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COMPORTEMENT D’UN RESSORT/BARRE ÉLASTIQUE

Ressort de raideur k:
F = kΔℓ = k (ℓ− ℓ0)

Barre de section S0, de longueur initiale ℓ0, de raideur E:

𝜎 =
F
S0

= E
Δℓ

ℓ0
= E𝜖, E =

kℓ0

S0

Contrainte 𝜎 et (petite) déformation 𝜖

𝜎 :=
F
S0

, 𝜖 :=
Δℓ

ℓ0
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LOI D’ÉLASTICITÉ TRIDIMENSIONNELLE

Les lois de comportement 3D font intervenir les tenseurs

(variable) des contraintes 𝜎𝜎𝜎 = (𝜎ij) , contravariant d’ordre 2,

(variable) des petites déformations 𝜖𝜖𝜖 = (𝜖ij), covariant d’ordre 2,

(constitutif) d’élasticité E = (Eijkl), contravariant d’ordre 4,

Elasticité linéaire 3D
La relation scalaire 𝜎 = E𝜖 se généralise,

𝜎𝜎𝜎 = E : 𝜖𝜖𝜖, 𝜎ij = Eijkl𝜖kl, Eijkl = Ejikl = Eklij.

Déplacement uuu,

𝜖𝜖𝜖 =
1
2

(︁
∇uuu♭ + (∇uuu♭)t

)︁
, 𝜖ij =

1
2
(ui,j + uj,i) .
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LOI D’ÉLASTICITÉ TRIDIMENSIONNELLE

Les lois de comportement 3D font intervenir les tenseurs,

des contraintes 𝜎𝜎𝜎 = (𝜎ij), contravariant d’ordre 2,

des (petites) déformations 𝜖𝜖𝜖 = (𝜖ij), covariant d’ordre 2,

d’élasticité E = (Eijkl), contravariant d’ordre 4,

Elasticité linéaire, en base orthonormée,
La relation scalaire 𝜎 = E𝜖 se généralise,

𝜎𝜎𝜎 = E : 𝜖𝜖𝜖, 𝜎ij = Eijkl𝜖kl, Eijkl = Ejikl = Eklij.

Déplacement uuu,

𝜖𝜖𝜖 =
1
2

(︁
∇uuu♭ + (∇uuu♭)t

)︁
, 𝜖ij =

1
2
(ui,j + uj,i) .
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ELASTICITÉ LINÉAIRE ISOTROPE

𝜎𝜎𝜎 = 2𝜇𝜖𝜖𝜖+ 𝜆 tr 𝜖𝜖𝜖111 = 2G 𝜖𝜖𝜖D + K tr 𝜖𝜖𝜖111,(︀
𝜎ij = 2𝜇𝜖D

ij + 𝜆𝜖kk 𝛿ij = 2G 𝜖D
ij + K𝜖kk 𝛿ij

)︀
,

G = 𝜇 =
E

2(1 + 𝜈)
, K =

1
3
(2𝜇+ 3𝜆) =

E
3(1 − 2𝜈)

.

Tenseur d’élasticité isotrope

E = 2𝜇 I + 𝜆 1 ⊗ 1,
(︁

Eijkl = 𝜇 (𝛿ik𝛿jl + 𝛿il𝛿jk) + 𝜆 𝛿ij𝛿kl

)︁
= 2G J + K 1 ⊗ 1,

(︁
Eijkl = 2G (Iijkl −

1
3
𝛿ij𝛿kl) + K 𝛿ij𝛿kl

)︁
.

Tenseur de souplesse isotrope

S = E−1 =
1 + 𝜈

E
I − 𝜈

E
1 ⊗ 1,

(︁
Sijkl =

1 + 𝜈

E
Iijkl −

𝜈

E
𝛿ij𝛿kl

)︁
=

1
2G

J +
1

9K
1 ⊗ 1,

(︁
Sijkl =

1
2G

Jijkl +
1

9K
𝛿ij𝛿kl

)︁
.
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ELASTICITÉ LINÉAIRE ISOTROPE
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POLYCRISTAUX (EX: MÉTAUX)
Un matériau polycristallin est un matériau solide constitué d’une multitude de
petits (mono)cristaux de taille et d’orientation variées.
Son comportement macroscopique peut être isotrope.

Figure: Observation MEB en imagerie d’électrons rétrodiffusés d’un polycristal de
zirconium après polissage mécanique et électrolytique (d’après D. Cadelmaison).

