that their definition, convergence analysis, and implementation all
rely on the same geometric framework as the model.
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e K. Beauchard, A. BL, F. Marbach, Control theory and splitting methods,

arXiv:2407.02127.

e E. Bronasco, A. BL, B. Huguet, High order integration of stochastic dynamics
on Riemannian manifolds with frozen flow methods, arXiv:2503.21855.

e A. BL, E. Grong, H. Munthe-Kaas, General RKMK methods, Ongoing.
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Lie algebras and adjoint map
Definition
A Lie algebra is

@ A vector space g

o A bilinear [—,—]: g x g — g satisfying
[aa b] = _[b7 a]a [aa [ba C]] + [b’ [Ca a]] + [Cv [av b]] = 0.

The smallest Lie algebra spanned by a set A is Lie(A). The adjoint
representation is

ady, (x) = [w, x].
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Lie algebras and adjoint map
Definition
A Lie algebra is

@ A vector space g

o A bilinear [—,—]: g x g — g satisfying
[aa b] = _[b7 a]a [aa [ba C]] + [b’ [Ca a]] + [Cv [av b]] = 0.

The smallest Lie algebra spanned by a set A is Lie(A). The adjoint
representation is

ady, (x) = [w, x].

Example

Let an alphabet A = {a, b,c,...} and an associative product . Then
(Span(A),[—,—]) is a Lie algebra, where

[a,b] =a-b—b-a.

The words algebra W = T (A) = U(Lie(A)) is generated by words: abc = a- b - c.
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The BCH formula
Theorem (Baker-Campbell-Hausdorff formula)

Let a, b € Lie(A), then the product of exponentials satisfies

exp’(a) - exp'(b) = exp'(BCH(a, b)), exp'(x) = Z %Xin

where BCH: Lie(A) x Lie(A) — Lie(A) is the solution BCH(a, b) = w(1) of the
ODE

W'(t) = dyryexp ' (ta), w(0) = b.

Example

The first terms are

BCH(a,b) =a+ b + %[a, b] + i([a, [a, b]] + [b, [, a]]) — i[b, [, [a, b]]]

12 24
1
- ﬁ([bv [b7 [b7 [b7 a]]]] + [a, [‘97 [a) [av b]]]])
1
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The BCH formula

Theorem (Baker-Campbell-Hausdorff formula)

Let a, b € Lie(A), then the product of exponentials satisfies

exp'(3) - exp!(b) = exp(BCH(a, ), oxpi(x) = 3 - x"

where BCH: Lie(A) x Lie(A) — Lie(A) is the solution BCH(a, b) = w(1) of the
ODE
W'(t) = dyyry exp T (ta), w(0) = b.

Proof.
Let w(t) = BCH(ta, b) satisfy exp (w(t)) = exp’(ta) - exp’ (b). Then we find

ey exp (& (£)) - exp (w(t)) = dhaexp’(2) - expi(£2) - expi(b) = ta - exp'(w(t)).

Hence the result.
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A word on the map dexp

The derivative of the exponential d exp satisfies (see e.g. Reutenauer, 1993)

. 1 , -1
Bow = L G T e

Adrien Busnot Laurent Exponentials and RKMK Chatillon, 2025 7/23



A word on the map dexp

The derivative of the exponential d exp satisfies (see e.g. Reutenauer, 1993)

. 1 , -1
Bow = L G T e

Moreover, d,, exp’ is invertible as a formal series and satisfies

B z
—1
d,exp ™! = Z n—f ad” = e 1|z=adw7
n=0
where the B,, are the Bernoulli numbers:
1 1 1 1
By =1, Blz_ia 8226) B; =0, B4:_%7 Bs =0, Bﬁzﬁa"'
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A word on the map dexp

The derivative of the exponential d exp satisfies (see e.g. Reutenauer, 1993)

) 1 e -1
ed = ) gy T e

Moreover, d,, exp’ is invertible as a formal series and satisfies
B z
—1 _ n n _
dyexp™ = > —tad] = ——|smaa.,
n=0 "’
where the B,, are the Bernoulli numbers:

1 1 1 1
Bp=1, Bi=—>-, B ==, B3= B, = —— —
0 ’ 1 23 2 6, 3 07 4 307

Remark

The BCH formula is used in the high order theory of splitting methods (see, for
instance, Blanes, Casas, 2024), in control theory, ...
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Lie group methods - RKMK approach?

Proposition

Consider the ODE on a matrix Lie group
y'(t) = Aly(t)y(t), A:G—g, yeG.
Then, y(t) = Exp(2(t))yo, where the dynamics on g is

(£) = d Expglyy (AY(D)),  Q(0) =0. *)

Proof.

