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INTRODUCTION

For cementitious materials:
▶ Use of the electro-(magneto)-mechanics

coupling to do non destructive monitoring
(Andrade et al. 1999; Guihard 2018).

▶ Link between hydration and dielectric
permittivity 𝜀.

▶ Multi-scale models, from the cement paste
to the microstructure.

⋆ CSH1 = products of hydration.
⋆ Their microstructure layout is linked to

dielectric permittivity. (Ait Hamadouche
et al. 2023)
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2 . 022 w/c ( Königsberger et al., 2016 ). This gel densification behavior, together with stoichiometric reaction equations, and 

with the initial alite and belite masses occurring at a ratio of 70:30, gives access to the evolution of the volume fractions of 

the cement paste constituents (clinker - cem, portlandite - CH, solid C-S-H - sCSH, gel pores - gpor, capillary pores - cpor, 

air pores - apor), as functions of the hydration degree ξ and of the water-to-cement mass ratio w / c : ( Königsberger et al., 

2016 ) 

f cp 
cem 

= 

1 − ξ

1 + 3 . 185 w/c 
≥ 0 (52) 

f cp 
CH 

= 

0 . 484 ξ

1 + 3 . 185 w/c 
(53) 

f cp 
sCSH 

= 

1 . 105 ξ

1 + 3 . 185 w/c 
(54) 

f cp 
gpor = 

⎧ ⎨ 

⎩ 

0 ∀ 0 ≤ ξ ≤ ξI-II 
−0 . 799 (w/c) 2 +4 . 824 w/c ξ−0 . 793 ξ 2 

(1+3 . 185 w/c) (0 . 864 w/c+1 . 278 ξ ) 
∀ ξI-II < ξ < ξII-III 

3 . 185 w/c−0 . 755 ξ
1+3 . 185 w/c 

∀ ξII-III ≤ ξ ≤ 1 

(55) 

f cp 
cpor = 

3 . 185 w/c − 0 . 755 ξ

1 + 3 . 185 w/c 
− f cp 

gpor (56) 

f cp 
apor = 

0 . 167 ξ

1 + 3 . 185 w/c 
(57) 

Hydration either stops when all the clinker is consumed, while there is still some water present (then, a hydration degree 

of ξ =1 is reached); or it stops when all the water is consumed, while still some unhydrated clinker is present [then, a 

hydration degree of ξ =4 . 217 w/c is reached Königsberger et al. (2016) ]. We can simultaneously represent both cases through 

introduction of an ultimate hydration degree ξ ult ≥ ξ , obeying 

ξult = min { 4 . 217 w/c ; 1 } . (58) 

However, once regime III is reached, the water necessary for further hydration exclusively comes from the gel water, i.e. 

the water in the nanometer-sized gel pores. Consequently, further hydration slows down significantly, so that the ultimate 

hydration degree may be reached only after a very long time. When representing cement paste as a sequence of three 

representative volume elements (RVEs), see Fig. 3 for a schematic representation and Section 6 for description of the corre- 

sponding mechanics, the remaining RVE-specific volume fractions read as 

f cp 

foam 

= 1 − f cp 
cem 

− f cp 
CH 

− f cp 
apor (59) 

f foam 

cpor = 

f cp 
cpor 

f cp 

f oam 

(60) 

f foam 

gel = 1 − f foam 

cpor (61) 

f gel 
sCSH 

= 

f cp 
sCSH 

f foam 

gel 
f cp 

foam 

(62) 

f gel 
gpor = 1 − f gel 

sCSH 
(63) 

whereby the subscripts refer to the constituents within the RVE, and the superscripts refer to the RVEs. 

