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Timoshenko model in solid mechanics
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Elasticity and buckling

This more general model has motivated numerous studies on
various aspects of structural mechanics, including investigations
into elasticity and buckling.
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Solutions of the non-linear dynamical approach were mainly given
using numerical methods.



Geometrically exact model

~ 1970 : geometrically exact
formulation of the model
(Reissner, Whithman, Simo)
» placement: p(S,t) € R3
> velocity: v = %—‘f
» rotation tensor:
Q(S,t) € SO(3)
» orthonormal frame basis:
(dl, d2, d3) = Q(S, t)

» curvature:

K= aX|aI( QT)
-
> spin: w = aX|a|( 2Q ) Geometrically exact beam
od; od; __
> 95 — =KA d,, 5t — w A d

» strain-vector: € = 65 —ds



Parameters of the model: potential energy

Definition (Strain-energy density)

For linear stress-strain relations, the intern energy density is
quadratic:

1 1
Ue, k) = 55((}5 + EmHn

where the rigidity tensors are diagonal matrices in the {d;}-frame:

GA 0 0 EL 0 O
G=[0 GA 0| andH=| 0 EhL O
0 0 EA 0 0 Gh

with G and E shear and bulk modulus, A area and /; quadratic
moment along d; of the cross-section.



Parameters of the model: kinetic energy

Definition (Kinetic energy)

1 1
T(v,w) = EVAV + Ewa

where A and J are diagonal inertial tensors in the mobile frame

{d;}:
pA 0 O ph 0 O
A=10 pA 0| andJ=|0 ph 0|,
0 0 pA 0 0 ph

p being the mass density.



Parameters live on the moving frame {d;}

Parameters of Timoshenko models
rigidity tensor

rigidity tensor
inertial tensor
inertial tensor

il l==1{p!

» Material invariance = the parameters of the model are
naturally expressed in material coordinates.

Therefore, it is natural to study the Timoshenko model in
Lagrangian coordinates: by avoiding any decomposition of
tensors on the Cartesian frame associated to the ambient space.
This is the main motivation of this presentation.
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Algebraic notation vs. moving frame

Let u = u;d; be a vector expressed in the moving frame {d;}. The
components (u;); are said to be Lagrangian coordinates. In these
coordinates:

Uy 1 0 0
u:=|uw and di:=10], d:=1|1], d3:=10
u3 0 0 1

For any vector u(S, t):

ou  Ju; ou  Ou;
—di+ K Au, = —



Differential calculus on the moving frame

Let us consider, for any vectors u(S,t) and v(S, t), the quadratic
form:

f(u,v) = uXv,
where X = X7 is symmetric and has time and space independent
components when expressed in {d;}. Thanks to equation (1):
Proposition (Derivations of quadratic forms on the moving
frame)

Time and space derivations of the quadratic form f are
respectively related to corotational time and space derivations of
associated vectors. In equations:

of du ov
E: <8t—w/\u>Xv+uX<at—w/\ >

0f (0 N ny)
os \as T



Linear perturbation on the moving frame

Corollary (Linear perturbation of quadratic forms on the
moving frame)

The infinitesimal perturbation of the quadratic form f follows in
the same way:

Of = (0u — 90 AN u)Xv + uX (v — 60 A v) (3)

where | 60 = axia/(Q_lcSQ).
» §f # duXv + uXov

» du — 60 A u is sometimes called the corotational perturbation
of u




Lagrangian density on the moving frame

Lagrangian density /(v,w, e, k) and Lagrangian L£(v,w, €, K):
1 1 1 1
Uv,w, e, K) = EVAV + Ew.ﬂw — §€G€ — EI{HFL,

L
L(v,w, e, K) ::/ Uv,w, e, k)dS
0

Accordingly, the action § is:

[%]
S::/ Ldt.
t1



Variational principle of the dynamical problem on the
moving frame

Theorem (Variational principle, Le Marrec et al., 2017)

Under suitable boundary conditions, Hamilton's Principle 6S = 0 is
equivalent to

/ / (8@5 - a;xtv) @

OHk 0Oy _ 0Jw

The variable 66 — involved in the weak formulation (4) — is related
to Euler-Poincaré reduction on the group {Q: [0, L] — SO(3)}.



Closure relations

Out of the construction of the variables (v,w, e, k), one proves:

Proposition

» Time derivative of strain-vector and space derivative of
velocity are related by:

Oe  Ov
— = — —wAds. 5
ot _as 0% ®)
» Time derivative of curvature and space derivative of spin are
related by:
0 0
Ak (6)

ot 9S



Equation mehkde n the mov gfm

Out of the variational principle (thm 4) and IIIIIIIIIIIIIIII (6)
and (5), we obtain 4 first-order differential equations with 4
3—dimensi nnnnnnnnnnnn :
0G 0Av
- oS 88t
OBk | (crd)n(ce) = 2
oS ot (7)
ov _ w A d ge
o 3 ot
+ WAK Ok
ot
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Choice of variables: replace Lagrangian coordinates by
local coordinates

Set space and rotation momenta p = Av and o = Jw. In the local
chart, the system (7) with variables (p, 0, ¢, k) gets written as

( 8aig+ﬁA(Ge)—(J_1g)Ap _ %
88114;5+/€/\(H/f)+(8+d3)/\(G5)_(J—10)/\U _ %f
6125117+mA(A—1p)+(€+d3)A(J_1J) _ %
801]9;10+RA(J—1U) _ 56/:

