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Review of the Yamabe problem

De�nitions

Let (M, g) be a compact Riemannian manifold without boundary of dimension n ≥ 3.

We set N :=
2n

n − 2
and is called the critical exponent.

N = 2⋆ is the critical dual exponent of 2 in the Sobolev embedding of W 1,2 = H1 into Lq.
(Rellich�Kondrachov theorem )

cn :=
4(n − 1)
n − 2

= N + 2

Sn is the standard sphere Sn in Rn+1

The conformal classe of g is [g ] :=
{
g̃ := uN−2g , u ∈ C∞(M), u > 0

}
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Review of the Yamabe problem

In a local coordinate system, if we denote the componants of the Reimann tensor by Rm
ijl then the

components of the Riemann Christo�el curvature are de�ned by

Rijkl = gkmR
m
ijl

Then, the Ricci curvature tensor Ric is the contraction of Riem, i.e. Rij = Rk
ikj = g klRlikj .

The scalar curvature is the contraction of Ric, i.e. Sg = g ijRij .
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Review of the Yamabe problem

Conformal rescaling

Recall from the previous slide that N=
2n

n − 2
and Sg denotes the scalar curvature.

If g̃ = uN−2g then one has dvg̃ = uNdvg

and its scalar curvature satis�es
Sg̃u

N−1 = [(N + 2)∆g + Sg ]︸ ︷︷ ︸
Lg

u

So one can infer that g̃ := uN−2g has constant scalar curvature λ if and only if u satis�es the Yamabe
equation

Lg (u) = λuN−1. (1.1)
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Review of the Yamabe problem

The variational formulation of the problem

Finding a metric g̃ in [g ] with constant scalar
curvature.

⇐⇒
Finding a solution for the PDE

cn∆gu + Sgu = λuN−1 (1.2)

for some constant λ.

Yamabe showed that (1.2) is the Euler-Lagrange equation of the functional

Y (u) =

∫
M
cn|∇u|2 + Sgu

2 dvg(∫
M
|u|N dvg

) 2
N

.

This observation motivates the de�nition and study of the following quantity, known as the Yamabe constant or
invariant:

µ(M, g) = inf
u ̸=0,u∈C∞

+ (M)
Y (u), (1.3)

Note that |µ(M)| < ∞ by the Sobolev inequality, and µ(M) is conformally invariant. In fact, by (1.3), it can be
rewritten as

µ(M, g) = inf

{ ∫
M
Sg̃dvg̃

volg̃ (M)2/N
: g̃ conformal to g

}

(EIGSI LA) Yamabe problem and its �rst gap invariant La Rochelle, Du 24 au 27 juin 2025 5 / 21



Review of the Yamabe problem

The variational formulation of the problem

Finding a metric g̃ in [g ] with constant scalar
curvature.

⇐⇒
Finding a solution for the PDE

cn∆gu + Sgu = λuN−1 (1.2)

for some constant λ.

Yamabe showed that (1.2) is the Euler-Lagrange equation of the functional

Y (u) =

∫
M
cn|∇u|2 + Sgu

2 dvg(∫
M
|u|N dvg

) 2
N

.

This observation motivates the de�nition and study of the following quantity, known as the Yamabe constant or
invariant:

µ(M, g) = inf
u ̸=0,u∈C∞

+ (M)
Y (u), (1.3)

Note that |µ(M)| < ∞ by the Sobolev inequality, and µ(M) is conformally invariant. In fact, by (1.3), it can be
rewritten as

µ(M, g) = inf

{ ∫
M
Sg̃dvg̃

volg̃ (M)2/N
: g̃ conformal to g

}

(EIGSI LA) Yamabe problem and its �rst gap invariant La Rochelle, Du 24 au 27 juin 2025 5 / 21



Review of the Yamabe problem

The variational formulation of the problem

Finding a metric g̃ in [g ] with constant scalar
curvature.

⇐⇒
Finding a solution for the PDE

cn∆gu + Sgu = λuN−1 (1.2)

for some constant λ.

Yamabe showed that (1.2) is the Euler-Lagrange equation of the functional

Y (u) =

∫
M
cn|∇u|2 + Sgu

2 dvg(∫
M
|u|N dvg

) 2
N

.