Fig. 3. Three-scale representation of cement paste: (a) single millimeter-sized RVE of cement paste: clinker grains, portlandite crystals, and air pores 

embedded in a C-S-H foam matrix; (b) single micrometer-sized RVE of C-S-H foam: C-S-H gel needles intermixed with capillary pores; (c) 50 nm-sized 

RVE of C-S-H gel: solid C-S-H nanoparticles with gel pores in between. Cement paste at different scales (Königsberger et al. 2020)
1Calcium Silicate Hydrate
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INTRODUCTION

Magneto-elastic coupling for metals.
▶ Various types:

⋆ Magnetostrictive materials (Dapino 2004),
⋆ Shape-memory alloys (Lexcellent 2013),
⋆ Multiferroics (Corcolle et al. 2008).

▶ Two effects:
⋆ Magnetic field H → strain 𝜖: magnetostriction,
⋆ Stress 𝜎 → magnetization M: Villari effect.

▶ Multiscale approaches to reach crystal scale.
For polymers (Danas 2024; Bastola and Hossain 2020):

▶ Depending on their range of magnetostrictive
strain:

⋆ mechanically-hard → 10−6 − 10−3,
⋆ mechanically-soft → up to 10−1.
→ Finite strain theory.

Stress

Effect of uniaxial stress on magnetization behavior at
constant stress, for non-oriented silicon-iron alloy

(Hubert 2019)
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VARIATIONAL RELATIVITY (SOURIAU 1958)

Lagrangian and variational principle
▶ Gravitation (g), electromagnetism (AAA), matter (Ψ) (and hyperelasticity) and their coupling are

described by fields defined on a 4-dimensional Universe ℳ .
▶ Sum of 4 Lagrangians

ℒ [g, AAA,Ψ] =

∫︁
L(...) volg

depending on these fields.
⋆ The Lagrangian density L depends on the fields and a finite number of their partial derivatives.

▶ Least action principle:
𝛿ℒ = 0 .

⋆ 𝛿gℒ = 0 → Einstein equation and definition of the stress-energy tensor,
⋆ 𝛿AAAℒ = 0 → Maxwell equations,
⋆ 𝛿Ψℒ = 0 → Conservation of the stress-energy tensor and generalization of equilibrium equations.

Goal: Propose a coupling Lagrangian for non-conducting elastic continuous media.
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WHY GENERAL RELATIVITY ?

Metric tensor g in the arguments of ℒ = ℒ [g, ...]
▶ Definition of the stress-energy tensor in the sense of Hilbert (1915).
▶ In presence of matter, generalization of the 3D stress tensor.

⋆ Symmetric by definition.
⋆ Other definitions in literature (Eringen and Maugin 1990).
→ question around symmetry.

General covariance: invariance under local reparametrizations of the Universe (Einstein 1921).
▶ Our Lagrangian will have to be general covariant.
▶ Used to determine suitable arguments for L (theorem).

→ Work in 4D but later separation of space and time and obtention of 3D equilibrium
equations.
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GRAVITATION IN VACUUM DESCRIBED BY THE METRIC TENSOR

Gravitation phenomena are described using the metric tensor. The Hilbert-Einstein functional is
used as Lagrangian:

ℋ𝒰 [g] =
∫︁

𝒰

1
2𝜅

Rg volg .

▶ Rg denotes the scalar curvature and 𝜅 the Einstein constant.
▶ ℋ satisfies general covariance:

ℋ𝒰 [𝜙*g] = ℋ𝒰 [g]

for any diffeomorphism 𝜙 : 𝒰 → 𝒰 (both open sets of the Universe ℳ ).
⋆ A change of variable under the integral leads to general covariance.
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DEFINITION OF THE EINSTEIN TENSOR

Variations of ℋ with respect to the metric tensor:

dℋ .𝛿g =

∫︁
(Gg)♯ : 𝛿g volg ,

▶ With the Einstein tensor defined as:

(Gg)
♯
= 2𝜅

𝛿ℋ

𝛿g
.

