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Definition of the system and associated energy

System: liquid occupying the
domain Ωl of volume V + liquid-gas
interface

Internal energy of the system

EΩl
= −PliqV + γlgAlg (1)

• Pliq liquid pressure inside the capillary bridge
• Alg surface of the liquid-gas interface
• γlg liquid-gas surface tension

Rem : the variation of liquid-gas surface energy may be seen as the one of
a membrane with associated membrane stress tensor nt = γlg ITωlg
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Definition of the system and associated energy

First law of thermodynamics in adiabatic conditions:

δEΩl
−WFext/sys

= 0 (2)

WFext/sys
mechanical work of external forces acting on the system (liquid

capillary bridge)

External work of pressure forces

dF p
ext/Ωl

= −Pg dS nΩl
(3)

nΩl
: unit external normal to Ωl

Pg gas (air) pressure outside the capillary bridge

WF p
ext/Ωl

=

∫
∂Ωl

−Pg nΩl
.δu dS = −Pg

∫
ωlg

nlg .δudS

= −Pg δV

(4)
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Definition of the system and associated energy

Friction forces acting on the contact line

Friction forces exerted by the solid substrates Ωs on the liquid Ωl :

f sext = −γsνsl − αtslg (5)

• νsl and tslg are the normal and tangent unit vectors to the contact ligne
Lslg of Darboux basis (tslg , gsl , nsl) of Lslg

• Friction forces in the tangent plane of the solid only

Figure: Contact line and Darboux basis
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Definition of the system and associated energy

Work of external friction forces acting on the contact line

Wf s
ext/Ωl

= −γs

∫
Lslg

νsl .δudl − α

∫
Lslg

tslg .δudl (6)

We have exactly:
Wf s

ext/Ωl
= −γsδAsl − αδLslg (7)

δLslg : variation of the the length Lslg of the contact line Lslg
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Definition of the system and associated energy

Adhesion forces acting on the system

f ad3 = (f c3 + f sl3 )nsl (8)

• f c3 : normal adhesion forces located on the contact line Lslg

• f sl3 : normal adhesion forces located on ωsl

Work of adhesion forces associated to the displacement δu :

Wf ad3
=

∫
ωsl

f sl3 v sl3 dω +

∫
Lslg

f c3 v
sl
3 dl (9)

Remark: We could also define a tangential friction/adhesion force f slt
acting on ωsl with

Wf slt
=

∫
ωsl

f slt .v slt dω (10)

At the end, we will prove from the final equilibrium equations that f slt = 0
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Definition of the system and associated energy

First law of thermodynamics in adiabatic conditions:

δEΩl
−WFext/sys

= 0 (11)

General form of the energy of the system

γlgδAlg + γsδAsl ± γslgδLslg −∆P δV −WF s
ext/Ωl

= 0 (12)

with WF s
ext/Ωl

: work of other external action on Ωl .

In general we have γs = γsl − γsg which an be identified as a tangential
friction force exerted by the solid substrates on the liquid Ωl

Other possible definition of the system
Equivalently, we have

δEΩ −∆P δV ± γslgLslg = 0 (13)

with
EΩ = γlgAlg + γsAsl
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Calculation of different contributions of energy of the
system

• Variation of volume

Figure: Initial and final configuration of the liquid domain

After some algebra, we can prove that we have

δV =

∫
ωlg

δp · nlg dω +

∫
ωsl

δp · nsldω (14)

Rem: Due to the use of Stokes theorem, the outer unit normals nlg and nsl must

be considered pointing outer the liquid domain Ωl
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Calculation of different contributions of energy of the
system

Decomposition of the displacement δp

δp = v lgt + v lg3 nlg on ωlg

δp = v slt + v sl3 nsl on ωsl
(15)

into a tangential part and a normal part, both on ωsl and ωlg

General expression of the volume variation

δV =

∫
ωlg

v lg3 dω +

∫
ωsl

v sl3 dω (16)
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Calculation of different contributions of energy of the
system