7 / 27



Linear elasticity Distance to a symmetry class Upper bounds estimates rather than distances Symmetry coordinate system

POLYCRISTAUX ORTHOTROPES

Un matériau polycristallin est un matériau solide constitué d’une multitude de
petits (mono)cristaux de taille et d’orientation variées.
Après laminage, son comportement macroscopique peut être orthotrope.

For(these(comparisons,(the(mean(hoop(stress( in(the(tube(has(to(be(evaluated.(The(method(
used(is(based(on([28].(The(external(pressure(being(negligible(compared(with(the(inner(pressure,(the(
mean(stress(tensor(in(the(tube(is(expressed(as:((

! = !!!
!!

−! − !² 0 0
0 1 − ! 0
0 0 !

! − ! + !²
((( Eq.(1(

where( P( is( the( internal( pressure,( Dm( the( mean( diameter( of( the( tube,( t( the( thickness((
and(! = ! !!(a(geometrical(parameter.(A(secondOorder(approximation( in(!( (as(opposed( to(a( firstO
order(approximation,(which(correspond(to(the(thin(wall(formula)(gives(the(evaluation(for(the(mean(
hoop(stress(in(the(wall(of(the(tube:((

!!! = ! !!!!! 1 − ! = 9.73 ∗ !(((( ( Eq.(2(

The(mean(hoop(strain( is(obtained(by(dividing(the(evolution(of(the(external(diameter(by(the(
initial(mean(diameter.(

!!! = ∆!!
!!(!)

≈ ∆!!"#
!!"# ! !!!(( ( ( Eq.(3(

Results'
Microstructure'
The(results(of( the(EBSD(analysis(are(shown( in(Figure(2.(The(9%Cr(ODS(steel( tube(exhibits(grains(of(
equiaxed(shape,(the(diameter(of(which(is(around(5(micrometers,(as(shown(on(both(the(longitudinal(
section((Figure(2( (c))(and(the(cross(section((Figure(2( (d))(of( the(tube.(RD(corresponds(to(the(rolling(
direction,( TD( being( the( transverse( direction( and( ND( the( normal( direction.( The( pole( figures( and(
orientation( maps( of( both( sections( also( suggest( an( almost( isotropic( texture,( but( with( a( slight(
orientation(of(the(<110>(direction(parallel(to(RD(and(the(<111>(direction(to(ND(in(the((RDOTD)(plane.(
This(type(of(microstructure(can(be(seen(on(other(martensitic(ODS(steels(obtained(at(CEA([21],([24].(

The( 14%Cr(ODS( steel( tube( exhibits( elongated( grains( in( the( rolling( direction.( These( grains( have( an(
average(diameter(around(500(nanometers(and(an(average( length(of(350(micrometers,(and(show(a(
strong(α(texture,(as(the(<110>(axes(of(the(grains(are(mostly(aligned(with(RD(and(the(<111>(axes(with(
TD,(as(seen(on(Figure(2((a)(and((b).(

(

(a)( (b)(

Figure: Acier ”14%Cr 14 ferritic ODS” (Oxide Dispersion Strengthened,
Fe-14Cr-1W-0.3Ti-0.25Y2O3, observation EBSD, Jaumier et al, 2019):
(a) longitudinal section, (b) transverse section.
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MONOCRISTAUX CUBIQUES D’AUBES DE MOTEURS

D’HÉLICOPTÈRES

CMSX-4: a structured material 9

(a) (b)

Figure 1.1 – Schematic crystal structure and lattice parameters of: (a) the precipitate phase
or g 0 phase (b) matrix phase or g phase.

(a) "< 001 > (b)

Figure 1.2 – Example of the initial cubic microstructure of Single Crystal Superalloys: (a)
SEM observation of a crystal oriented along < 001 > (Cormier (2006), MC2 alloy) and
(b) schematic representation of the microstructure.

Since the lattice parameters of the two crystals are slightly different, a non-zero mis-
match (du, Equation (1.2)) exists. At ambient temperature and zero load the CMSX-4
natural misfit is positive but, as shown in Heckl et al (2011b), it decreases with increasing
temperature. The same has been observed for many other Ni-based superalloys, as for
example in Nathan et al (1985), Kuhn et al (1991), Royer et al (1995), Link et al (2000),
Siebörger et al (2001), Diologent et al (2003), Zhang et al (2005), Mughrabi (2009), Heckl
et al (2011a,b), Dirand et al (2013)

du =
1
2

ag 0 �ag

ag 0 +ag
(1.2)

At the micro-scale, elastic coherency strains accommodate the lattice misfit. For this
reason a non-zero stresses state exists (figure 1.3 and 1.4). Precipitates are then subjected
to a bi-axial tension state (along the directions parallel to the g channels) while the hori-
zontal matrix channels result subjected to compression (along g 0 surfaces).