▶ ♯ raises the indices: (Gg)
♯
= g−1 Ggg−1, or (Gg)𝜇𝜈 = g𝜇𝛼g𝛽𝜈Gg

𝛼𝛽 .
▶ The Einstein equation in vacuum is:

𝛿gℋ = 0 → (Gg)
♯
= 0 .
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CONSERVATION OF THE EINSTEIN TENSOR
Conservation of Gg assured by general covariance ℋ [𝜙*g] = ℋ [g] (Noether 1918):
Let us derive the general covariance:

▶ For 𝜙(s) a path of diffeomorphisms, and with 𝜙(0) = Id and �̇�(0) = X with X a vector field.
▶ Then

d
ds

ℋ [𝜙*(s)g] = 0

= dℋ .LX g

=

∫︁
(Gg)♯ : LX g volg

=

∫︁
(Gg)♯ : ∇gX volg

= −
∫︁

divg
(︁
(Gg)♯

)︁
· X♭ volg ,

by integrating by parts, with ♭ lowering the index of X. Finally

divg (︀(Gg)♯
)︀
= 0 .
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FARADAY TENSOR

The electromagnetic field (eee,bbb) is modelled by the Faraday tensor F, a differential 2-form
in 4 dimensions.

Maxwell-Faraday and Maxwell-Thomson (homogenous Maxwell equations) are recasted using
the exterior derivative of F:

dF = 0 .
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FLAT MINKOWSKI SPACETIME

In a flat Minkowski Spacetime: Components of the Faraday tensor
∘ The coupling between the electromagnetic pertubations and the gravitationnal field are assumed

to be neglectible → passive coupling.

∘ Therefore we place ourselves in the flat Minkowski Spacetime, with the canonical coordinates
system (x𝜇), and where the metric tensor can be evaluated as g = 𝜂 = diag(−1, 1, 1, 1).

∘ In the canonical coordinates system (x𝜇) =
(︀
ct, x1, x2, x3

)︀
, the components of F are:

F = (F𝜇𝜈) =

⎛⎜⎜⎝
0 1

c e1 1
c e2 1

c e3

− 1
c e1 0 −b3 b2

− 1
c e2 b3 0 −b1

− 1
c e3 −b2 b1 0

⎞⎟⎟⎠
with c the speed of light.
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FARADAY TENSOR

The electromagnetic field (eee,bbb) is modelled by the Faraday tensor F, a differential 2-form
in 4 dimensions.

Maxwell-Faraday and Maxwell-Thomson (homogenous Maxwell equations) are recasted using
the exterior derivative of F:

dF = 0 .

In a flat Minkowski Spacetime: Maxwell Faraday and Maxwell Thomson equations

dF = 0 ⇐⇒

⎧⎨⎩curleee = −𝜕bbb
𝜕t

divbbb = 0
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FOUR-POTENTIAL

Under topological and regularity assumptions, dF = 0 leads to

F = dAAA

where AAA is a 1-form called the four-potential.
The four-potential is defined up to a gauge transformation AAA → AAA + d𝜒, with 𝜒 a scalar
function.

▶ Since d2 = 0, F = d(A + d𝜒) = dA.
→ F is gauge invariant: it does not change when the gauge changes.
→ Our full Lagrangian will have to be gauge invariant too.

In a flat Minkowski Spacetime: Components of the four-potential
AAA includes the electric scalar potential 𝜑 and the magnetic vector potential aaa:

A = (A𝜇) = (𝜑, a1, a2, a3) .
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ELECTRO-GRAVITATIONAL LAGRANGIAN

Electromagnetism is described by the four-potential AAA.

The electromagnetic Lagrangian is added to the Hilbert-Einstein functional to form ℒ :

ℒ [g,AAA] = ℋ [g] + ℒ EM[g,AAA] =
∫︁

1
2𝜅

Rg volg +

∫︁
− 1

4𝜇0
||F||2g volg .

