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Structures de Dirac en Physique et Mécanique

• Géométrie différentielle

- symplectique, Poisson, Dirac
- (un peu de) différentielle graduée

• Mécanique

- dissipation / interaction (⊃ SHP)
- contraintes
- approche variationnelle

• Physique

- symmetries des fonctionnelles
- jaugeage (et Q-cohomologie equivariante)
- sigma-modèles





Poisson manifold → (T ∗[1]M ,Qπ)

Consider a Poisson manifold M,
{·, ·} : C∞(M)× C∞(M)→ C∞(M).

A Poisson bracket can be written as {f , g} = π(df , dg), where
π ∈ Γ(Λ2TM) is a bivector field. πij(x) = {x i , x j}.

Consider T ∗[1]M (coords. x i (0), pi (1)), with a degree 1 vector
field

Qπ =

{
1

2
πijpipj , ·

}
T∗M

= πij(x)pj
∂

∂x i
− 1

2

∂πjk

∂x i
pjpk

∂

∂pi

Jacobi identity:

{f , {g , h}}+ {g , {h, f }}+ {h, {f , g}} = 0
⇔ [π, π]SN = 0 ⇔ Q2

π = 0



Twisted Poisson structure

Consider a bivector field π ∈ Γ(Λ2TM).
It defines an antisymmetric bracket {f , g} = π(df ,dg).
Let H ∈ Ω3

cl(M).
A couple (π,H) defines a twisted Poisson structure if it satisfies
the twisted Jacobi identity:

[π, π]SN =< H, π ⊗ π ⊗ π >

Consider T ∗[1]M (coords. x i (0), pi (1)), with a degree 1 vector
field

Qπ,H = πij(x)pj
∂

∂x i
− 1

2
C jk
i (x)pjpk

∂

∂pi
,

where C jk
i = ∂πjk

∂x i
+ Hij ′k ′π

jj ′πkk
′
.

Twisted Jacobi identity ⇔ Q2
π,H = 0



Courant algebroids, Dirac structures

Let us construct on E = TM ⊕ T ∗M a twisted exact Courant
algebroid structure, governed by a closed 3-form H on M.
The symmetric pairing: < v ⊕ η, v ′ ⊕ η′ >= η(v ′) + η′(v),
the anchor: ρ(v ⊕ η) = v
the H-twisted bracket (Dorfman):

[v ⊕ η, v ′ ⊕ η′] = [v , v ′]Lie ⊕ (Lvη′ − ιv ′dη + ιv ιv ′H).

A Dirac structure D is a maximally isotropic (Lagrangian)
subbundle of an exact Courant algebroid E closed with respect to
the bracket (1).

Trivial example: D = TM for H = 0.



Courant algebroids, Dirac structures

A Courant algebroid ( Liu, Weinstein, and Xu; Courant ) is a
vector bundle E → M equipped with the following operations: a
symmetric non-degenerate pairing < ·, · > on E , an R-bilinear
bracket [·, ·] : Γ(E )⊗ Γ(E )→ Γ(E ) on sections of E , and an anchor
ρ which is a bundle map ρ : E → TM, satisfying the axioms:

ρ(ϕ) < ψ,ψ >= 2 < [ϕ,ψ], ψ >,

[ϕ, [ψ1, ψ2]] = [[ϕ,ψ1], ψ2] + [ψ1, [ϕ,ψ2]],

2 [ϕ,ϕ] = ρ∗(d < ϕ,ϕ >),

where ρ∗ : T ∗M → E (identifying E and E ∗ by < ·, · >).

Theorem. (D. Roytenberg) Courant algebroids ↔ degree 2
symplectic manifolds with compatible Q-structures.

Theorem. (P. S̆evera) Exact (ρ surjective, rkE = 2 dimM)
Courant algebroids are classified by H3

dR(M).



Courant algebroids, Dirac structures

Let us construct on E = TM ⊕ T ∗M a twisted exact Courant
algebroid structure, governed by a closed 3-form H on M.
The symmetric pairing: < v ⊕ η, v ′ ⊕ η′ >= η(v ′) + η′(v),
the anchor: ρ(v ⊕ η) = v
the H-twisted bracket (Courant – Dorfman):

[v ⊕ η, v ′ ⊕ η′] = [v , v ′]Lie ⊕ (Lvη′ − ιv ′dη + ιv ιv ′H). (1)

A Dirac structure D is a maximally isotropic (Lagrangian)
subbundle of an exact Courant algebroid E closed with respect to
the bracket (1).