We find on one hand

Y'(8) = Aly(8)y(t) = Aly (1)) Exp(Q(t))yo-

On the second hand, we have

Y'(t) = d Expqs (' (1)) Exp((1))y0. o

!See also frozen-flow methods (Celledoni, Crouch, Grossman, Marthinsen, Owren,...).
o I



Lie group methods - RKMK approach?
Proposition
Consider the ODE on a matrix Lie group

y'(t) =Aly(t)y(t), A:G—g, yeG.

Then, y(t) = Exp(2(t))yo, where the dynamics on g is

(t) = d Expaly (A(1))),  Q(0) =0. (*)

o

A RKMK method is a Runge-Kutta method
applied to the lifted dynamics (*):

Q, = RK((*)), Yn+1 = EXP(Qn)yn-

Remark

One can truncate d Exp ! or use
retractions.

1See also frozen-flow methods (Celledoni, Crouch, Grossman, Marthinsen, Owren,...).
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Basics in differential geometry

Question: can we extend RKMK to any geometry?
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Basics in differential geometry
Question: can we extend RKMK to any geometry?
What does it mean "any geometry"?

We have
o A manifold M
@ Functions ¢ € C* (M)
@ Smooth vector fields f € X(M), that is, f(p) € T,M.
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Basics in differential geometry
Question: can we extend RKMK to any geometry?

What does it mean "any geometry"?

We have
o A manifold M
@ Functions ¢ € C* (M)
@ Smooth vector fields f € X(M), that is, f(p) € T,M.

Lemma
Let the Jacobi bracket

[f.gli=¢:=fe(g>¢) —g=(f=9)
Then (X(M),[—, —]J) is a Lie algebra.

A vector field f € X(M) defines the flow of the ODE y’ = f(y) on M.
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Connection
Definition
An affine connection is a bilinear mapping of vector fields

> X(M) x E(M) = X(M),

satisfying
(of) =g =o(f>g), fre(¢g)="[olg+¢f =g
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Connection
Definition
An affine connection is a bilinear mapping of vector fields

> X(M) x (M) — X(M),

satisfying
(of) =g =o(f>g), fre(¢g)="[olg+¢f =g

Example

In RP, the standard Euclidean connection is
fog=10ilg']0; = g'f =(Vag,f).
Given a frame basis E;, i = 1, ..., D, the Weitzenbock connection is given by

feg="flg'|E, g=gE.
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Parallel transport

Definition (Geodesic)

A parallel vector field f = f = 0 defines a geodesic curve y(t) as y'(t) = f(y(t)).
We write exp,(tv).
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Parallel transport
Definition (Geodesic)

A parallel vector field f = f = 0 defines a geodesic curve y(t) as y'(t) = f(y(t)).
We write exp,(tv).

Definition (Parallel transport along geodesics)

The parallel transport along geodesics:

Fov: TpM = Tog )M, pEM, veTM, T =exp(tfe).
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Torsion and curvature

Definition
Torsion:

T(f.g)=feg—ge=f—[f,gls
Curvature:

R(f,g)h=fe(geh) — g (Fh) - [f,gl, > h.
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Torsion and curvature

Definition
Torsion:

T(f.g)=feg—ge=f—[f,gls
Curvature:

R(f,g)h=fc>(g=h)—ge(f=h) —[f,g]l,=h.

Proposition (Bianchi identities)
The torsion and curvature of any affine connection on any manifold satisfy:

Z T(T(X,Y),Z)+(X=T)(Y,Z)—R(X,Y)Z =0,
OX,Y,Z

> (X=R)(Y,Z)—R(X,T(Y,2))=0.
OX,Y,Z
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Examples of geometries
Euclidean space R%: T =0, R =0.
Lie group: VT =0, R =0.

Lemma
IfFVT =0, R=0, (X(M), T) is a Lie algebra. J
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Examples of geometries
Euclidean space R%: T =0, R =0.
Lie group: VT =0, R =0.

Lemma
IfFVT =0, R=0, (X(M), T) is a Lie algebra. J

Nomizu classification of invariant connections (1954):

Geometry Connection Connection algebra
Local Abelian Lie group T=0R=0 pre-Lie
Local Lie group VT =0,R=0 post-Lie
Local symmetric space T=0,VR=0 Lie admissible triple
Local reductive homogeneous space | VT =0, VR =20 post-Lie-Yamaguti

Adrien Busnot Laurent Exponentials and RKMK Chatillon, 2025 14 /23



Examples of geometries
Euclidean space R%: T =0, R =0.
Lie group: VT =0, R =0.

Lemma
IfFVT =0, R=0, (X(M), T) is a Lie algebra.

Nomizu classification of invariant connections (1954):

Geometry Connection Connection algebra
Local Abelian Lie group T=0R=0 pre-Lie
Local Lie group VT =0,R=0 post-Lie
Local symmetric space T=0,VR=0 Lie admissible triple
Local reductive homogeneous space | VT =0, VR =20 post-Lie-Yamaguti

Main problem of current numerics on manifolds:
Riemannian: T = 0, Levi-Civita connection.