▶ 𝜇0 denotes the magnetic permeability of vacuum.
▶ ‖F‖2

g = F♯ : F = F𝜇𝜈 F𝜇𝜈 (with F = dAAA).
▶ It is general covariant:

ℒ [𝜙*g, 𝜙*AAA] = ℒ [g,AAA] ,

for any local diffeomorphism of the Universe 𝜙.
▶ As well as gauge invariant:

ℒ [g,AAA + d𝜒] = ℒ [g,AAA] ,

for any function 𝜒.
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VARIATION WITH RESPECT TO THE FOUR-POTENTIAL AAA
The two last Maxwell equations are derived from the variations of AAA.

▶ Indeed 𝛿AAAℒ = 0 yields
𝛿AAAℒ = dℒ .𝛿AAA

=

∫︁
− 1

2𝜇0
F♯ : (𝛿dAAA) volg =

∫︁
− 1

2𝜇0
F♯ : (d𝛿AAA) volg

=

∫︁
− 1
𝜇0

divg F♯ · 𝛿AAA volg .

▶ Such that finally

divg
(︂

1
𝜇0

F♯

)︂
= 0 .

In a flat Minkowski Spacetime: Maxwell-Gauss and Maxwell-Ampere

divg
(︂

1
𝜇0

F♯

)︂
= 0 ⇐⇒

⎧⎨⎩curlbbb =
1
c2

𝜕eee
𝜕t

div eee = 0
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VARIATION WITH RESPECT TO THE METRIC TENSOR g
Variation of the Lagrangian with respect to g leads to

𝛿gℒ = 0 → 𝛿gℋ⏟  ⏞  
1

2𝜅 (G
g)♯

+ 𝛿gℒ
EM⏟  ⏞  

− 1
2 TEM

= 0 ,

▶ with the electromagnetic stress-energy tensor TEM defined as:

TEM = −2
𝛿ℒ EM

𝛿g
.

▶ Along the extremum lines the electromagnetic Einstein equation is

(Gg)
♯
= 𝜅TEM .

▶ The conservation of TEM is obtained using the Einstein equation along the extremum lines:

divg TEM = divg
(︁
(Gg)

♯
)︁
= 0 .
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RECOVERING THE MAXWELL STRESS TENSOR

In a flat Minkowski Spacetime
∘ The 4D stress-energy tensor falls back to

TEM = 𝜂−1 F𝜂−1 F𝜂−1 + ‖F‖2
𝜂𝜂

−1 =
(︀(︀

TEM)︀
𝜇𝜈
)︀
= −

(︂
𝜀EM 1

c S
1
c S −𝜎EM

)︂
,

with
▶ Electromagnetic energy density 𝜀EM = 1

2 (𝜀0||eee||2q + 1
𝜇0
||bbb||2q),

▶ Poynting vector S = 1
𝜇0

eee × bbb,
▶ Maxwell electromagnetic stress tensor 𝜎EM = 𝜀0 eee ⊗ eee + 1

𝜇0
bbb ⊗ bbb − 𝜀EMq−1,

where 𝜀0 is the vacuum permittivity, 𝜀0𝜇0c2 = 1, and q = diag(1, 1, 1) the Euclidean metric tensor.
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MATTER FIELD
In classical 3D mechanics, the deformation p sends the reference configuration onto the
deformed one.

▶ Its linear tangent map F = Tp is the deformation gradient.
In our approach, matter is described through the matter field Ψ (Souriau 1958).

▶ Same idea as p but opposite direction: Ψ : ℳ → V (deformed to reference),
▶ with ℳ the 4-dimensional Universe and V the 3-dimensional space of labels.

Ψ
Vector space V 3D

Curved Universe ℳ 4D
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WORLD LINES
X is a label of a particule.
Ψ−1(X) spans the World line associated to the particule labelled by X: from its past to its future.
All world lines form the body’s World tube 𝒲 = Ψ−1(ℬ).

Ψ

Ψ−1(X) 𝒲 = Ψ−1(ℬ)

V

ℬ
X

m

ℳ
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ELECTRIC CHARGE AND MASS MEASURE

Firstly the electric charge measure 𝜇e and the mass measure 𝜇m are defined on the body.
Integrated over the body, they give the electric charge Q =

∫︀
ℬ 𝜇e and mass m =

∫︀
ℬ 𝜇m.