Visco-plasticity and damage modeling of Single Crystal Superalloys at high temperature:
a tensorial microstructure-sensitive approach
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BASE NATURELLE D’ANISOTROPIE

directional coalescence proceeds, the coarsening proceeds too.
Thus, when rafted, the final microstructure presents only non-zero
vertical channel widthw1 and wider horizontal channels as well as
an increased vertical periodicity l1.

A question partially studied in Ref. [19] concerns the tensorial
nature of the thermodynamics variables for rafting. The choice was
made to represent the microstructure by second order tensorial
variables w (of principal components the channel widths wi), [ (of
principal components the sizes [i) and l (of principal components
the periocities li). In frames not aligned with crystallographic axes
these g channel width, g0 precipitates size and periodicity tensors
have for general components wij, [ij and lij. The three tensors [, w
and l are not independent:

[þw ¼ l (1)

The g0 precipitates volume fraction is then not an independent
variable of thermodynamics, it is:

fg0 ¼ [1[2[3
l1l2l3

¼
ðl1 $w1Þðl2 $w2Þðl1 $w2Þ

l1l2l3
(2)

definition which can be generalized to complex rafting cases as
intrinsic expression

fg0 ¼ det [
det l

¼ detðl$wÞ
det l

(3)

Fig. 5. a) Decomposition of RIM distribution GðqÞ in a certain number of fkðqÞ Gaussian distributions. Gaussian distributions families fk obtained for b) 〈001〉 cubic microstructure, c)
〈111〉 rafting and d) 〈001〉rafting.

Fig. 6. a) h001ig=g0 cuboidal microstructure and autocorrelation function; b) 〈111〉 g=g0 cuboidal microstructure and autocorrelation function, q1 and q2, being the principal di-
rections (q2 ¼ q1 þ p=2).

V. Caccuri et al. / Acta Materialia 158 (2018) 138e154 141

Figure: a) CMSX4 ⟨001⟩ 𝛾/𝛾′ cuboidal microstructure and autocorrelation function;
b) ⟨111⟩ cuboidal microstructure and autocorrelation function (Caccuri et al, 2018).
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NORMAL FORM
An elasticity tensor E in the symmetry stratum Σ[G] (of symmetry class [G])
may have exactly as symmetry group the canonical representative group G,

g ⋆ E = E, ∀g ∈ G,

where (g ⋆ E)ijkl = gipgjqgkrglsEpqrs.

In that case, we say that E is in its normal form (expressed in its natural basis).

Example (of cubic symmetry, in natural cubic basis)
When G = O, elasticity tensors in cubic normal form are written as

[E] =

⎛⎜⎜⎜⎜⎜⎜⎝
E1111 E1122 E1122 0 0 0
E1122 E1111 E1122 0 0 0
E1122 E1122 E1111 0 0 0

0 0 0 2E1212 0 0
0 0 0 0 2E1212 0
0 0 0 0 0 2E1212

⎞⎟⎟⎟⎟⎟⎟⎠ ,

in Kelvin matrix representation.
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PROBLÉMATIQUE MÉCANIQUE
Les lois de comportement1 sont formulées pour des symétries matérielles
initiales particulières

isotropie [O(3)],
symétrie cubique [O], orthotropie [D2].

Des essais mécaniques permettent de mesurer les paramètres matériaux
bruités (ici les Eijkl, Arts, 1993, François, 1995).

Questions
Quelle est la base naturelle d’anisotropie ? Réponse mécanique préférée.

Quelles sont les paramètres d’élasticité du tenseur E le plus proche d’une
classe de symétrie [G] donnée ?

A quelle distance d(E, [G]) le tenseur E est il de la strate de
symétrie Σ[G] correspondante ?

