

Composing exponentials and intrinsic numerical integration on manifolds

Adrien Busnot Laurent - INRIA MINGuS
Joint work with E. Grong and H. Munthe-Kaas

Project MaStoC - Manifolds and Stochastic Computations

Motivation: ODE $y' = F(y)$, $F \in \mathfrak{X}(\mathcal{M})$

Dynamics on a manifold \mathcal{M} : .

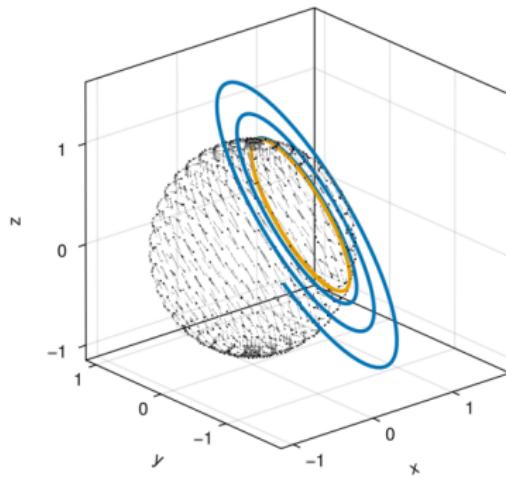
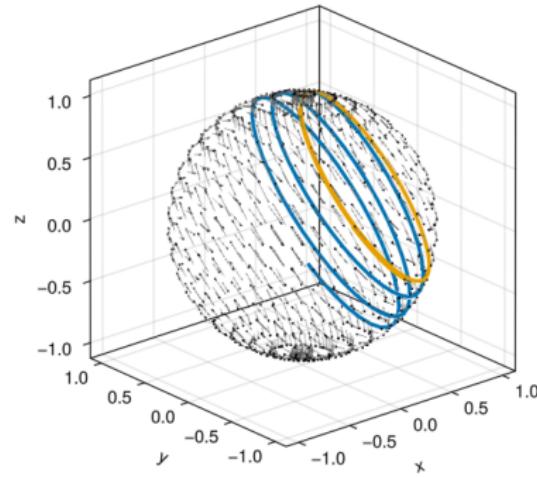


Figure: Non-geometric versus geometric methods for $y' = A(y)y$, $A^T = -A$.

Idea: dynamics come with geometric invariants and the **numerical methods should try to preserve invariants as much as possible.**

Challenge: a geometry is not just a manifold. The numerical approaches have to satisfy that **their definition, convergence analysis, and implementation all rely on the same geometric framework as the model.**

Motivation: ODE $y' = F(y)$, $F \in \mathfrak{X}(\mathcal{M})$

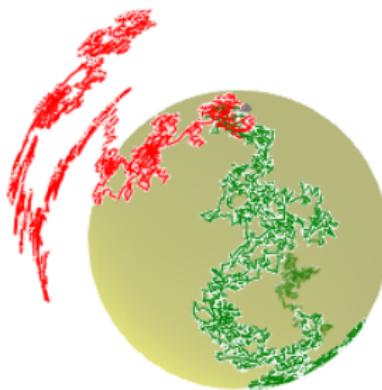


Figure: Numerical simulations of a Brownian motion on the sphere.

Idea: dynamics come with geometric invariants and the **numerical methods should try to preserve invariants as much as possible.**

Challenge: a geometry is not just a manifold. The numerical approaches have to satisfy that **their definition, convergence analysis, and implementation all rely on the same geometric framework as the model.**

Contents

- 1 Composition of exponentials with Lie algebras and Lie group methods
- 2 Notions of differential geometry
- 3 From Lie-group methods to general methods on manifolds

References of this talk:

- K. Beauchard, A. BL, F. Marbach, Control theory and splitting methods, arXiv:2407.02127.
- E. Bronasco, A. BL, B. Huguet, High order integration of stochastic dynamics on Riemannian manifolds with frozen flow methods, arXiv:2503.21855.
- A. BL, E. Grong, H. Munthe-Kaas, General RKM methods, *Ongoing*.