Almost all geometries in numerics: R = 0, Weitzenbdck connection.
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Jacobi fields

Definition
Given a geodesic 7; = exp,(tv) defined in a neighbourhood of p, a Jacobi field J
is a vector field of the form

J(7t) = du eXPp(tW)-

Equivalently, J satisfies

d
J(7e) = E|s:0 exp,(tv + tsw).

Lemma (see Kobayashi, Nomizu)
The Jacobi field satisfies the equation

(Yt - Ve) = () = Ve = (To, (Ve, J(72))) + Ry (G2, J(7e) )Vt
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The equivalent of dexp
Define the trivialised differential of the exponential for pe M, v,w e T, M,

Ey: TpM — Endg(T,M), &E,(V)w =T;"d, exp,(w).
Lemma
The operator E,(tv) satisfies
2

e Ot () — o

S TH(EE(tV) = Ry(1)E(2v),

where

777(V)W = (rt_\/1 T’Yt)(v7 w), RP(V)W = (r;lRexpp(v))(Va w)v.

Lemma (Lie Polynomials)

Let to(v): w — (v" = Tp)(v,w) and r,(v): w — (v'" = R,)(v, w)v, then

To(e) = 3, mrigtea) Rytv) = 3, m=tgmra(v).

nz=1 n=2
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Expansion of £,(tv)
Theorem (Generalisation of Gavrilov, 2012)

The Taylor expansion of £,(v)w = ';'d, exp,(w) satisfies

gp(tV) = Z (n:_—nl)l Z CPP(V)7

n=0 PeLiePol,|P|=n
where
ta(V)w = (v"=Tp)(v,w), r(v)w=(v"=R,)(v,w)v,
and
p+1+|P| p+1+|P|
Ct,p = cp, Crp = cp, Ga=1
p p )

First terms:

ot t2 )
Ep(tv) =id +§to(v) + 5(21‘1 +r+ to)(v)
t3 3
+ E(3t2 4+ 2n + 3ti1tg + 2oty + torg + rotg + t0>(v) + -
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The case of invariant connections

Corollary

Let an invariant affine connection =, then we find

£
SP(tV) - Z m PeLlePOZbJP "P(V)
2 3

. t

id+50(v) + 5 (r0 + &) (v) + 7 (tor0 + ot + ) (v)
1.'4

+ 5 (ro + t3ro + toroto + rots + to)( )

5
6' (tor0 + rotory + r0 to + toro + toroto + toroto + roto + to)( )+ -

In particular for VT =0, R = 0, we recover the expansion of dexp in the matrix
case

Ep(tv) =, t—nT(v,—)O".

= (n+1)!
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General BCH formula?

Corollary

Let an invariant affine connection t, then
1 _y f 21 s( L 1
Ep(tv)™" =1id 2to(v)—i-t ( 6ro+ 12 )( )+t ( tor0+24r0to>(v)

%
+t4(Lrg—itgro—itorot0 L r()to L tO)( )+
360 720 120 720 720

Theorem
The composition of geodesics satisfies

expexpp(v)(l'vu) = exp,(BCH(u,v)),
where BCH(u, v) = w(1) and

W'(t) = Ep(w(t))™ 1r;(1t)rrvmrvu, w(0) = v.

The case VT =0, R = 0 gives back the standard BCH formula.

2See also Gavrilov's double exponentials and Al-Kaabi, Ebrahimi-Fard, Manchon,
Munthe-Kaas, 2025.
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Lifting ODEs in general geometry

Theorem
Consider the ODE

The map 5 f(y) is called the trivialisation

() of f in Lie-group methods.

If f(y) = Aly)y, Tg'f(y) = Aly)
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RKMK in any geometry

RKMK on Lie groups were introduced by H. Munthe-Kaas in the 90's, extended
on symmetric spaces (T =0, VR = 0) in 2024.

Definition (General RKMK)

Let f(exp, (v)) = I, 2f(exp,(v)). The new methods are

= i BUQJ,
= h5 »(0) 7 (expy( ),

S
09,300

Theorem

If the coefficients correspond to a Euclidean order p RK method, the RKMK
method is of order p.
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Conclusion

Summary:

@ We provide a new fully general class of intrinsic methods for solving
differential equations on manifolds.

@ The approach is versatile and can be extended for solving deterministic and
stochastic evolutionary problems.

@ Ongoing numerical experiments.
Outlooks:

@ Study of the algebra of Lie polynomials for constructing the simplest RKMK
methods: Opening position in algebra/operads/numerics in 2026. Study of
the algebraic structures appearing in general intrinsic integration.

@ Creation of efficient high-order intrinsic sampling method on Riemannian
manifolds (thesis of Sébastien Macé).

@ Implementation of the new methods in Manifolds.jl (with P. Navaro and R.
Bergmann).

e Multiscale dynamics on manifolds (for electromagnetics, ML, molecular
dynamics).
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