Solution approchées ? (bornes supérieures M(E, [G]) ≥ d(E, [G]))
1élasto-(visco-)plastiques couplées ou non à l’endommagement.
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DISTANCE TO A SYMMETRY CLASS [G]

Even if some analytical attempts exist (Vianello, 1997, Stahn et al, 2020), the
distance to an elasticity symmetry class problem (Gazis et al, 1963) is often

solved numerically, following Arts et al (1991, 1993) and François et al
(1995, 1996, 1998),

using the parameterization by a rotation g:

d(E0, [G]) := min
E∈Σ[G]

‖E0 − E‖ = min
g∈SO(3)

‖E0 − g ⋆ RG(gt ⋆ E0)‖

G is a symmetry group (Z2, D2, D3, D4, O, O(2), SO(3), Forte–Vianello, 1996),

RG(E) = 1
|G|

∑︀
g∈G g ⋆ E is the Reynolds (group averaging) operator,

E = gopt ⋆ RG(gt
opt ⋆ E0).
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DISTANCE TO A SYMMETRY CLASS [G]

Even if some analytical attempts exist (Vianello, 1997, Stahn et al, 2020), the
distance to an elasticity symmetry class problem (Gazis et al, 1963) is often

solved numerically, following Arts et al (1991, 1993) and François et al
(1995, 1996, 1998),

using the parameterization rotation g / normal form A (Dellinger, 2005):

d(E0, [G]) := min
E∈Σ[G]

‖E0 − E‖ = min
g,A

‖E0 − g ⋆ A‖

G is a symmetry group (Z2, D2, D3, D4, O, O(2), SO(3), Forte–Vianello, 1996),

RG(A) = 1
|G|

∑︀
g∈G g ⋆ A is the Reynolds (group averaging) operator,

E = gopt ⋆ Aopt.
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UPPER BOUNDS ESTIMATES RATHER THAN DISTANCES

For 3D elasticity, upper bounds estimates of the distance to a symmetry
stratum have been formulated

by Gazis, Tadjbakhsh and Toupin (1963) for cubic symmetry,

by Klimeš (2018) for transverse isotropy,

and by Stahn, Müller and Bertram (2020) for all symmetry classes, using
a second-order tensor t (a covariant) of the elasticity tensor introduced by
Backus (1970). This covariant is assumed to carry the likely symmetry
coordinate system of E0.

by us (2024), a second order tensor a (not a covariant) being assumed to
carry the likely symmetry coordinate system.

All second-order covariants of an exactly cubic elasticity tensor are isotropic.
Therefore, for a material expected to be cubic, a methodology based on
second-order covariants is probably meaningless.
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INVARIANTS /COVARIANTS OF THE ELASTICITY TENSOR

Covariants of a tensor E satisfy the rule, ∀g ∈ SO(3),

C(g ⋆ E) = g ⋆ C(E),
(︁

I(g ⋆ E) = I(E) for invariants I(E)
)︁
.

A covariant C(E) of E inherits the symmetry of E:
C(E) has at least the symmetry of E, GE ⊂ GC(E).

Ex: harmonic decomposition of E (Backus, 1970, Cowin, 1989, Baerheim, 1993):

E = (𝜆, 𝜇,d′, v′,H) ∈ H0 ⊕H0 ⊕H2 ⊕H2 ⊕H4

The quantities

𝜆 = 𝜆(E), 𝜇 = 𝜇(E), d′ = d′(E), v′ = v′(E), H = H(E),

are covariants C(E) of E (of degree one and resp. order 0, 0, 2, 2 and 4 ).

𝜆, 𝜇 / d′(E), v′(E), H(E) are linear invariants / covariants of E.
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POLYNOMIAL COVARIANTS

There exist polynomial covariants of higher degree, for example (Boehler
et al, 1994)

d2(H) := H ... H, (i.e., (d2)ij = HipqrHpqrj),

The algebra of (totally symmetric) polynomial covariants of the elasticity
tensor has been defined by Olive et al (2021).

A minimal integrity basis for the invariant algebra of H ∈ H4 has been
derived in (Boehler et al, 2021) (it is of cardinal 9).

A minimal integrity basis for the invariant algebra of E has been derived
in (Auffray et al, 2021) and (Olive et al, 2021) (it is of cardinal 294).

A minimal integrity basis for the covariant algebra of H ∈ H4 has been
derived in (Olive et al, 2021) (it is of cardinal 70).
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LITERATURE UPPER BOUNDS ESTIMATES
The distance of E0 to Σ[G] is defined by

d(E0,Σ[G]) = min
E∈Σ[G]

‖E0 − E‖.