Trivial example: D = TM for H = 0.



Dirac structures: Poisson example.

Example. D = graph(Π])

Isotropy ⇔
πij antisymmetric.

Involutivity ⇔
Π (twisted) Poisson.

T*M

TM

Π
#

DΠ

v=Π
#( )

D

DΠ = {(Π]α, α)}



Dirac structures: (pre)symplectic example.

Example. D = graph(ω)

Isotropy ⇔
ωij antisymmetric.

Involutivity ⇔
ω closed.

Dω = {(v , ιvω)}



Dirac structures: general

Choose a metric on M ⇒ TM ⊕ T ∗M ∼= TM ⊕ TM,
Introduce the eigenvalue subbundles E± = {v ⊕±v}
of the involution (v , α) 7→ (α, v). Clearly, E+

∼= E− ∼= TM.
T*M

DE+
E-𝒪

TM

≅TM
≅TM

(Almost) Dirac structure – graph of an
orthogonal operator O ∈ Γ(End(TM)):
(v , α) = ((id−O)w , g((id +O)w , ·))
Dirac structure = almost Dirac +
(Jacobi-type) integrability condition:

g
(
O−1∇(id−O)ξ1

(O)ξ2, ξ3

)
+ cycl(1, 2, 3) =

1

2
H((id−O)ξ1, (id−O)ξ2, (id−O)ξ3).

Remark (!) Any D[1] can be equipped with a Q-structure

Q = (1− O)ii ′a
i ′ ∂

∂x i
+

1

2
C i
jka

jak
∂

∂ai
, with

C i
jk = (1−O)mj Γi

mk−(j ↔ k)+Om;i
k Omj + 1

2H
i
j ′k ′(1−O)j

′

j (1−O)k
′

k .

and/or Lie algebroid structure inherited from Courant algebroid.





Préservation des structures de la géométrie
généralisée en calcul numérique 2/3

Vladimir Salnikov

“Paris”, 6 Novembre 2020



Philosophy: Geometry encodes the physics of the system

Mechanical property Geometric description

classical
classical
mechanics
(ODE)

conservation of energy Poisson / symplectic

symmetries
Lie groups/algebras,
Cartan moving frames

dissipation / interaction
(almost) Dirac

power balance; constraints
control (singular) foliations

modern
classical

mechanics
(PDE)

.

conservation of energy multisymplectic
symmetries Cartan moving frames

dissipation / interaction Stokes–Dirac
rot(grad) = 0, div(rot) = 0 d2 = 0 – DEC

control foliations



Open questions

Near at hand:

- Poisson integrators
- Dynamics for general Dirac structures
- Application to control theory

Slightly further away

- Field theories / sigma models for mechanics and beyond.
E.g. Poisson Sigma Model via n-plectic geometry.

- PDEs in general
- Discretization and symbolic calculus in the graded world





Géométrie généralisée pour la modélisation
en mécanique

Vladimir Salnikov
CNRS & La Rochelle University

Dynamique de Dirac 
pour les problemes mecaniques



Géométrie généralisée pour la modélisation
en mécanique

Vladimir Salnikov
CNRS & La Rochelle University

(Daria Loziienko)
Pseudo-geometric integrators



Other remarks / work in progress
1. We understood why Marsden inspired method was 
not really geometric. 
1.bis it was  
pseudo-geometric of  
order (1,2) 

2. Dirac-2 was not 
much better: something 
like order (1,2 ; 2,3)

3. TODO: I still want it to be (honestly) variational



Approche variationnelle
de la dynamique de Dirac

Vladimir Salnikov

ENS-PS, 25 Novembre 2022





Systèmes Hamiltoniens à ports
apprentissage et un peu de Dirac

Vladimir Salnikov
CNRS & La Rochelle University

Journée GdR GDM,
IRCAM, 7 mai 2024



Learning the PHS structure – some remarks

• First step – Machine Learning methods.
Proof of concept – OK.
Hamiltonian VS generic training in progress
Project with A. Falaize, O. Peltre.