Contents

- 1 Composition of exponentials with Lie algebras and Lie group methods
- 2 Notions of differential geometry
- 3 From Lie-group methods to general methods on manifolds

Lie algebras and adjoint map

Definition

A **Lie algebra** is

- A vector space \mathfrak{g}
- A bilinear $[-, -]: \mathfrak{g} \times \mathfrak{g} \rightarrow \mathfrak{g}$ satisfying

$$[a, b] = -[b, a], \quad [a, [b, c]] + [b, [c, a]] + [c, [a, b]] = 0.$$

The smallest Lie algebra spanned by a set A is $\text{Lie}(A)$. The **adjoint representation** is

$$\text{ad}_\omega(x) = [\omega, x].$$

Lie algebras and adjoint map

Definition

A **Lie algebra** is

- A vector space \mathfrak{g}
- A bilinear $[-, -]: \mathfrak{g} \times \mathfrak{g} \rightarrow \mathfrak{g}$ satisfying

$$[a, b] = -[b, a], \quad [a, [b, c]] + [b, [c, a]] + [c, [a, b]] = 0.$$

The smallest Lie algebra spanned by a set A is $\text{Lie}(A)$. The **adjoint representation** is

$$\text{ad}_\omega(x) = [\omega, x].$$

Example

Let an alphabet $A = \{a, b, c, \dots\}$ and an associative product \cdot . Then $(\text{Span}(A), [-, -])$ is a Lie algebra, where

$$[a, b] = a \cdot b - b \cdot a.$$

The words algebra $\mathcal{W} = T(A) = \mathcal{U}(\text{Lie}(A))$ is generated by words: $abc = a \cdot b \cdot c$.

The BCH formula

Theorem (Baker-Campbell-Hausdorff formula)

Let $a, b \in \text{Lie}(A)$, then the **product of exponentials** satisfies

$$\exp^{\cdot}(a) \cdot \exp^{\cdot}(b) = \exp^{\cdot}(\text{BCH}(a, b)), \quad \exp^{\cdot}(x) = \sum \frac{1}{n!} x^{\cdot n}$$

where $\text{BCH}: \text{Lie}(A) \times \text{Lie}(A) \rightarrow \text{Lie}(A)$ is the solution $\text{BCH}(a, b) = \omega(1)$ of the ODE

$$\omega'(t) = d_{\omega(t)} \exp^{\cdot -1}(ta), \quad \omega(0) = b.$$

Example

The first terms are

$$\begin{aligned} \text{BCH}(a, b) = & a + b + \frac{1}{2}[a, b] + \frac{1}{12}([a, [a, b]] + [b, [b, a]]) - \frac{1}{24}[b, [a, [a, b]]] \\ & - \frac{1}{720}([b, [b, [b, [b, a]]]] + [a, [a, [a, [a, b]]]]) \\ & + \frac{1}{360}([a, [b, [b, [b, a]]]] + [b, [a, [a, [a, b]]]]) + \dots \end{aligned}$$

The BCH formula

Theorem (Baker-Campbell-Hausdorff formula)

Let $a, b \in \text{Lie}(A)$, then the **product of exponentials** satisfies

$$\exp^{\cdot}(a) \cdot \exp^{\cdot}(b) = \exp^{\cdot}(\text{BCH}(a, b)), \quad \exp^{\cdot}(x) = \sum \frac{1}{n!} x^{\cdot n}$$

where $\text{BCH}: \text{Lie}(A) \times \text{Lie}(A) \rightarrow \text{Lie}(A)$ is the solution $\text{BCH}(a, b) = \omega(1)$ of the ODE

$$\omega'(t) = d_{\omega(t)} \exp^{\cdot -1}(ta), \quad \omega(0) = b.$$

Proof.

Let $\omega(t) = \text{BCH}(ta, b)$ satisfy $\exp^{\cdot}(\omega(t)) = \exp^{\cdot}(ta) \cdot \exp^{\cdot}(b)$. Then we find

$$d_{\omega(t)} \exp^{\cdot}(\omega'(t)) \cdot \exp^{\cdot}(\omega(t)) = d_{ta} \exp^{\cdot}(a) \cdot \exp^{\cdot}(ta) \cdot \exp^{\cdot}(b) = ta \cdot \exp^{\cdot}(\omega(t)).$$

Hence the result. □

A word on the map $d \exp$

The **derivative of the exponential** $d \exp$ satisfies (see e.g. Reutenauer, 1993)

$$d_\omega \exp \cdot = \sum_{n=0} \frac{1}{(n+1)!} \text{ad}_\omega^n = \frac{e^z - 1}{z} \Big|_{z=\text{ad}_\omega}.$$