Ψ

𝒲 = Ψ−1(ℬ)

V
ℬ

ℳ

𝜇e, 𝜇m
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CURRENTS DEFINITION
Their pullback using the matter field are 3-forms in a 4D space.
They can be completed by a four-vector in order to come back to the volume form volg:

iJJJe volg = Ψ*𝜇e , iJJJm volg = Ψ*𝜇m ,

with JJJe the electric current and JJJm the matter current.

Ψ

𝒲 = Ψ−1(ℬ)

V
ℬ

ℳ

𝜇e, 𝜇m

𝜔e= Ψ*𝜇e
𝜔m= Ψ*𝜇m

Pullback operation
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UNIT TIME-LIKE FOUR-VECTOR
For perfect matter, the linear tangent map of the matter field TΨ is of rank 3, so it has a
1-dimensional kernel.
ker(TΨ) is spanned by a unit four-vector UUU.
It is time-like: g(UUU,UUU) = −1.

Ψ

Ψ−1(X) 𝒲 = Ψ−1(ℬ)

V

ℬ
X

m

ℳ

UUU(m)
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CURRENTS AS COLINEAR TO UUU
Definition of electric current JJJe and matter current JJJm as four-vectors colinear to UUU (Carter 1980):

▶ JJJe = 𝜌eUUU with 𝜌e the rest electric charge density,
▶ JJJm = 𝜌rUUU with 𝜌r the rest mass density.

Ψ

Ψ−1(X) 𝒲 = Ψ−1(ℬ)

V

ℬX

m

ℳ

JJJe(m)

JJJm(m)
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CURRENTS - CONSERVATION

Both currents are conserved:

(divg JJJ) volg = d (iJJJ volg) = d (Ψ*𝜇) = Ψ* (d𝜇) = 0 → divg JJJe = 0 , divg JJJm = 0 .

In a flat Minkowski Spacetime: conservation equations
When at rest:

JJJe = (Je
𝜇) = (𝜌e, 0, 0, 0) ,

with 𝜌e the rest electric charge density.

JJJm = (Jm
𝜇) = (𝜌r, 0, 0, 0) ,

with 𝜌r the rest mass density. Their conservation is interpreted respectively as electric charge
conservation and mass conservation.
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VARIATIONAL FORMULATION OF PERFECT ELECTRISED MATTER

The total Lagrangian ℒ is the sum of one Lagrangian per phenomenon:

ℒ [g,Ψ,AAA] = ℋ [g] + ℒ EM[g,AAA] + ℒ Elas[g,Ψ] + ℒ JJJ[g,Ψ,AAA]

with
▶ ℋ for gravitation,
▶ ℒ EM for vacuum electromagnetism,
▶ ℒ Elas for hyperleasticity,
▶ ℒ JJJ for the electro-magneto-mechanics coupling.
→ Each term is taken from literature.

Let us recall the role of each field:
▶ g the metric tensor: gravitational and inertial properties,
▶ Ψ the matter field: description of the matter (inverse of the deformation),
▶ AAA the four-potential: combination of electric and magnetic potentials.
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HYPERELASTIC LAGRANGIAN ℒ ELAS

ℒ Elas[g,Ψ] =

∫︁
LElas

0 (g𝜇𝜈 , 𝜕𝜌 g𝜇𝜈 ,Ψ, 𝜕𝜌Ψ) volg

ℒ Elas general covariant ⇐⇒ its density comes down to a function of Ψ and K (Souriau 1958):

LElas
0 (g,Ψ, 𝜕Ψ) = LElas(Ψ,K) .

▶ K the conformation, defined as
K = TΨg−1 (TΨ)

⋆
.