• Second step – “catalog” of symplectic / Poisson structures,
computation of cohomologies and compatible vector fields.
Project with A. Hamdouni, A. Falaize.

• Maybe a new way of defining
canonical forms of systems of differential equations.
Traditionally: call for collaboration!
– see next edition of the CA Conference.





Previous episodes







Sigma model example – gauging problem

S [X ] :=

∫
Σ
X ∗B

B ∈ Ω(M), dim(Σ) = d = deg(B).
Assume that there is a Lie group G acting on M that leaves B
invariant. It induces a G -action on MΣ, which leaves S invariant.

The functional S is called (locally) gauge invariant, if it is invariant
even with respect to the group GΣ ≡ C∞(Σ,G );
the invariance w.r.t. G is called a rigid (global) invariance.

Extending the functional S to a functional S̃ defined on
(X ,A) ∈ MΣ × Ω1(Σ, g) by means of so-called minimal coupling,

S̃2D [X ,A] :=

∫
Σ

(
X ∗B − AaX ∗ιvaB +

1

2
AaAbX ∗ιvaιvbB

)
.



Example: (part of) the Standard Model

Quarks
SU(3) symmetry

⇒ ⇒
⇒ ⇒

G
a
u
g
i
n
g

⇒ ⇒
⇒ ⇒

8 connection 1-forms
Gluons



Equivariant cohomology for Q-manifolds

Let (M,Q) be a Q-manifold, and let G be a subalgebra of the
algebra of degree −1 commuting vector fields ε on M, which is
closed w.r.t. the Q-derived bracket: [ε, ε′]Q = [ε, [Q, ε′]].

Definition. Call a differential form (superfunction) ω on M
G-horizontal if εω = 0, for any ε ∈ G.

Definition. Call a differential form (superfunction) ω on M
G-equivariant if (adQε)ω := [Q, ε]ω = 0 , for any ε ∈ G.

Definition. Call a differential form (superfunction) ω on M
G-basic if it is G-horizontal and G-equivariant.

Remark. For Q-closed superfunctions G-horizontal ⇔ G-basic

Remark. Usual equivariant cohomology can be recovered.

Key idea to apply to gauge theories:
Replace “gauge invariant” by “equivariantly Q-closed”



Poisson sigma model
World-sheet: Σ (closed, orientable, with no boundary, dim = 2).
Target: Poisson manifold (M, π). The functional is defined over
the space of vector bundle morphisms TΣ→ T ∗M

Field content: scalar fields X i : Σ→ M and 1-form valued
(“vector”) fields: Ai ∈ Ω1(Σ,X ∗T ∗M).

The action functional: S =
∫

Σ Ai ∧ dX i + 1
2π

ijAi ∧ Aj ,

Equations of motion:

dX i + πijAj = 0,

dAi + πjk,i AjAk = 0.

Gauge transformations (complicated !):

δεX
i = πjiεj ,

δεAi = dεi + πjk,i Ajεk

where ε = εidX
i ∈ Γ(X ∗T ∗M) a 1-form.



Gauging the Wess–Zumino term
WZ-term: H ∈ ΩdimΣ+1(M), dH = 0, ∂Σ̃ = Σ,

S [X ] :=

∫
Σ̃
X ∗H

Obstructions to gauging:
B. de Wit, C. Hull, M. Rocek “New topological terms in gauge
invariant action” (’87)
C. M. Hull and B. J. Spence, “The Gauged Nonlinear σ Model
With Wess-Zumino Term” (’89)
C. M. Hull and B. J. Spence, “The Geometry of the gauged sigma
model with Wess-Zumino term” (’91)

Upshot: Gauging of such a WZ-term is possible, if and only if H
permits an equivariantly closed extension. (J.M. Figueroa-O’Farrill
and S. Stanciu, ’94)

Limitation: number of gauge fields = dimG .



Equivariant cohomology

A Lie group G acting on a smooth manifold M. Ω•(M/G ) – ?

First assume that G acts freely on M, i.e. M/G is a topological
space. Consider p : M → M/G , ω0 ∈ Ω•(M/G ). ω = p∗(ω0) is
well defined, ω is called basic.

Property (defining) of a basic form: ιvω = 0, Lvω = 0, v ∈ G.