This observation motivates the de�nition and study of the following quantity, known as the Yamabe constant or
invariant:

µ(M, g) = inf
u ̸=0,u∈C∞

+ (M)
Y (u), (1.3)

Note that |µ(M)| < ∞ by the Sobolev inequality, and µ(M) is conformally invariant. In fact, by (1.3), it can be
rewritten as

µ(M, g) = inf

{ ∫
M
Sg̃dvg̃

volg̃ (M)2/N
: g̃ conformal to g

}
(EIGSI LA) Yamabe problem and its �rst gap invariant La Rochelle, Du 24 au 27 juin 2025 5 / 21



Review of the Yamabe problem

History of Yamabe problem

1960 1968 1976 1984

1950s: Yamabe formulated the problem and attempted to prove it.

1968: Trudinger discovred a mistake and corrected the proof in case the scalar curvature is nonpositive.
1976: Aubin proved when the scalar curvature is positive and for n>6 and M is not conformaly �at.
1984: Schoen proved the remaining cases.

Hidehiko Yamabe
(1923 - 1960)

Neil Trudinger
(1942)

Thierry Aubin
(1942 � 2009)

Richard Schoen
(1950)

(EIGSI LA) Yamabe problem and its �rst gap invariant La Rochelle, Du 24 au 27 juin 2025 6 / 21



Review of the Yamabe problem

History of Yamabe problem

1960 1968 1976 1984

1950s: Yamabe formulated the problem and attempted to prove it.
1968: Trudinger discovred a mistake and corrected the proof in case the scalar curvature is nonpositive.

1976: Aubin proved when the scalar curvature is positive and for n>6 and M is not conformaly �at.
1984: Schoen proved the remaining cases.

Hidehiko Yamabe
(1923 - 1960)

Neil Trudinger
(1942)

Thierry Aubin
(1942 � 2009)

Richard Schoen
(1950)

(EIGSI LA) Yamabe problem and its �rst gap invariant La Rochelle, Du 24 au 27 juin 2025 6 / 21



Review of the Yamabe problem

History of Yamabe problem

1960 1968 1976 1984

1950s: Yamabe formulated the problem and attempted to prove it.
1968: Trudinger discovred a mistake and corrected the proof in case the scalar curvature is nonpositive.
1976: Aubin proved when the scalar curvature is positive and for n>6 and M is not conformaly �at.

1984: Schoen proved the remaining cases.

Hidehiko Yamabe
(1923 - 1960)

Neil Trudinger
(1942)

Thierry Aubin
(1942 � 2009)

Richard Schoen
(1950)

(EIGSI LA) Yamabe problem and its �rst gap invariant La Rochelle, Du 24 au 27 juin 2025 6 / 21



Review of the Yamabe problem

History of Yamabe problem

1960 1968 1976 1984

1950s: Yamabe formulated the problem and attempted to prove it.
1968: Trudinger discovred a mistake and corrected the proof in case the scalar curvature is nonpositive.
1976: Aubin proved when the scalar curvature is positive and for n>6 and M is not conformaly �at.
1984: Schoen proved the remaining cases.

Hidehiko Yamabe
(1923 - 1960)

Neil Trudinger
(1942)

Thierry Aubin
(1942 � 2009)

Richard Schoen
(1950)

(EIGSI LA) Yamabe problem and its �rst gap invariant La Rochelle, Du 24 au 27 juin 2025 6 / 21



Review of the Yamabe problem

Resolution of Yamabe Probleme

Theorem 1.1 (Yamabe, Trudinger, Aubin).

Suppose µ(M) < µ (Sn). Then there exists a minimizer of µ(M) and hence a solution of the Yamabe problem on

M.

Theorem 1.2 (Aubin).

If M has dimension n ≥ 6 and is not locally conformally �at at some point p ∈ M, then µ(M) < µ (Sn).

A Riemannian manifold (M, g) is said to be locally conformally �at at a point p ∈ M if there exists a conformal
change of metric for which the curvature tensor vanishes in a neighborhood of p.

Theorem 1.3 (Schoen).

If M has dimension 3,4 , or 5 or if M is locally conformally �at at some point p ∈ M, then µ(M) < µ (Sn) unless
M is conformal to Sn.