(8)



A first Hamiltonian formulation in the ambient space
Theorem (Marsden et. al., 1987)

The system (8) is Hamiltonian for

L
1 1 1 1
H(p,o,e,k) = /0 ipA_lp + §UJ_IO' + EsGe + imH/@ dSs (9)

and the Poisson bracket
L
_[t_of 0 (05N _0g 0 (of
{fkg}*té < 9p’ 85 (85) TS (85) ~

4 Of 0 (08 _Og O (OF)
0o’ 0S \ Ok 0o’ 0S \ Ok

+<Ua—g/\g>
"Oo " Oo
og Of Of Og og of Of O0g
< Nop e op T TP " ap 90 p
og of of 9 og of Of 0
t<etdn, o N ST AE S o S8 g

85/\60 85/\80 K’@n/\%ia/\%>d&



Differential geometry

Definition (Configuration and velocity spaces)
The configuration space is

C={(¢,Q): [0,L] = R* x SO(3)}.
The velocity space is the tangent bundle TC of C:

TC = {(6¢,6Q): [0,L] — R® x TgSO(3), (v, Q) € C}.

Remark (Tangent space of a
matrix Lie group)

Any tangent vector
dQ € T@SO(3) at Q is of the

form 6@ = 83:)' where

{ Q(v) € SO(3) vu cR

Q(0) =




Position-momenta space: cotangent bundle

We define momenta p,X € T*C = {(¢, Q,p,X)} as dual
variables.

Definition (Riemannian metric for dual variables)

. (p,Q)eC
or an 12 ’
"1 ((60,60),(6Q.09)) € T5,0)C x Tp0)C

L
g((acpﬁp),(ao,(fé)) = / < 5p(S),39(S) > + < 3Q(S),5Q(S) > dS
0

with
<> usual scalar product on R3
< A B >= %Tr(A -BT)  the Frobenius scalar product of matrices.



Legendre transform

A fundamental tool to recover equations of motion in terms of the
momenta p and ¥ is the Legendre transform.

Proposition (From velocities to momenta)
The Legendre transform induced by L is

(9,09) € TC—(q,m) € T°C

with g = (¢, Q) € C and

-0 (2) (o)

where j(-) = axial(-).



Induced Hamiltonian

Proposition (Hamiltonian on T*C)

The Legendre transform induces the Hamiltonian H: T*C — R
defined as

1 L
H(g.m) = 5 /0 <pA7lp > + < j(Q7IE),I7(QIE) >

dp Op

+ <j(olg§),Hj(olg§) > dS.
(10)

. : _ 0 _ :(N-192
Remember : strain-vector € = 5£ — d3, curvature k = j(Q %)



Equations of motion in position-momenta variables

Set o = j(QX) and recall € = 85 —d3 and Kk —_]( QT).

Proposition
In the coordinates {p, p, Q, o}, the equations of motion are

oo 1
ot AP
@_8@5
ot  9S
11
ot
80_8Hm+8£A(G€)

ot 0S 0S



Poisson bracket on the moving frame

Theorem (C., Le Marrec, 2024)
In the coordinates {p, Q, p, o}, the Poisson bracket on T*C

becomes
{f.g} = / or ag <Zi,§£>
r< Q‘l(%,j_l(gg) >-< Qg 12 s as.
(12)
Remark
< Q! aQ (gg) >

is the natural pairing of a vector in T SO(3) with a covector in
T*S50(3).



Hamiltonian formulation of Timoshenko model on the
moving frame

Corollary (Hamiltonian formulation of Timoshenko model, C.,
Le Marrec, 2024)

Under boundary conditions
< dp,Ge >=< 60, Hr >= 0,

the equations of motion (11) are Hamiltonian for the bracket (12)
and the Hamiltonian

1 L
H(p,p,Q,0) = 2/0 <pA'p>+<oJ o>

op Op
+ < (65 d3), G(as d3) >

4 < 10129) 1y 129



One sip of the proof

We are left to prove the four equations:

{e. H} :A_lp

0Ge
P, H} = ¢
{Q.H}=Qj'(J o)
{o,H} = oHr + 9 A (Ge).

oS oS



Recover closure relations

Proposition
For any test function f: (R — R,

(>4 L v
{f(s),H}—af(at(t))—/o gi gs whdy>dS.  (17)

where v=A"1p and w = Jlo.

Proposition
For any test function f: (R3)0H — R,
Of (k( of Ow

L
{f(n),H}zatt)):/o<a S twnk>dS. (18)



Conclusion

|
Differential calculus is more
complicated on the moving
frame...

d(uXv) =(6u — 06 N u)Xv
+ uX (0v — 60 A v)
versus
d (uXv) = (6u) Xv + uX (dv)

.. but Poisson geometry is
simpler there:
A’ 8p

{f.g} = /
og Of

—<a—,%>
oF

of 8g

41,08

our 1

+ <K 20’ , QJ (80
of

g -1
- < QQJ (a ) > dS.

) >



Perspectives

» Numerics: Geometric integrators using the Hamiltonian
structure
» Use Poisson geometry for the study of mechanical stability

27 - - - - -
/4 trajectory of the configurations | -20
-10
37/2 o —
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Catastrophic instability in the Timoshenko model
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