• Variation of liquid gas area Alg (needs intrinsic differential geometry)

Figure: Initial and final configuration of liquid surface

Using the decomposition δp = v lgt + v lg3 nlg , we have exactly

δAlg = −
∫
ωlg

v lg3 Tr (C ) dω +

∫
Lslg

vt · νlgdl (17)
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Calculation of different contributions of energy of the
system

• Variation of solid-liquid area Asl

In a similar way, using the decomposition δp = v slt + v sl3 nωsl
, we have

exactly

δAsl = −
∫
ωsl

v sl3 Tr
(
C sl

)
dω +

∫
Lslg

v slt · νsldl (18)

• ∂ωsl corresponds to the contact line Lslg (∂ωlg coincides also with Lslg )

• νsl denotes the outer normal to the Lslg

O. Millet A mechanical view of capillarity 26 juin 2025 14 / 40



Calculation of different contributions of energy of the
system

First synthesis of the results

δV =

∫
ωlg

v lg3 dω +

∫
ωsl

v sl3 dω

δAlg = −
∫
ωlg

v lg3 Tr (C ) dω +

∫
Lslg

v lgt · νlgdl

δAsl = −
∫
ωsl

v sl3 Tr
(
C sl

)
dω +

∫
Lslg

v slt · νsldl

(19)
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Calculation of different contributions of energy of the
system

Minimization of energy

∫
ωlg

(−∆P − γlgTr (C )) v lg3 dω +

∫
ωsl

(
−∆P − Tr

(
C sl

))
v sl3 dω

+

∫
Lslg

γlg v
lg
t · νlg + v slt · νsldl =

∫
ωsl

f sl3 v sl3 dω

+

∫
Lslg

f c3 v
sl
3 dl +

∫
ωsl

f slt .v slt dω

(20)

Necessity to decompose the displacement δp in the same basis
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Calculation of different contributions of energy of the
system

Decomposition of δp in the same basis

Continuity of the displacement on the contact line

v lgt + v lg3 nlg = v slt + v sl3 nsl on Lslg (21)

General definition of the contact angle θ

νsl · νlg = cosα = sin θ (22)

Figure: Definition of angle θ
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Calculation of different contributions of energy of the
system

One has

T =

∫
Lslg

(
γlg v

lg
t · νlg + v slt · νsl

)
dl

=

∫
Lslg

(
γlg v

sl
t · νlg + v slt · νsl

)
dl +

∫
Lslg

γlg sin θ v sl3 dl

(23)

and then after some algebra

T =

∫
Lslg

(γlg cos θ + γs) v
sl
t · νsl dl +

∫
Lslg

γlg sin θv sl3 dl (24)
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Calculation of different contributions of energy of the
system

We finally obtain the following equilibrium equation or variational
principle without line energy

∫
ωlg

(−∆P − γlgTr (C )) v lg3 dω +

∫
Lslg

(cos θ γlg + γs)v
sl
t · νsldl

+

∫
ωsl

(
−∆P − Tr

(
C sl

))
v sl3 dω +

∫
Lslg

sin θγlg v
sl
3 dl =

∫
ωsl

f sl3 v sl3 dω

+

∫
f c3 v

sl
3 dl +

∫
ωsl

f slt .v slt dω

(25)

▷ 3 degrees of freedom: v lg3 , v slt · νsl and v sl3
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Calculation of different contributions of energy of the
system

The degrees of freedom involved in the variational principle are :

• v lg3 that plays the role of δy(x) in the particular case considered of an
axisymmetric capillary bridge between two plates or other geometries

• v slt · νsl that plays the role of δyc

• v sl3 that plays the role of δxc

and must/can be considered as independent in the minimization problem.
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Associated equilibrium equations without line energy

Young-Laplace equation

Eq. (25) must be satisfied for all virtual displacements v lg3 defined on ωlg ,
considering v slt = 0 and v sl3 = 0 defined on ωsl∫