Analytically speaking, the direct method falls short because the embedding of W 1,2(M) into LN(M) is not
compact.
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Review of the Yamabe problem

µ(M) = inf
u ̸=0,u∈C∞

+ (M)

∫
M cn|∇u|2 + Sgu2 dvg(∫

M |u|N dvg
) 2

N

.

Theorem 1.1

Suppose µ(M) < µ (Sn). Then there exists a
minimizer of µ(M) and hence a solution of the
Yamabe problem on M.

Theorem 1.1 represents the analytic portion of the problem. The idea
behind Theorem 1.1 is the following:

A minimizing sequence for µ(M) must either converge in W 1,2(M) to
a minimizer, or else it must concentrate at a point p ∈ M. A
concentration (or "bubble") contributes µ (Sn) to the energy, so if
µ(M) < µ (Sn), this possibility cannot occur.
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Review of the Yamabe problem

Theorem 1.2

In M has dimension n ≥ 6 and is not locally conformally
�at at some point p ∈ M, then µ(M) < µ (Sn).

Theorem 1.3

If M has dimension 3,4 , or 5 or if M is locally
conformally �at at some point p ∈ M, then
µ(M) < µ (Sn) unless M is conformal to Sn.

Theorems 1.2 and 1.3 represent the contributions on the
geometry side of the problem.

To show that an in�mum µ(M) is strictly less than a
certain number µ (Sn), one must construct a test
function u with Y (u) < µ(M). For both theorems, the
test functions involve suitable modi�cations of minimizers
for µ (Sn), though we crucially must �rst choose the right
conformal representative and coordinate system.
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From First to Higher Yamabe Invariants

The Yamabe invariant µ(M, g) is associated with the �rst eigenvalue of the conformal Laplacian Lg :

µ(M, g) = inf
g̃∈[g ]

λ1(g̃)Vol(M, g̃)
2
n .

To �nd nodal solutions (solutions that change sign) to the Yamabe equation, one can study higher
eigenvalues.

Ammann and Humbert studied the second Yamabe invariant, µ2(M, g), de�ned by taking the in�mum over
the second eigenvalue.

To ensure the existence of minimizers for µ2, the class of metrics is extended to "generalized metrics,"
where g̃ = uN−2g and u is no longer necessarily positive and smooth, but

u ∈ LN
+(M) :=

{
f ∈ LN(M), f ≥ 0, and f ̸≡ 0

}
.
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From First to Higher Yamabe Invariants

Transition from the second invariant to the gap invariant

Theorem 2.1 (A.H).

Let (M, g) be an n-dimensional compact Riemannian manifold with µ1(M, g) ≥ 0. Then,

µ2(M, g) ≤ (µ1(M, g)
n
2 + µ1(Sn)

n
2 )

2
n . (2.1)

Furthermore, if the inequality is strict, the in�mum in µ2(M, g) is achieved.

Motivation for our work

We want to quantify the "jump" when passing from the �rst to the second Yamabe invariant. We introduce a
new invariant to study the gap between λ1 and λ2 in the conformal class.

(EIGSI LA) Yamabe problem and its �rst gap invariant La Rochelle, Du 24 au 27 juin 2025 11 / 21



From First to Higher Yamabe Invariants

Transition from the second invariant to the gap invariant

Theorem 2.1 (A.H).

Let (M, g) be an n-dimensional compact Riemannian manifold with µ1(M, g) ≥ 0. Then,

µ2(M, g) ≤ (µ1(M, g)
n
2 + µ1(Sn)

n
2 )

2
n . (2.1)

Furthermore, if the inequality is strict, the in�mum in µ2(M, g) is achieved.

Motivation for our work

We want to quantify the "jump" when passing from the �rst to the second Yamabe invariant. We introduce a
new invariant to study the gap between λ1 and λ2 in the conformal class.
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The Yamabe Gap Invariant

De�ning the Yamabe Gap Invariant

We introduce a new quantity to capture the relationship between the �rst and second eigenvalues.

De�nition 3.1 (The Yamabe Gap Invariant).

The �rst Yamabe gap invariant, denoted α(M, g), is de�ned by:

α(M, g) := inf
g̃∈[g ]

√
λ1(g̃)λ2(g̃)Vol(M, g̃)

2
n

where [g ] is the generalized conformal class of g .

This invariant measures the smallest possible geometric mean of the �rst two eigenvalues of the conformal
Laplacian within the conformal class.