Equivariant differential(s): d̃ = (d + ιv ). d̃2|basic = 0

If the group does not act freely one can still perform a similar
construction but modifying the manifold M → M × EG → huge
space of differential forms, but not in cohomology. Instead one
considers the Weil model or the Cartan model of equivariant
cohomology, by defining the action on the Lie algebra valued
connections (of degree 1) and curvatures (of degree 2) with some
compatibility conditions.

Remark. d increases the form degree, ιv decreases.



Equivariant cohomology for Q-manifolds

Let (M,Q) be a Q-manifold, and let G be a subalgebra of the
algebra of degree −1 commuting vector fields ε on M, which is
closed w.r.t. the Q-derived bracket: [ε, ε′]Q = [ε, [Q, ε′]].

Definition. Call a differential form (superfunction) ω on M
G-horizontal if εω = 0, for any ε ∈ G.

Definition. Call a differential form (superfunction) ω on M
G-equivariant if (adQε)ω := [Q, ε]ω = 0 , for any ε ∈ G.

Definition. Call a differential form (superfunction) ω on M
G-basic if it is G-horizontal and G-equivariant.

Remark. For Q-closed superfunctions G-horizontal ⇔ G-basic

Key idea to apply to gauge theories:

Replace gauge invariant by equivariantly Q-closed



Gauge transformations of the PSM

T [1]Σ× T [1]T ∗[1]M 	 (dΣ + d + LQπ)

��
T [1]Σ 	 dΣ

f̂

55

â // T [1]Σ× T ∗[1]M 	 dΣ + Qπ

Functional: SPSM =
∫

Σ3 f̂
∗(dpidx

i ).

E.o.m.: f̂ ∗(dx i ) = 0, f̂ ∗(dpi ) = 0.

Degree −1 vector field on T ∗[1]M: ε = εi
∂
∂pi

→ 1-form on M: ε = εidx
i

Canonical lift to T [1]T ∗[1]M: ε̃ = Lε.

Gauge transformations: f̂ ∗([Q̂, ε̂]·). Invariance ⇔ dε = 0

(cf. M.Bojowald, A.Kotov, T.Strobl ’04; A.Kotov, T.Strobl ’07).



(Twisted) Poisson sigma model

PSM (P.Schaller and T.Strobl, N.Ikeda – 1994)
Functional on vector bundle morphisms from TΣ to T ∗M, where
(M, π) Poisson.

Twisted PSM, PSM with background
(C.Klimcik and T.Strobl, J.-S.Park – 2002)
Functional on vector bundle morphisms from TΣ to T ∗M, where
(M, (π,H)) twisted Poisson.

SHPSM = SPSM +

∫
Σ(3)

X ∗(H)

where ∂Σ(3) = Σ, H 6= 0⇒ Wess-Zumino term.



Gauge transformations of the twisted PSM

Theorem (V.S., T.Strobl) Any smooth map from Σ to the space
Γ(T ∗M) of sections of the cotangent bundle to a twisted Poisson
manifold M defines an infinitesimal gauge transformation of the
twisted PSM governed by (π,H) in the above sense, if and only if
for any point σ ∈ Σ the section ε ∈ Γ(T ∗M) satisfies

dε− ιπ]εH = 0

where d is the de Rham differential on M.



Dirac sigma model

Dirac sigma model (A.Kotov, P.Schaller, T.Strobl – 2005)
Functional on vector bundle morphisms from TΣ to D.
(Generalizes twisted PSM and G/G WZW model).

S0
DSM =

∫
Σ
g(dX ,∧ (1 +O)A) + g(A,∧OA) +

∫
Σ3

H.

Important remark: Vector bundle morphisms → degree
preserving maps between graded (Q-) manifolds



Gauge transformations of the DSM

Theorem (V.S., T.Strobl) Any smooth map from Σ to the space
Γ(D) of sections of the Dirac structure D ⊂ TM ⊕T ∗M defines an
infinitesimal gauge transformation of the (metric independent part
of the) Dirac sigma model governed by D in the above sense, if
and only if for any point σ ∈ Σ the section v ⊕ η ∈ Γ(D) satisfies

dη − ιvH = 0

where d is the de Rham differential on M.

Remark 1. H non-degenerate – 2-plectic geometry.

Remark 2. Hydrodynamics (stationary Lamb equation).