ωlg

(−∆P − γlgTr (C )) v lg3 dω = 0 ∀v lg3

We obtain the classical Young-Laplace equation in its general intrinsic
form:

Tr (C ) = −∆P

γlg
(26)
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Associated equilibrium equations without line energy

”Young equation” and its interpretation

Coming back to Eq. (25), and considering any non vanishing v slt defined
on ωsl (with v sl3 = 0), we obtain :∫

Lslg

(cos θ γlg + γs)v
sl
t · νsl dl = 0 ∀v slt

−γs = γlg cos θ (27)

which provides the expression of the local tangentiel friction force on the
contact line (5):

f sext = −γsνsl = γlg cos θ νsl (28)

It is generally written on the form

γs + γlg cos θ = 0

and called Young equation.
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Associated equilibrium equations without line energy

General expression of associated capillary force

Work of the adhesion force during the displacement v sl3

Wf3ad =

∫
ωsl

f sl3 v sl3 dω +

∫
Lslg

f c3 v
sl
3 dl

=

∫
ωsl

(
−∆P − γsTr

(
C sl

))
v sl3 dω +

∫
Lslg

γlg sin θ v
sl
3 dl

(29)

By identification, we may define the ”local” adhesion forces:

f sl3 = γlg sin θ

f c3 = −∆P − Tr
(
C sl

) (30)

• Classical for plane surface when Tr(C sl) = 0.
• First term often called ”capillary force” and second one Laplace pressure force

• This identification is ”local” whereas the definition of the capillary force that

can be measured is ”global”, resulting from an integration on ωsl and Lslg
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Associated equilibrium equations without line energy

General expression of associated capillary (adhesion) force

Consequently we write

F sl
3 =

∫
ωsl

(
−∆P + γlg cos(θ)Tr(C

sl)
)
nsldS

F c
3 =

∫
Lslg

γlg sin(θ)n
sldl

The capillary (adhesion) force is then given by

F adh
3 =

∫
ωsl

(
−∆P + γlg cos(θ)Tr(C

sl)
)
nsldS +

∫
Lslg

γlg sin(θ)n
sldl (31)

▷ The capillary-adhesion force, is defined as the adhesion force exerted by
the solid on the liquid
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Explicit calculation of capillary force for simple geometries

Axisymmetric capillary bridge between two parallel planes

• C sl = 0

• In that particular case, nsl = −ex for the upper plate and ex for the
lower plate.
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Explicit calculation of capillary force for simple geometries

Lower plate case

One has

F adh
3 =

∫
ωsl

−∆PexdS +

∫
Lslg

γlg sin(θ)exdl (32)

We obtain
F adh
3 =

(
−∆P πy2c + 2πycγlg sin θ

)
ex (33)

▷ Classical expression of literature

Note that F adh
3 =

(
−∆P πy2c + 2πycγlg sin θ

)
(−ex) for the upper plate.
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Explicit calculation of capillary force for simple geometries

Axisymmetrical capillary bridge between two spheres

• For spheres Tr C sl = 2
R , with R > 0 the radius of the spheres.
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Explicit calculation of capillary force for simple geometries

Lower sphere case

One has

F adh
3 =

(
−∆P + γlg cos(θ)

2

R

)∫
ωsl

nsldS + γlg sin(θ)

∫
Lslg

nsldl (34)

Here

∫
ωsl

nsldS = πR2 sin2 δ ex and

∫
Lslg

nsldS = 2πR sin δ cos δ ex .

This leads to

F adh
3 =

(
−∆PπR2 sin2 δ + 2πRγlg sin δ sin(θ + δ)

)
ex (35)

▷ Classical expression of literature

Note that F adh
3 =

(
−∆PπR2 sin2 δ + 2πRγlg sin δ sin(θ + δ)

)
(−ex) for

the upper sphere.
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Explicit calculation of capillary force for simple geometries

Axisymmetric capillary bridge between two identical cones of
opening angle αc

• Imposed virtual displacement of the upper cone in x-direction.