→ Relativistic inverse of the right Cauchy-Green tensor C = FtF (with F the deformation gradient)
(Souriau 1958; Maugin 1978).

▶ For example ℒ Elas[g,Ψ] =
∫︀ (︀

𝜌r(Ψ,K)c2 + E (Ψ,K)
)︀
volg, with E an internal energy density.

Mina Chapon (LMPS) Electro-magneto-mechanics coupling June 25, 2025 31 / 45



COUPLING LAGRANGIAN ℒ JJJ

ℒ JJJ[g,Ψ,AAA] =
∫︁

−AAA · JJJe volg .

It is general covariant: ℒ JJJ[𝜙*g, 𝜙*Ψ, 𝜙*AAA] = ℒ JJJ[g,Ψ,AAA].

The Lagrangian is gauge invariant only up to a boundary term:

ℒ [g,Ψ,AAA + d𝜒]− ℒ [g,Ψ,AAA] =
∫︁

𝒰
divg (𝜒JJJe) volg =

∫︁
𝜕𝒰

𝜒JJJe · nnn♭ innn volg ,

and therefore it is called weakly gauge invariant.
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VARIATION WITH RESPECT TO THE FOUR-POTENTIAL AAA

Variation of the Lagrangian with respect to AAA are written

𝛿AAAℒ =

∫︁
𝒰

(︂
1
𝜇0

divg
(︁

F♯
)︁
− JJJe

)︂
· 𝛿AAA volg ,

and therefore one has

divg
(︂

1
𝜇0

F♯

)︂
= JJJe .

In a flat Minkowski Spacetime: Maxwell-Gauss and Maxwell-Ampere equations

divg
(︂

1
𝜇0

F♯

)︂
= JJJe ⇐⇒

⎧⎪⎨⎪⎩
curlbbb =

1
c2

𝜕eee
𝜕t

div eee =
1
𝜀0
𝜌e
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VARIATION WITH RESPECT TO THE METRIC TENSOR g

Variation of the Lagrangian with respect to g, 𝛿gℒ = 0, leads to

(Gg)♯ = 𝜅T with T = TEM + TElas + TJJJ = −2
𝛿ℒ EM

𝛿g
−2

𝛿ℒ Elas

𝛿g
−2

𝛿ℒ JJJ

𝛿g
.

▶ TJJJ = 0 since ℒ JJJ[g,Ψ,AAA] =
∫︀
−AAA · JJJe volg =

∫︀
−AAA ∧ ⋆ JJJe, with ⋆ the Hodge star operator.

▶ The remaining part is expressed as

T =
1
𝜇0

F♯Fg−1 +
1

4𝜇0
‖F‖2

gg−1⏟  ⏞  
Electromagnetic part

+ 𝜌r
(︀
c2 + e

)︀
UUU ⊗UUU⏟  ⏞  

Hyperelastic energetic part

+ 2𝜌rg−1(TΨ)⋆
𝜕e
𝜕K

(TΨ)g−1⏟  ⏞  
Relativistic 4D stress tensor

,

where e = E/𝜌r is a specific internal energy density (Kolev and Desmorat 2023).
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CONSERVATION OF THE STRESS-ENERGY TENSOR AND LORENTZ FORCE

Let us get back to
T = TEM + TElas .

Conservation of the Einstein tensor yields

divg T = 0 = divg TEM + divg TElas

for T solution of the Einstein equation (Gg)♯ = 𝜅T.

The Lorentz force is defined as fff L = g−1F · JJJe.

For T solution of the Einstein equation, generalization of the equilibrium equations:

divg TEM = fff L = −divg TElas .
In a flat Minkowski Spacetime: Equilibrium

div𝜎 + fff = 0
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MATTER REST FRAME

The rest matter frame ℛrest is a frame where matter is at rest.
▶ Frame of the tangent space to the Universe Tmℳ .
▶ Defined for each m ∈ ℳ :

ℛrest = (UUU,EEE1,EEE2,EEE3) ,

▶ Time-like part: UUU,
▶ Space-like part: EEE1,EEE2 and EEE3 form a basis of the orthogonal to UUU (so UUU(EEEI) = 0 for I = 1, 2, 3).

