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Timoshenko model in solid mechanics fig: Wikipedia

S. Timoshenko (1878-1972) Shear

Timoshenko model Moment of inertia
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Elasticity and buckling

This more general model has motivated numerous studies on
various aspects of structural mechanics, including investigations
into elasticity and buckling.

Elasticity
Buckling

fig: Wikipedia

Solutions of the non-linear dynamical approach were mainly given
using numerical methods.



Geometrically exact model

≈ 1970 : geometrically exact
formulation of the model
(Reissner, Whithman, Simo)

I placement: ϕ(S , t) ∈ R3

I velocity : v = ∂ϕ
∂t

I rotation tensor :
Q(S , t) ∈ SO(3)

I orthonormal frame basis:
(d1,d2,d3) = Q(S , t)

I curvature:
κ = axial(∂Q∂S QT )

I spin: ω = axial(∂Q∂t QT )

I ∂di
∂S = κ∧ di ,

∂di
∂t = ω ∧ di ,

I strain-vector : ε = ∂ϕ
∂S − d3

Geometrically exact beam
fig: Le Marrec



Parameters of the model: potential energy

Definition (Strain-energy density)

For linear stress-strain relations, the intern energy density is
quadratic:

U(ε,κ) =
1

2
εGε+

1

2
κHκ

where the rigidity tensors are diagonal matrices in the {di}-frame:

G =

GA 0 0
0 GA 0
0 0 EA

 and H =

EI1 0 0
0 EI2 0
0 0 GI3


with G and E shear and bulk modulus, A area and Ii quadratic

moment along di of the cross-section.



Parameters of the model: kinetic energy

Definition (Kinetic energy)

T (v ,ω) =
1

2
vAv +

1

2
ωJω

where A and J are diagonal inertial tensors in the mobile frame
{di}:

A =

ρA 0 0
0 ρA 0
0 0 ρA

 and J =

ρI1 0 0
0 ρI2 0
0 0 ρI3

 ,

ρ being the mass density.



Parameters live on the moving frame {di}

Parameters of Timoshenko models

G rigidity tensor

H rigidity tensor

A inertial tensor

J inertial tensor

I Material invariance =⇒ the parameters of the model are
naturally expressed in material coordinates.

Therefore, it is natural to study the Timoshenko model in
Lagrangian coordinates: by avoiding any decomposition of

tensors on the Cartesian frame associated to the ambient space.
This is the main motivation of this presentation.



Preliminaries on the moving frame

Timoshenko mechanics
Main mechanical objects

Hamiltonian mechanics of Timoshenko model
Choice of variables
Hamiltonian formulation on the moving frame

What’s next ?



Algebraic notation vs. moving frame

Let u = uidi be a vector expressed in the moving frame {di}. The
components (ui )i are said to be Lagrangian coordinates. In these
coordinates:

u :=

u1

u2

u3

 and d1 :=

1
0
0

 , d2 :=

0
1
0

 , d3 :=

0
0
1

 .

For any vector u(S , t):

∂u
∂S

=
∂ui
∂S

di + κ ∧ u,
∂u
∂t

=
∂ui
∂t

di + ω ∧ u (1)



Differential calculus on the moving frame

Let us consider, for any vectors u(S , t) and v(S , t), the quadratic
form:

f (u, v) := uXv ,

where X = XT is symmetric and has time and space independent
components when expressed in {di}. Thanks to equation (1):

Proposition (Derivations of quadratic forms on the moving
frame)

Time and space derivations of the quadratic form f are
respectively related to corotational time and space derivations of
associated vectors. In equations:

∂ f

∂t
=

(
∂u
∂t
− ω ∧ u

)
Xv + uX

(
∂v
∂t
− ω ∧ v

)
∂ f

∂S
=

(
∂u
∂S
− κ ∧ u

)
Xv + uX

(
∂v
∂S
− κ ∧ v

) (2)



Linear perturbation on the moving frame

Corollary (Linear perturbation of quadratic forms on the
moving frame)

The infinitesimal perturbation of the quadratic form f follows in
the same way:

δf = (δu − δθ ∧ u)Xv + uX (δv − δθ ∧ v) (3)

where δθ = axial(Q−1δQ).

I δf 6= δuXv + uXδv
I δu − δθ ∧ u is sometimes called the corotational perturbation

of u



Lagrangian density on the moving frame

Lagrangian density `(v ,ω, ε,κ) and Lagrangian L(v ,ω, ε,κ):

`(v ,ω, ε,κ) :=
1

2
vAv +

1

2
ωJω − 1

2
εGε− 1

2
κHκ,

L(v ,ω, ε,κ) :=

∫ L

0
`(v ,ω, ε,κ) dS

Accordingly, the action S is:

S :=

∫ t2

t1

L dt.