• Here on the upper cone nsl = cosβ (-ex) where β = π/2− αc with
αc = αl
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Explicit calculation of capillary force for simple geometries

General expression of work of normal adhesion forces

F adh
3 =

∫
ωsl

(
−∆P − γsTr (C )sl

)
nsldω +

∫
Lslg

γlg sin θ n
sldl

=

∫
ωsl

(
−∆ p − γsTrC

sl
)
sinαc dω (−ex) +

∫
γslg

γlg sin θ sinαc dl (−ex)

(36)
Using Young equation and the relation Tr C sl = cosαc

y(x) for a cone, we have

F adh
3 =

∫
ωsl

(
−∆ p +

γlg cos θ cosαc

y(x)

)
d ω +

∫
γslg

γlg sin θ dl

 sinαc (−ex)

(37)
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Explicit calculation of capillary force for simple geometries

After some algebra, we obtain

F adh
3 =

(
−∆ p πy2c + 2πγlgyc cos(θ − αc)

)
± ex (38)

▷ General expression of the normal capillary force for a capillary bridge
between two cones

Fcap = −∆ p πy2c + 2πγlgyc cos(θ − αc) (39)

• For αc = π/2 we recover the expression of Fcap for two parallel plates

• New expression obtained also by direct parametric (explicit) calculation
x 7→ y(x) for axisymmetrical meridian
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Energy minimization with line energy

Back to initial energy minimization problem

γlgδAlg + γsδAsl ± γslgδLslg −∆P δV −WF s
ext/Ωl

= 0 (40)

▷ How to compute δLslg in the general case?

Very general result for any curve (plane or non planar)

δLslg =
[
tslg · v slt

]t1
t2
−
∫
Lslg

k δu · Nslg dl (41)

• k is the curvature of Lslg defined in Frénet basis

• δu is the elementary displacement corresponding to the variation δ
defined on Lslg
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Darboux and frenet Basis on the triple line

• Frenet basis (tslg ,Nslg ,Bsl) at any point p of Lslg

• Bardoux basis (tslg , gslg , nsl) with gslg = −νsl

• Relation between Darboux en Frenet basis

Nslg = cos(α)gslg − sin(α)nsl (42)
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Energy minimization with line energy

General variational principle accounting with line energy∫
ωlg

(−∆P − γlgTr (C )) v lg3 dω +

∫
Lslg

(γlg cos θ + γs±γslgk cos(α)) v
sl
t · νsldl

+

∫
ωsl

(
−∆P − γsTr

(
C sl

))
v sl3 dω +

∫
Lslg

(γlg sin θ ± γslgk sin(α)) v
sl
3 dl

±γslg

[
tslg · v slt

]t1
t2
=

∫
ωsl

f sl3 v sl3 dω +

∫
Lslg

f c3 v
sl
3 dl +

∫
ωsl

f slt .v slt dω

(43)
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Energy minimization with line energy

Associated equilibrium equations

• Young-Laplace equation unchanged

Tr (C ) = −∆P

γlg
(44)

• Generalized Young equation

γlg cos θ + γs ± γslgk cosα = 0 (45)

▷ Supplementary term involving line energy
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Energy minimization with line energy

• Axisymmetrical capillary bridge with plane substrates (k = 1
yc
)

cos θ +
γs
γlg

±
γslg
γlgyc

= 0 (46)

• Axisymmetrical capillary bridge between two spheres of same radius
(k = 1

yc
= 1

Rsinζ and α = −ζ)

cos θ +
γs
γlg

±
γslg
γlgyc

cos ζ = 0 (47)

• Axisymmetrical capillary bridge with two cones of same opening angles
αc (k = 1

yc
and α = pi/2− αc)

cos θ +
γs
γlg

±
γslg
γlgyc

sinαc = 0 (48)

▷ Same expressions obtained by a direct calculation for axisymmetrical
meridian
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Energy minimization with line energy

Associated expression of capillary forces

• To be detailed

• For a simple geometries, line energy does not add a supplementary
contribution! In the general case. . . ?

Thanks for your attention
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