A word on the map $d \exp$

The **derivative of the exponential** $d \exp$ satisfies (see e.g. Reutenauer, 1993)

$$d_\omega \exp^{\cdot} = \sum_{n=0} \frac{1}{(n+1)!} \text{ad}_\omega^n = \frac{e^z - 1}{z} \Big|_{z=\text{ad}_\omega}.$$

Moreover, $d_\omega \exp^{\cdot}$ is invertible as a formal series and satisfies

$$d_\omega \exp^{\cdot -1} = \sum_{n=0} \frac{B_n}{n!} \text{ad}_\omega^n = \frac{z}{e^z - 1} \Big|_{z=\text{ad}_\omega},$$

where the B_n are the Bernoulli numbers:

$$B_0 = 1, \quad B_1 = -\frac{1}{2}, \quad B_2 = \frac{1}{6}, \quad B_3 = 0, \quad B_4 = -\frac{1}{30}, \quad B_5 = 0, \quad B_6 = \frac{1}{42}, \dots$$

A word on the map $d \exp$

The **derivative of the exponential** $d \exp$ satisfies (see e.g. Reutenauer, 1993)

$$d_\omega \exp^z = \sum_{n=0} \frac{1}{(n+1)!} \text{ad}_\omega^n = \frac{e^z - 1}{z} \Big|_{z=\text{ad}_\omega}.$$

Moreover, $d_\omega \exp^z$ is invertible as a formal series and satisfies

$$d_\omega \exp^{-1} = \sum_{n=0} \frac{B_n}{n!} \text{ad}_\omega^n = \frac{z}{e^z - 1} \Big|_{z=\text{ad}_\omega},$$

where the B_n are the Bernoulli numbers:

$$B_0 = 1, \quad B_1 = -\frac{1}{2}, \quad B_2 = \frac{1}{6}, \quad B_3 = 0, \quad B_4 = -\frac{1}{30}, \quad B_5 = 0, \quad B_6 = \frac{1}{42}, \dots$$

Remark

The BCH formula is used in the high order theory of splitting methods (see, for instance, Blanes, Casas, 2024), in control theory, ...

Lie group methods - RKM^K approach¹

Proposition

Consider the **ODE on a matrix Lie group**

$$y'(t) = A(y(t))y(t), \quad A: G \rightarrow \mathfrak{g}, \quad y_0 \in G.$$

Then, $y(t) = \text{Exp}(\Omega(t))y_0$, where the dynamics on \mathfrak{g} is

$$\Omega'(t) = d \text{Exp}_{\Omega(t)}^{-1}(A(y(t))), \quad \Omega(0) = 0. \quad (*)$$

Proof.

We find on one hand

$$y'(t) = A(y(t))y(t) = A(y(t)) \text{Exp}(\Omega(t))y_0.$$

On the second hand, we have

$$y'(t) = d \text{Exp}_{\Omega(t)}(\Omega'(t)) \text{Exp}(\Omega(t))y_0.$$

□

¹See also frozen-flow methods (Celledoni, Crouch, Grossman, Marthinsen, Owren,...).

Lie group methods - RKM^K approach¹

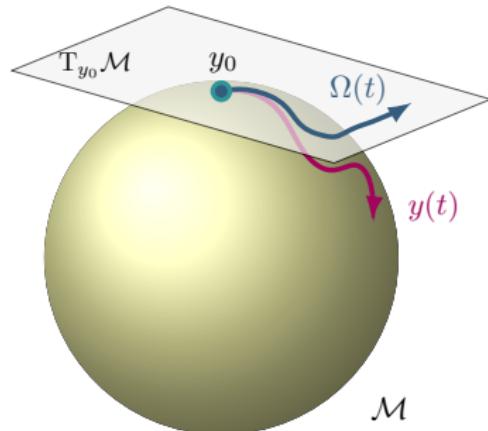
Proposition

Consider the **ODE on a matrix Lie group**

$$y'(t) = A(y(t))y(t), \quad A: G \rightarrow \mathfrak{g}, \quad y_0 \in G.$$

Then, $y(t) = \text{Exp}(\Omega(t))y_0$, where the dynamics on \mathfrak{g} is

$$\Omega'(t) = d \text{Exp}_{\Omega(t)}^{-1}(A(y(t))), \quad \Omega(0) = 0. \quad (*)$$



A RKM^K method is a Runge-Kutta method applied to the lifted dynamics (*):

$$\Omega_n = \text{RK}((*)), \quad y_{n+1} = \text{Exp}(\Omega_n)y_n.$$

Remark

One can truncate $d \text{Exp}^{-1}$ or use retractions.