Extension of the gauge algebra

Proposition. The Lie algebra (G̃, [, ]Q̃) of degree −1 commuting
vector fields, generalizing the L· lift, is isomorphic to the
semi-direct product of Lie algebras G ⊂+A, where
G is a Lie algebra of 1-forms T ∗[1]M with the bracket

[ε1, ε2] = Lπ#ε1ε2 − Lπ#ε2ε1 − d(π(ε1, ε2)) + ιπ#ε1ιπ#ε2H,

obtained from the (twisted) Lie algebroid of T ∗M (anchor = π#);
A is a Lie algebra of covariant 2-tensors on M with a bracket

[ᾱ, β̄] =< π23, ᾱ⊗ β̄ − β̄ ⊗ ᾱ >,

(the upper indeces “23” of π stand for the contraction on the 2d
and 3rd entry of the tensor product);
G acts on A by

ρ(ε)(ᾱ) = Lπ#ε(ᾱ)− < π23, (dε− ιπ#εH)⊗ ᾱ > .



Gauging → twisted Poisson sigma model

Consider a subalgebra GT ⊂ G̃ defined by

dε− ιπ#εH = 0

ᾱA = 0.

Theorem (V.S., T.Strobl). Consider the graded manifold
M = T [1]T ∗[1]M, equipped with the Q-structure Q̃ = Q̃π,
governed by an H-twisted Poisson bivector Π, such that the
pull-back of H to a dense set of orbits of Π is non-vanishing. The
GT equivariantly closed extension of the given 3-form H defines
uniquely the functional of the twisted Poisson sigma model.

Remark. Non-degeneracy of the pull-back of H is a sufficient
condition; PSM is obtained by gauging a vanishing 3-form.



Gauging → Dirac sigma model

Consider a subalgebra GT ⊂ G̃ defined by

dη − ιvH = 0

α̃A = 0.

Theorem (V.S., T.Strobl).

Let H be a closed 3-form on M and D a Dirac structure on
(TM ⊕ T ∗M)H such that the pullback of H to a dense set of
orbits of D is non-zero. Then the GT -equivariantly closed
extension H̃ of H is unique and

∫
Σ3 f

∗(H̃) yields the
(metric-independent part of) the Dirac sigma model on Σ = ∂Σ3.

V.S., T.Strobl, “Dirac Sigma Models from Gauging”, Journal of
High Energy Physics, 11(2013)110.
V.S. “Graded geometry in gauge theories and beyond”, Journal of
Geometry and Physics, Volume 87, 2015.



Generality of the DSM in dim = 2.

Standard gauging: introduce Lie algebra valued 1-forms
Aaea ∈ Ω1(Σ, g).

Lie algebra acting on the target ⇒ ea 7→ va ∈ Γ(TM).
Rigid invariance ⇒ ea 7→ αa ∈ Γ(T ∗M)

Composite gauge fields:
(V ,A) = (vaA

a, αaA
a) ∈ Ω1(Σ,X ∗(TM ⊕ T ∗M)).

V and A are dependent ⇒ isotropy condition.

Gauge transformations ⇒ integrability condition.



Generality of the DSM in dim = 2, details

Courant algebroid: E = TM ⊕ T ∗M
Pairing: < v ⊕ η, v ′ ⊕ η′ >= η(v ′) + η′(v),
Anchor: ρ(v ⊕ η) = v
[v ⊕ η, v ′ ⊕ η′] = [v , v ′]Lie ⊕ (Lvη′ − ιv ′dη + ιv ιv ′H). (∗)

Q–symplectic realization: T ∗[2]T [1]M (pi (1), ψi (2), θi (1), x i (0)).
(cf. Roytenberg)
Q = {Q, ·}, where Q = θiψi + 1

6Hijkθ
iθjθk and

ε = ηiθ
i + v ipi , ε = {ε, ·}. [ε, ε′]Q ⇔ (∗)

To recover (A,V ) gauge transformations, consider
T [1]E , Q̃ = d + LQ , ε̃ = Lε.

Ai = f ∗(pi ),V
i = f ∗(θi )⇒ · · · ⇒ · · · ⇒ DSM



Generality of the DSM in dim = 2.

T*M

TM

Ai

D

Vi

Aa

A.Kotov, V.S., T.Strobl, “2d Gauge theories and generalized
geometry”, Journal of High Energy Physics, 08(2014)021.