Variational principle of the dynamical problem on the
moving frame

Theorem (Variational principle, Le Marrec et al., 2017)

Under suitable boundary conditions, Hamilton’s Principle δS = 0 is
equivalent to∫ t2

t1

∫ L

0
δϕ ·

(
∂Gε
∂S
− ∂ Av

∂t

)
(4)

+δθ ·
(
∂Hκ
∂S

+
∂ϕ

∂S
∧ (Gε)− ∂ Jω

∂t

)
dSdt = 0.

The variable δθ – involved in the weak formulation (4) – is related
to Euler-Poincaré reduction on the group {Q : [0, L]→ SO(3)}.



Closure relations

Out of the construction of the variables (v ,ω, ε,κ), one proves:

Proposition

I Time derivative of strain-vector and space derivative of
velocity are related by:

∂ε

∂t
=
∂v
∂S
− ω ∧ d3. (5)

I Time derivative of curvature and space derivative of spin are
related by:

∂κ

∂t
=
∂ω

∂S
+ ω ∧ κ. (6)



Equations of Timoshenko model on the moving frame
Out of the variational principle (thm 4) and closure relations (6)
and (5), we obtain 4 first-order differential equations with 4
3-dimensional unknowns:

∂Gε
∂S

=
∂ Av
∂t

∂Hκ
∂S

+ (ε+ d3) ∧ (Gε) =
∂ Jω
∂t

∂ v
∂S
− ω ∧ d3 =

∂ ε

∂t
∂ ω

∂S
+ ω ∧ κ =

∂ κ

∂t

(7)
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Two beam configurations
fig: Le Marrec



Choice of variables: replace Lagrangian coordinates by
local coordinates

Set space and rotation momenta p = Av and σ = Jω. In the local
chart, the system (7) with variables (p, σ, ε, κ) gets written as

∂Gε
∂S

+ κ ∧ (Gε)− (J−1σ) ∧ p =
∂ p

∂t
∂Hκ
∂S

+ κ ∧ (Hκ) + (ε+ d3) ∧ (Gε)− (J−1σ) ∧ σ =
∂ σ

∂t
∂ A−1p

∂S
+ κ ∧ (A−1p) + (ε+ d3) ∧ (J−1σ) =

∂ ε

∂t
∂ J−1σ

∂S
+ κ ∧ (J−1σ) =

∂ κ

∂t
(8)



A first Hamiltonian formulation in the ambient space

Theorem (Marsden et. al., 1987)

The system (8) is Hamiltonian for

H(p, σ, ε, κ) =

∫ L

0

1

2
pA−1p +

1

2
σJ−1σ +

1

2
εGε+

1

2
κHκ dS (9)

and the Poisson bracket

{f , g} =

∫ L

0

<
∂f

∂p
,
∂

∂S

(
∂g

∂ε

)
> − < ∂g

∂p
,
∂

∂S

(
∂f

∂ε

)
>

+ <
∂f

∂σ
,
∂

∂S

(
∂g

∂κ

)
> − < ∂g

∂σ
,
∂

∂S

(
∂f

∂κ

)
>

+ < σ,
∂g

∂σ
∧ ∂f
∂σ

>

+ < κ,
∂g

∂ε
∧ ∂f
∂p
− ∂f

∂ε
∧ ∂g
∂p

> + < p,
∂g

∂σ
∧ ∂f
∂p
− ∂f

∂σ
∧ ∂g
∂p

>

+ < ε+ d3,
∂g

∂ε
∧ ∂f
∂σ
− ∂f

∂ε
∧ ∂g
∂σ

> + < κ,
∂g

∂κ
∧ ∂f
∂σ
− ∂f

∂κ
∧ ∂g
∂σ

> dS .



Differential geometry

Definition (Configuration and velocity spaces)

The configuration space is

C = {(ϕ,Q) : [0, L]→ R3 × SO(3)}.

The velocity space is the tangent bundle TC of C :

TC = {(δϕ, δQ) : [0, L]→ R3 × TQSO(3), (ϕ,Q) ∈ C}.

Remark (Tangent space of a
matrix Lie group)

Any tangent vector
δQ ∈ TQSO(3) at Q is of the

form δQ = ∂Q(ν)
∂ν |ν=0

where{
Q(ν) ∈ SO(3) ∀ν ∈ R
Q(0) = Q



Position-momenta space: cotangent bundle

We define momenta p,Σ ∈ T ∗C = {(ϕ,Q,p,Σ)} as dual
variables.

Definition (Riemannian metric for dual variables)

For any

{
(ϕ,Q) ∈ C(

(δϕ, δQ), (δ̃Q, δ̃ϕ)
)
∈ T(ϕ,Q)C × T(ϕ,Q)C

,

g
(

(δϕ, δ̃ϕ), (δQ, δ̃Q)
)

=

∫ L

0

< δϕ(S), δ̃ϕ(S) > +� δQ(S), δ̃Q(S)� dS

with
< ·, · > usual scalar product on R3

� A,B �= 1
2 Tr(A · BT ) the Frobenius scalar product of matrices.