¹See also frozen-flow methods (Celledoni, Crouch, Grossman, Marthinsen, Owren,...).

Contents

- 1 Composition of exponentials with Lie algebras and Lie group methods
- 2 Notions of differential geometry
- 3 From Lie-group methods to general methods on manifolds

Basics in differential geometry

Question: can we extend RKM to any geometry?

Basics in differential geometry

Question: can we extend RKM to any geometry?

What does it mean "any geometry"?

Basics in differential geometry

Question: can we extend RKM to any geometry?

What does it mean "any geometry"?

We have

- A manifold \mathcal{M}
- Functions $\phi \in \mathcal{C}^\infty(\mathcal{M})$
- Smooth vector fields $f \in \mathfrak{X}(\mathcal{M})$, that is, $f(p) \in T_p\mathcal{M}$.

Basics in differential geometry

Question: can we extend RKM to any geometry?

What does it mean "any geometry"?

We have

- A manifold \mathcal{M}
- Functions $\phi \in \mathcal{C}^\infty(\mathcal{M})$
- Smooth vector fields $f \in \mathfrak{X}(\mathcal{M})$, that is, $f(p) \in T_p\mathcal{M}$.

Lemma

Let the Jacobi bracket

$$[f, g]_J \triangleright \phi := f \triangleright (g \triangleright \phi) - g \triangleright (f \triangleright \phi).$$

Then $(\mathfrak{X}(\mathcal{M}), [-, -]_J)$ is a Lie algebra.

A vector field $f \in \mathfrak{X}(\mathcal{M})$ defines the flow of the ODE $y' = f(y)$ on \mathcal{M} .

Connection

Definition

An **affine connection** is a bilinear mapping of vector fields

$$\triangleright: \mathfrak{X}(\mathcal{M}) \times \mathfrak{X}(\mathcal{M}) \rightarrow \mathfrak{X}(\mathcal{M}),$$

satisfying

$$(\phi f) \triangleright g = \phi(f \triangleright g), \quad f \triangleright (\phi g) = f[\phi]g + \phi f \triangleright g.$$

Connection

Definition

An **affine connection** is a bilinear mapping of vector fields

$$\triangleright: \mathfrak{X}(\mathcal{M}) \times \mathfrak{X}(\mathcal{M}) \rightarrow \mathfrak{X}(\mathcal{M}),$$

satisfying

$$(\phi f) \triangleright g = \phi(f \triangleright g), \quad f \triangleright (\phi g) = f[\phi]g + \phi f \triangleright g.$$

Example

In \mathbb{R}^D , the standard Euclidean connection is

$$f \triangleright g = f^i \partial_i [g^j] \partial_j = g' f = \langle \nabla g, f \rangle.$$

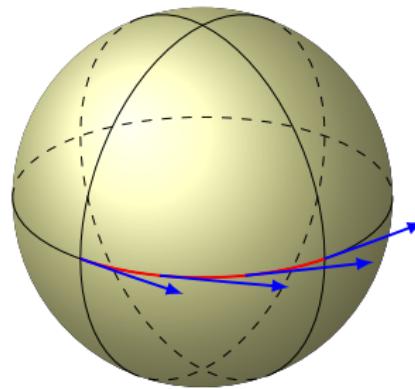
Given a frame basis E_i , $i = 1, \dots, D$, the **Weitzenböck connection** is given by

$$f \triangleright g = f[g^i] E_i, \quad g = g^i E_i.$$

Parallel transport

Definition (Geodesic)

A parallel vector field $f \triangleright f = 0$ defines a geodesic curve $y(t)$ as $y'(t) = f(y(t))$.
We write $\exp_p(tv)$.



Parallel transport

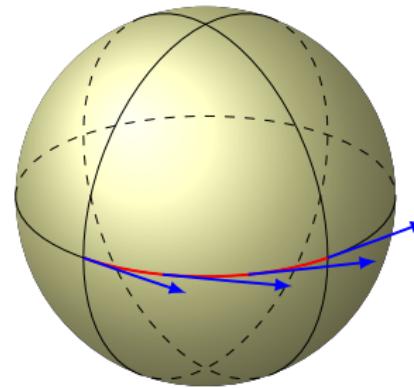
Definition (Geodesic)

A parallel vector field $f \triangleright f = 0$ defines a geodesic curve $y(t)$ as $y'(t) = f(y(t))$. We write $\exp_p(tv)$.