About the matter rest frame - Relativistic gradient hyperelasticity work
∘ Developed with L. Darondeau, R. Desmorat, C. Ecker and B. Kolev.

∘ Presented at the IRCAM meeting, November 2024.

∘ On HAL : (Chapon et al. 2024, hal-04792877).
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THEOREM: ARGUMENTS FOR THE COUPLING LAGRANGIAN DENSITY
The coupling Lagrangian

ℒ EMM[g,Ψ,AAA] =
∫︁

LEMM
0

(︀
g𝜇𝜈 , 𝜕𝜌g𝜇𝜈 ,ΨI, 𝜕𝜌Ψ

I,A𝜇, 𝜕𝜌A𝜇

)︀
volg

is general covariant if and only if its density can be written as

LEMM
0 = LEMM

1

(︁
Ψ, [g−1]ℛrest , [AAA

♯]ℛrest , [(∇gAAA)♯]ℛrest

)︁
.

[T]ℛrest are the components of T in the rest frame ℛrest = (UUU,EEE1,EEE2,EEE3).

▶ For example, [g−1]ℛrest =

(︂
−1 0
0 K

)︂
, with K the relativistic right Cauchy-Green tensor C = FtF.

One can check how the previous Lagrangian fits this result:

ℒ J[g,Ψ,AAA] =
∫︁

−AAA · JJJe volg =

∫︁
−𝜌e AAA ·UUU volg .
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ABOUT GAUGE INVARIANCE

ℒ JJJ[g,Ψ,AAA] =
∫︀
−AAA · JJJe volg is not strongly gauge invariant.

The Lagrangian is strongly gauge invariant if and only if its density is written as

LEMM
0 = LEMM

2

(︁
Ψ, [g−1]ℛrest , [F

♯]ℛrest

)︁
,

with F = dAAA.

→ Adds a new term to ℒ : ℒ = ℋ + ℒ EM + ℒ Elas + ℒ J + ℒ EMM.
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COMPONENTS OF THE FARADAY TENSOR IN THE MATTER REST FRAME

Let us name the two main components of the Faraday tensor:
▶ 𝛼I = F♯

(︀
UUU♭,EEEI

)︀
,

▶ 𝛽IJ = F♯
(︀
EEEI ,EEEJ

)︀
.

Then, the coupling Lagrangian is general covariant and gauge invariant if and only if its density
comes down to

LEMM
2 = LEMM

2 (Ψ,K,𝛼,𝛽) .

And this way, if we consider LEMM
2 as an internal energy density EEMM, the whole Lagrangian

becomes

ℒ [g,AAA,Ψ] =

∫︁
1

2𝜅
Rg volg−

∫︁
1

4𝜇0
||F||2g volg+

∫︁ (︁
𝜌rc2 + E (Ψ,K)

)︁
volg+

∫︁ (︁
EEMM (Ψ,K,𝛼,𝛽)−AAA · JJJe

)︁
volg .
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CONCLUSION

What has been done so far ?
▶ Formulation of the electro-magneto-mechanics coupling in Variational Relativity.
▶ Proper definition of the 4D variables of the Lagrangian density.
▶ Theorem to obtain the expression of general covariant coupling Lagrangians that depend on first

partial derivative of fields.
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Guihard, Vincent (2018). “Homogénéisation de grandeurs électromagnétiques dans les milieux cimentaires pour le calcul de teneur
en eau”. PhD thesis. Paul Sabatier, Toulouse.

Ait Hamadouche, Sofiane et al. (July 2023). “Dielectric Permittivity of C-S-H”. In: Cement and Concrete Research 169, p. 107178.
ISSN: 00088846. DOI: 10.1016/j.cemconres.2023.107178. (Visited on 05/09/2024).
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