Legendre transform

A fundamental tool to recover equations of motion in terms of the
momenta p and Σ is the Legendre transform.

Proposition (From velocities to momenta)

The Legendre transform induced by L is

(q, δq) ∈ TC 7→ (q, π) ∈ T ∗C

with q = (ϕ,Q) ∈ C and

π = DqL =

(
p
Σ

)
=

(
Aδϕ

Qj−1
(
Jj(Q−1δQ)

)) ∈ T ∗qC

where j(·) = axial(·).



Induced Hamiltonian

Proposition (Hamiltonian on T ∗C )

The Legendre transform induces the Hamiltonian H : T ∗C → R
defined as

H(q, π) =
1

2

∫ L

0
< p,A−1p > + < j(Q−1Σ), J−1j(Q−1Σ) >

+ <
∂ϕ

∂S
− d3,G(

∂ϕ

∂S
− d3) >

+ < j(Q−1∂Q
∂S

),Hj(Q−1∂Q
∂S

) > dS .

(10)

Remember : strain-vector ε = ∂ϕ
∂S − d3, curvature κ = j(Q−1 ∂Q

∂S ).



Equations of motion in position-momenta variables

Set σ = j(Q−1Σ) and recall ε = ∂ϕ
∂S − d3 and κ = j(∂Q∂S QT ).

Proposition

In the coordinates {ϕ,p,Q,σ}, the equations of motion are

∂ϕ

∂t
= A−1p

∂ p
∂t

=
∂Gε
∂S

∂Q
∂t

= Qj−1(J−1σ)

∂ σ

∂t
=
∂Hκ
∂S

+
∂ϕ

∂S
∧ (Gε)

(11)



Poisson bracket on the moving frame

Theorem (C., Le Marrec, 2024)

In the coordinates {ϕ,Q,p,σ}, the Poisson bracket on T ∗C
becomes

{f̄ , ḡ} =

∫ L

0
<
∂ f̄

∂ϕ
,
∂ḡ

∂p
> − < ∂ḡ

∂ϕ
,
∂ f̄

∂p
>

+� Q−1 ∂ f̄

∂Q
, j−1(

∂ḡ

∂σ
)� −� Q−1 ∂ḡ

∂Q
, j−1(

∂ f̄

∂σ
)� dS .

(12)

Remark

� Q−1 ∂ f̄

∂Q
, j−1(

∂ḡ

∂σ
)�

is the natural pairing of a vector in T SO(3) with a covector in
T ∗SO(3).



Hamiltonian formulation of Timoshenko model on the
moving frame

Corollary (Hamiltonian formulation of Timoshenko model, C.,
Le Marrec, 2024)

Under boundary conditions

< δϕ,Gε >=< δθ,Hκ >= 0,

the equations of motion (11) are Hamiltonian for the bracket (12)
and the Hamiltonian

H(ϕ,p,Q,σ) =
1

2

∫ L

0
< p,A−1p > + < σ, J−1σ >

+ < (
∂ϕ

∂S
− d3),G(

∂ϕ

∂S
− d3) >

+ < j(Q−1∂Q
∂S

),Hj(Q−1∂Q
∂S

) > dS .



One sip of the proof

We are left to prove the four equations:

{ϕ,H} = A−1p (13)

{p,H} =
∂Gε
∂S

(14)

{Q,H} = Qj−1(J−1σ) (15)

{σ,H} =
∂Hκ
∂S

+
∂ϕ

∂S
∧ (Gε). (16)



Recover closure relations

Proposition

For any test function f : (R3)[0,L] → R,

{f (ε),H} =
∂f (ε(t))

∂t
=

∫ L

0
<
∂f

∂ε
,
∂v
∂S
− ω ∧ d3 > dS . (17)

where v = A−1p and ω = J−1σ.

Proposition

For any test function f : (R3)[0,L] → R,

{f (κ),H} =
∂f (κ(t))

∂t
=

∫ L

0
<
∂f

∂κ
,
∂ω

∂S
+ ω ∧ κ > dS . (18)



Conclusion

Differential calculus is more
complicated on the moving
frame...

δ(uXv) = (δu − δθ ∧ u)Xv
+ uX (δv − δθ ∧ v)

versus

δ (uXv) = (δu)Xv + uX (δv)

... but Poisson geometry is
simpler there:

{f̄ , ḡ} =

∫ L

0
<
∂ f̄

∂ϕ
,
∂ḡ

∂p
>

− < ∂ḡ

∂ϕ
,
∂ f̄

∂p
>

+� ∂ f̄

∂Q
,Qj−1(

∂ḡ

∂σ
)�

−� ∂ḡ

∂Q
,Qj−1(

∂ f̄

∂σ
)� dS .



Perspectives
I Numerics: Geometric integrators using the Hamiltonian

structure
I Use Poisson geometry for the study of mechanical stability
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Catastrophic instability in the Timoshenko model
fig: Le Marrec
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