Understanding this gap provides new insights into the stability of conformal metrics and their scalar
curvature properties.
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Main Results

Main Theorem 1: An Upper Bound for the Gap Invariant

Similar to Aubin's bound for µ1, we establish a universal upper bound for α(M, g).

Theorem 4.1.

Let (M, g) be a compact Riemannian manifold with µ1(M, g) ≥ 0. Then,

α(M, g) ≤
(
µ(M, g) · 2

2
n · µ(Sn)

) 1
2

Proof Idea: Our invariant in an explicit way has this form α(M, g) := inf
u∈LN+(M)

V∈Gru2(H
1(M))

inf
v∈V\{0}

F (u, v)
1
2 sup

v∈V\{0}
F (u, v)

1
2 .

with F (u, v) =

∫
M cn|∇v |2 + Sgv2 dvg∫

M v2uN−2 dvg

(∫
M
uN dvg

) 2
n

.

We use a carefully constructed test function uϵ = v + vϵ, where:

v is a smooth positive minimizer for the Yamabe functional Y on M.
vϵ is a function that concentrates at a point x0 ∈ M and whose energy approaches µ(Sn) as ϵ → 0.

This test function models the manifold "splitting o�" a sphere. By evaluating the functional with this
speci�c choice, we derive the inequality. The value is attained at the data (uϵ, v , vϵ).
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Main Results

Main Theorem 2: Existence of a Minimizer

The upper bound is not just a curiosity; it provides a condition for the existence of a minimizer.

Theorem 4.2.

Assume that the inequality is strict:

α(M, g) <
(
µ(M, g) · 2

2
n · µ(Sn)

) 1
2

Then the in�mum in the de�nition of α(M, g) is achieved by a generalized metric g̃ = uN−2g .

Signi�cance: This is a compactness result. The strict inequality prevents a minimizing sequence from "losing
energy" through concentration phenomena (or "bubbling"), guaranteeing that a limit exists.
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Main Results

Proof Strategy for Theorem 2

The proof is by contradiction, using the concentration-compactness method.

1 Subcritical Approximation: We take a sequence of minimizers (uq, vq,wq) for a sub-critical problem αq

where the exponent q < N. Minimizers are known to exist in this setting.

2 Analyze the Limit as q → N: We study the weak limit (u, v ,w) of this sequence. The key question is
whether the convergence is strong.

3 The Dichotomy: If convergence is not strong, the "energy" of the sequence must concentrate at a �nite set
of points, A. This is the "bubbling" phenomenon.

4 The Goal: Show that any form of concentration leads to an energy identity that contradicts the strict
inequality assumption. This leaves strong convergence as the only possibility.

The proof proceeds by analyzing all possible behaviors of the weak limit (u, v ,w).
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Main Results

Proof Analysis: The Four Cases

Case 1: uv ̸≡ 0 and uw ̸≡ 0 (The "Good" Case)

The weak limit is non-trivial and well-behaved.

We prove that the limiting eigenvalues are distinct (µ̂1 < µ̂2), which implies the limiting functions v and w
are orthogonal in the correct sense.

This limit (u, v ,w) directly achieves the in�mum, so α(M, g) is attained.

Cases 2 & 3: One limit is zero (e.g., v ≡ 0, w ̸≡ 0)

The energy of the sequence vq is entirely lost to concentration at points in the set Av .

We use a sharp Sobolev inequality to show the energy of this "bubble" is related to µ(Sn).

By balancing the energy of the bubble with the energy of the non-vanishing part (w), we derive a
contradiction with the strict inequality assumption.
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Main Results

Proof Analysis: The Critical Case

Case 4: uv ≡ 0 and uw ≡ 0 (The "Full Blow-up" Case)

This is the most complex scenario, where all energy from both sequences vq and wq concentrates. The proof
proceeds in steps:

1 Uniqueness of Concentration Point: We �rst prove that if blow-up occurs, it must be at a single, common
point for both sequences (Av = Aw = {x0}). Multiple concentration points would violate the strict
inequality.

2 Blow-up Analysis: We perform a rescaling of the metric and functions around the concentration point x0.
This "zooms in" on the bubble and transforms the problem on the manifold M into a problem on �at
Euclidean space Rn.