Definition (Parallel transport along geodesics)

The *parallel transport along geodesics*:

$$\Gamma_{tv}: T_p \mathcal{M} \rightarrow T_{\exp_p(tv)} \mathcal{M}, \quad p \in \mathcal{M}, \quad v \in T_p \mathcal{M}, \quad \Gamma_{tf}^{-1} = \exp(tf \triangleright).$$



Torsion and curvature

Definition

Torsion:

$$T(f, g) = f \triangleright g - g \triangleright f - [f, g]_J.$$

Curvature:

$$R(f, g)h = f \triangleright (g \triangleright h) - g \triangleright (f \triangleright h) - [f, g]_J \triangleright h.$$

Torsion and curvature

Definition

Torsion:

$$T(f, g) = f \triangleright g - g \triangleright f - [f, g]_J.$$

Curvature:

$$R(f, g)h = f \triangleright (g \triangleright h) - g \triangleright (f \triangleright h) - [f, g]_J \triangleright h.$$

Proposition (Bianchi identities)

The torsion and curvature of any affine connection on any manifold satisfy:

$$\sum_{\mathcal{O}X, Y, Z} T(T(X, Y), Z) + (X \triangleright T)(Y, Z) - R(X, Y)Z = 0,$$

$$\sum_{\mathcal{O}X, Y, Z} (X \triangleright R)(Y, Z) - R(X, T(Y, Z)) = 0.$$

Examples of geometries

Euclidean space \mathbb{R}^d : $T = 0, R = 0$.

Lie group: $\nabla T = 0, R = 0$.

Lemma

If $\nabla T = 0, R = 0$, $(\mathfrak{X}(\mathcal{M}), T)$ is a Lie algebra.

Examples of geometries

Euclidean space \mathbb{R}^d : $T = 0, R = 0$.

Lie group: $\nabla T = 0, R = 0$.

Lemma

If $\nabla T = 0, R = 0$, $(\mathfrak{X}(\mathcal{M}), T)$ is a Lie algebra.

Nomizu classification of invariant connections (1954):

Geometry	Connection	Connection algebra
Local Abelian Lie group	$T = 0, R = 0$	pre-Lie
Local Lie group	$\nabla T = 0, R = 0$	post-Lie
Local symmetric space	$T = 0, \nabla R = 0$	Lie admissible triple
Local reductive homogeneous space	$\nabla T = 0, \nabla R = 0$	post-Lie-Yamaguti

Examples of geometries

Euclidean space \mathbb{R}^d : $T = 0, R = 0$.

Lie group: $\nabla T = 0, R = 0$.

Lemma

If $\nabla T = 0, R = 0$, $(\mathfrak{X}(\mathcal{M}), T)$ is a Lie algebra.

Nomizu classification of invariant connections (1954):

Geometry	Connection	Connection algebra
Local Abelian Lie group	$T = 0, R = 0$	pre-Lie
Local Lie group	$\nabla T = 0, R = 0$	post-Lie
Local symmetric space	$T = 0, \nabla R = 0$	Lie admissible triple
Local reductive homogeneous space	$\nabla T = 0, \nabla R = 0$	post-Lie-Yamaguti

Main problem of current numerics on manifolds:

Riemannian: $T = 0$, Levi-Civita connection.

Almost all geometries in numerics: $R = 0$, Weitzenböck connection.

Contents

- 1 Composition of exponentials with Lie algebras and Lie group methods
- 2 Notions of differential geometry
- 3 From Lie-group methods to general methods on manifolds

Jacobi fields

Definition

Given a geodesic $\gamma_t = \exp_p(tv)$ defined in a neighbourhood of p , a **Jacobi field** J is a vector field of the form

$$J(\gamma_t) = d_{tv} \exp_p(tw).$$

Equivalently, J satisfies

$$J(\gamma_t) = \frac{d}{ds}|_{s=0} \exp_p(tv + tsw).$$

Lemma (see Kobayashi, Nomizu)

The Jacobi field satisfies the equation

$$(\dot{\gamma}_t \cdot \dot{\gamma}_t) \triangleright J(\gamma_t) = \dot{\gamma}_t \triangleright (T_{\gamma_t}(\dot{\gamma}_t, J(\gamma_t))) + R_{\gamma_t}(\dot{\gamma}_t, J(\gamma_t))\dot{\gamma}_t.$$

The equivalent of $d \exp$

Define the trivialised differential of the exponential for $p \in \mathcal{M}$, $v, w \in T_p \mathcal{M}$,

$$\mathcal{E}_p: T_p \mathcal{M} \rightarrow \text{End}_{\mathbb{R}}(T_p \mathcal{M}), \quad \mathcal{E}_p(v)w = \Gamma_v^{-1} d_v \exp_p(w).$$

Lemma

The operator $\mathcal{E}_p(tv)$ satisfies

$$t \frac{d^2}{dt^2} (t \mathcal{E}_p(tv)) - t \frac{d}{dt} (\mathcal{T}_p(tv) \mathcal{E}_p(tv)) = \mathcal{R}_p(tv) \mathcal{E}_p(tv),$$

where

$$\mathcal{T}_p(v)w = (\Gamma_{tv}^{-1} \mathcal{T}_{\gamma_t})(v, w), \quad \mathcal{R}_p(v)w = (\Gamma_v^{-1} R_{\exp_p(v)})(v, w)v.$$

Lemma (Lie Polynomials)

Let $t_n(v): w \rightarrow (v \cdot^n \triangleright T_p)(v, w)$ and $r_n(v): w \rightarrow (v \cdot^n \triangleright R_p)(v, w)v$, then

$$\mathcal{T}_p(tv) = \sum_{n \geq 1} \frac{t^n}{(n-1)!} t_{n-1}(v), \quad \mathcal{R}_p(tv) = \sum_{n \geq 2} \frac{t^n}{(n-2)!} r_{n-2}(v).$$

Expansion of $\mathcal{E}_p(tv)$

Theorem (Generalisation of Gavrilov, 2012)

The Taylor expansion of $\mathcal{E}_p(v)w = \Gamma_v^{-1}d_v \exp_p(w)$ satisfies

$$\mathcal{E}_p(tv) = \sum_{n \geq 0} \frac{t^n}{(n+1)!} \sum_{P \in \text{LiePol}, |P|=n} c_P P(v),$$

where

$$t_n(v)w = (v \cdot^n \triangleright T_p)(v, w), \quad r_n(v)w = (v \cdot^n \triangleright R_p)(v, w)v,$$

and

$$c_{t_p P} = \binom{p+1+|P|}{p} c_P, \quad c_{r_p P} = \binom{p+1+|P|}{p} c_P, \quad c_{\text{id}} = 1.$$

First terms:

$$\begin{aligned} \mathcal{E}_p(tv) &= \text{id} + \frac{t}{2} t_0(v) + \frac{t^2}{3!} \left(2t_1 + r_0 + t_0^2 \right) (v) \\ &\quad + \frac{t^3}{4!} \left(3t_2 + 2r_1 + 3t_1 t_0 + 2t_0 t_1 + t_0 r_0 + r_0 t_0 + t_0^3 \right) (v) + \dots \end{aligned}$$

The case of invariant connections

Corollary

Let an invariant affine connection \triangleright , then we find

$$\begin{aligned}\mathcal{E}_p(tv) &= \sum_{n \geq 0} \frac{t^n}{(n+1)!} \sum_{P \in \text{LiePol}_0, |P|=n} P(v) \\ &= \text{id} + \frac{t}{2} t_0(v) + \frac{t^2}{3!} \left(r_0 + t_0^2 \right)(v) + \frac{t^3}{4!} \left(t_0 r_0 + r_0 t_0 + t_0^3 \right)(v) \\ &\quad + \frac{t^4}{5!} \left(r_0^2 + t_0^2 r_0 + t_0 r_0 t_0 + r_0 t_0^2 + t_0^4 \right)(v) \\ &\quad + \frac{t^5}{6!} \left(t_0 r_0^2 + r_0 t_0 r_0 + r_0^2 t_0 + t_0^3 r_0 + t_0^2 r_0 t_0 + t_0 r_0 t_0^2 + r_0 t_0^3 + t_0^5 \right)(v) + \dots\end{aligned}$$