3 Analysis of the Bubble: The rescaled sequence converges to a "bubble solution" on Rn.
If this bubble solution is non-trivial, it can be mapped to a solution on the sphere Sn, which means α(M, g) is
attained.
If the bubble solution degenerates, we again derive a contradiction using energy-splitting arguments similar to
Cases 2 & 3.
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Perspectives and Future Work

Completing the Picture: The Equality Case

Our work establishes the fundamental properties of α(M, g), but one crucial question remains, analogous to the
�nal step in the classical Yamabe problem.

The Next Major Question

Which manifolds (M, g) are responsible for the equality case? That is, for which manifolds does

α(M, g) =
(
µ(M, g) · 2

2
n · µ(Sn)

) 1
2

hold?

In the classical Yamabe problem, equality µ(M, g) = µ(Sn) holds if and only if (M, g) is conformally
equivalent to the sphere. This is a profound geometric rigidity result.

We expect a similar rigidity result for the Yamabe gap invariant.
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Perspectives and Future Work

A Path to Proving Strict Inequality

A key step is to show that "most" manifolds satisfy the strict inequality. The classical approach provides a
template.

Classical Result (Aubin, Schoen)

For a test function u concentrating at a point p, the Yamabe functional has an expansion:

Y (u) ≈ µ(Sn)− C(n)|W (p)|2α4 + . . . (for n ≥ 6)

where W is the Weyl tensor.

If the manifold is not locally conformally �at (|W (p)| > 0) and n ≥ 6, this expansion proves that
µ(M, g) < µ(Sn).

Our Goal: A similar analysis should be possible for our gap functional G(u,V ).

The presence of the Weyl tensor should again "lower the energy" away from the maximum possible value,
proving the strict inequality for α(M, g) on a large class of manifolds.
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Perspectives and Future Work

Conjecture and Research Direction

Based on the structure of the problem, we propose the following conjecture.

Conjecture

The equality α(M, g) =
(
µ(M, g) · 2

2
n · µ(Sn)

) 1
2
holds if and only if (M, g) is conformally equivalent to the

standard sphere Sn.

Roadmap for the proof:

The "if" direction involves calculating α(Sn) directly.

The "only if" direction is much deeper. It would require analyzing a minimizing sequence for a manifold
assumed to satisfy the equality.

This rigidity often requires powerful tools from geometric analysis, such as the Positive Mass Theorem, to
show that the underlying manifold must be conformally �at and, ultimately, the sphere.

Proving this would provide a complete geometric understanding of the Yamabe gap invariant.
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Perspectives and Future Work
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Appendix

Omitted formalism : Generalized metrics

Assume now that the Yamabe constant µ(M, g) ≥ 0. It is easy to check that

µ(M, g) = inf
g̃∈[g ]

λ1(g̃)Vol(M, g̃)
2
n .

We can then naturally extend this de�nition as follows. Let k ∈ N∗. Then, the k th Yamabe constant is de�ned by

µk(M, g) = inf
g̃∈[g ]

λk(g̃)Vol(M, g̃)
2
n .

To address achievability for k = 2, i.e., the existence of minimizers for µ2(M, g), the authors in [A.H]1 extended
the conformal class [g ] to what is referred to as the class of generalized metrics conformal to g . This extension
was necessary because otherwise, there would be no minimizers once M is connected

1
B. Ammann, E. Humbert The second Yamabe Invariant. Journal of functional analysis, 235(2), 377-412.

(EIGSI LA) Yamabe problem and its �rst gap invariant La Rochelle, Du 24 au 27 juin 2025 21 / 21



Appendix

Omitted formalism : Generalized metrics

Assume now that the Yamabe constant µ(M, g) ≥ 0. It is easy to check that

µ(M, g) = inf
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λ1(g̃)Vol(M, g̃)
2
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We can then naturally extend this de�nition as follows. Let k ∈ N∗. Then, the k th Yamabe constant is de�ned by
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Appendix

A generalized metric is a �metric� of the form
g̃ = uN−2g

u is no longer necessarily positive and smooth, but u ∈ LN
+(M) :=

{
f ∈ LN(M), f ≥ 0, and f ̸≡ 0

}
.

Then, it is shown in [A.H] that a coherent generalization can be given as follows.