In particular for $\nabla T = 0$, $R = 0$, we recover the expansion of $d \exp$ in the matrix case

$$\mathcal{E}_p(tv) = \sum_{n \geq 0} \frac{t^n}{(n+1)!} T(v, -)^{\circ n}.$$

General BCH formula²

Corollary

Let an invariant affine connection \triangleright , then

$$\begin{aligned}\mathcal{E}_p(tv)^{-1} &= \text{id} - \frac{t}{2}t_0(v) + t^2\left(-\frac{1}{6}r_0 + \frac{1}{12}t_0^2\right)(v) + t^3\left(\frac{1}{24}t_0r_0 + \frac{1}{24}r_0t_0\right)(v) \\ &+ t^4\left(\frac{7}{360}r_0^2 - \frac{1}{720}t_0^2r_0 - \frac{1}{120}t_0r_0t_0 - \frac{1}{720}r_0t_0^2 - \frac{1}{720}t_0^4\right)(v) + \dots\end{aligned}$$

Theorem

The composition of geodesics satisfies

$$\exp_{\exp_p(v)}(\Gamma_v u) = \exp_p(BCH(u, v)),$$

where $BCH(u, v) = \omega(1)$ and

$$\omega'(t) = \mathcal{E}_p(\omega(t))^{-1}\Gamma_{\omega(t)}^{-1}\Gamma_{\Gamma_v tu}\Gamma_v u, \quad \omega(0) = v.$$

The case $\nabla T = 0, R = 0$ gives back the standard BCH formula.

²See also Gavrilov's double exponentials and Al-Kaabi, Ebrahimi-Fard, Manchon, Munthe-Kaas, 2025.

Lifting ODEs in general geometry

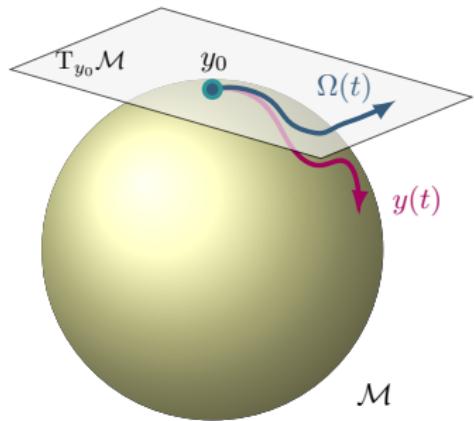
Theorem

Consider the ODE

$$y'(t) = f(y(t)), \quad y_0 = p, \quad f \in \mathfrak{X}(\mathcal{M}).$$

Then $y(t) = \exp_p(\Omega(t))$, where

$$\Omega'(t) = \mathcal{E}_p(\Omega(t))^{-1} \Gamma_{\Omega(t)}^{-1} f(y(t)), \quad \Omega(0) = 0.$$



The map $\Gamma_{\Omega}^{-1} f(y)$ is called the trivialisation of f in Lie-group methods.

If $f(y) = A(y)y$, $\Gamma_{\Omega}^{-1} f(y) = A(y)$

RKMK in any geometry

RKMK on Lie groups were introduced by H. Munthe-Kaas in the 90's, extended on symmetric spaces ($T = 0, \nabla R = 0$) in 2024.

Definition (General RKMK)

Let $\hat{f}(\exp_y(v)) = \Gamma_v^{-1}f(\exp_y(v))$. The new methods are

$$\theta^i = \sum_{j=1}^s a_{ij} \Omega^j,$$

$$\Omega^i = h \mathcal{E}_p(\theta^i)^{-1} \hat{f}(\exp_y(\theta^i)),$$

$$\psi_h(y) = \exp_y\left(\sum_{i=1}^s b_i \Omega^i\right).$$

Theorem

If the coefficients correspond to a **Euclidean** order p RK method, the RKMK method is of order p .

Conclusion

Summary:

- We provide a new fully general class of **intrinsic** methods for solving differential equations on manifolds.
- The approach is **versatile** and can be extended for solving deterministic and stochastic evolutionary problems.
- Ongoing **numerical experiments**.

Outlooks:

- Study of the algebra of Lie polynomials for constructing the simplest RKMK methods: **Opening position in algebra/operads/numerics in 2026**. Study of the algebraic structures appearing in general intrinsic integration.
- Creation of efficient **high-order intrinsic sampling method** on Riemannian manifolds (thesis of Sébastien Macé).
- Implementation of the new methods in **Manifolds.jl** (with P. Navaro and R. Bergmann).
- **Multiscale dynamics on manifolds** (for electromagnetics, ML, molecular dynamics).