λk(g̃) = inf
V∈Gru

k
(H2

1 (M))
sup

v∈V\{0}

∫
M
vLgv dvg∫

M
v2uN−2 dvg

,

Vol(M, g̃) =

∫
M

uN dvg .

On the other hand, it is convenient to rewrite the functional F with some additional variable v ∈ V . For given
functions u and v , we de�ne the following functional:

F (u, v) =

∫
M
cn|∇v |2 + Sgv

2 dvg∫
M
v2uN−2 dvg

(∫
M

uN dvg

) 2
n

. (6.1)

Based on the above, we arrive at the following re�ned de�nition of the k-th Yamabe invariant:

De�nition 6.1.

Let k ∈ N∗. Then, the k th Yamabe invariant for a generalized metric g̃ = uN−2g is de�ned by

µk(M, g) = inf
u∈LN+(M)

V∈Gru
k
(H21 (M))

sup
v∈V\{0}

F (u, v). (6.2)
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Appendix

De�nition 6.2 (�rst Yamabe gap invariant).

The �rst Yamabe gap invariant is de�ned as follows:

α(M, g) := inf
u∈LN+(M)

V∈Gru2(H
1(M))

G(u,V ), (6.3)

where the quantity G(u,V ) is given by:

G(u,V ) =

√√√√( inf
v∈V\{0}

F (u, v)

)(
sup

v∈V\{0}
F (u, v)

)
. (6.4)

Notice that the �rst Yamabe gap invariant can be alternatively expressed as follows:

α(M, g) = inf
g̃∈[g ]

√
λ1(g̃)λ2(g̃)Vol(M, g̃)

2
n .
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Appendix

Anatomy of the "Bubble" Test Function

The "bubble" functions are explicit solutions to the Yamabe equation on the sphere.

The Yamabe Equation on Sn

The equation for a conformal factor u on (Sn, g0) that yields a metric of constant scalar curvature is:

4(n − 1)
n − 2

∆g0u + n(n − 1)u = µ(Sn)u
n+2
n−2

Via stereographic projection, this is equivalent to −∆U = U
n+2
n−2 on Rn.

The solutions are the well-known "standard bubbles":

Uδ,y (x) := δ−
n−2
2

(
αn

1+ | x−y
δ

|2

) n−2
2

where y is the center and δ controls the concentration.

Our test function vϵ is a localized version of these functions transplanted onto the manifold M.
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Appendix

Subcritical problem

Let us de�ne the sub-critical functional associated to F Let q ∈]2,N] and for u, v ∈ Lq(M), u ≥ 0, v ∈ H1(M)
such that uv ̸= 0, consider the functional

Fq(u, v) =

∫
M
cn|dv |2 + Sgv

2dvg∫
M
v2uq−2dvg

(∫
M

uqdvg

) q−2
q

.

For such u, let Ωu be the set of 2-dimensional subspaces V of H1(M) such that uV is still of dimension 2. For
any V ∈ Ωu we de�ne

Gq(u,V ) =

√(
inf
v∈V

Fq(u, v)

)(
sup
v∈V

Fq(u, v)

)
.

Finally let us de�ne the sub-critical Yamabe gap invariant

αq(M, g) = inf
u

inf
V∈Ωu

Gq(u,V ).

lim
q→N

Gq = GN = G and lim
q→N

αq = αN = α
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Appendix

Sg0 = n(n − 1)

⇓

−∆g0u +
n(n − 2)

4
u = u

n+2
n−2 , u > 0, in (Sn, g0)

which is equivalent (via the stereographic projection) to

−∆U = U
n+2
n−2 ,U > 0, in Rn

The solutions are the standard bubbles

Uδ,y (x) := δ−
n−2
2 U

(x − y

δ

)
, x , y ∈ Rn, δ > 0,

U(x) := αn
1

(1+ |x |2)
n−2
2

y is the center of the bubble

δ is the weight of the bubble
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Appendix

Y (u) ≤


µ (Sn)− c|W (p)|2α4 + O

(
αn−2

)
if n < 6

µ (Sn)− c|W (p)|2α4 log(1/α) + O
(
αn−2

)
if n = 6

µ (Sn) + O
(
αn−2

)
if n > 6

In particular, since |W (p)| > 0 and n ≥ 6, we see that

µ(M) ≤ Y (u) < µ (Sn) .
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