Estimates of the distance to a symmetry class are obtained as

M(E0,Σ[G]) = min
E∈S⊂Σ[G]

‖E0 − E‖,

i.e., as the minimum over a subset S of the considered symmetry stratum.

It satisfies thus
d(E0,Σ[G]) ≤ M(E0,Σ[G]).

Examples: Gazis–Tadjbakhsh–Toupin (1963), Vianello (1997), Klimeš
(2018), Stahn–Müller–Bertram (2020), Oliver-Leblond et al. (2021).
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NATURAL COORDINATE SYSTEM

OF A CUBIC ELASTICITY TENSOR

Harmonic decomposition of E (Backus, 1970, Cowin, 1989, Baerheim, 1993):

E = (𝜆, 𝜇,d′, v′,H) ∈ H0 ⊕H0 ⊕H2 ⊕H2 ⊕H4

Let E = (𝜆, 𝜇, 0, 0,H) ∈ Σ[O] be a cubic elasticity tensor.

It has been shown (Abramian et al, 2020) that an orthotropic solution a′ of the
linear equation

tr(H × a) = tr(H × a′) = 0, H × a := −(a · 𝜀𝜀𝜀 · H)s

provides the axes of symmetry ⟨eeei⟩ of the cubic harmonic tensor H ∈ Σ[O].

a is not a covariant of E.
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LIKELY CUBIC/ORTHOTROPIC COORDINATE SYSTEM

In the spirit of Klimeš (2018) for transverse isotropy, equation tr(H × a′) = 0
can be used to determine a likely cubic/orthotropic coordinate system.

Given a raw elasticity tensor

E0 = (𝜆0, 𝜇0,d′
0, v′0,H0),

a likely cubic basis (eee1,eee2,eee3) for E0 is the eigenbasis of an orthotropic
deviatoric second-order tensor a′ which minimizes

min
‖a′‖=1

‖tr(H0 × a′)‖2, a′ ∈ H2.
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CUBIC ELASTICITY UPPER BOUNDS ESTIMATES

For any orthotropic second-order tensor a, we define

Ca :=

√︂
15
2

(︀(︀
a 2 × a

)︀
·
(︀
a 2 × a

)︀)︀′
‖a 2 × a‖2 ∈ H4, ‖Ca‖ = 1,

of cubic symmetry group GCa ∈ [O]. We get a cubic tensor

E = 2𝜇0I + 𝜆01 ⊗ 1 + (Ca :: H0)Ca ∈ Σ[O],

and define an upper bound estimate of d(E0, [O]), as

Δa(E0, [O]) = ‖E0 − E‖.

The Stahn et al (2020) cubic upper bound estimate is then simply recovered as

M(E0, [O]) = Δt0(E0, [O]),

by setting a = t0 = 2
3 (d0 − v0) =

2
3 (tr12 E0 − tr13 E0) .
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EXAMPLE OF NI-BASED SUPERALLOY
Consider the elasticity tensor (in Kelvin representation)

[E0] =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

243 136 135 22
√

2 52
√

2 −17
√

2
136 239 137 −28

√
2 11

√
2 16

√
2

135 137 233 29
√

2 −49
√

2 3
√

2
22

√
2 −28

√
2 29

√
2 133 · 2 −10 · 2 −4 · 2

52
√

2 11
√

2 −49
√

2 −10 · 2 119 · 2 −2 · 2
−17

√
2 16

√
2 3

√
2 −4 · 2 −2 · 2 130 · 2

⎞⎟⎟⎟⎟⎟⎟⎟⎠
GPa,

measured by François–Geymonat–Berthaud (1998) for a single crystal
Ni-based superalloy with a so-called cubic 𝛾/𝛾′ microstructure (Fig. after
Mattiello, 2018):
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d(E0, [O]) M = Δt0 Δd20 Δa′

74.13 Estimate (GPa): 241.7 238.6 114.9

0.10392 Relative estimate: 0.3388 0.3344 0.1610

Table: Comparison of upper bounds estimates of the distance to cubic elasticity
d(E0, [O]) for Ni-based single crystal superalloy.

The material considered has a cubic Ni-based microstructure.
All 2nd-order covariants of a cubic elasticity tensor are close to be isotropic.
They do not carry information about the cubic coordinate system.

2François et al (1998).
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CLOSURE

Possible accurate analytical estimation of the distance of a raw elasticity
tensor E0 (ex. to cubic symmetry).

Key point: the use of a second-order tensor a (not necessarily a covariant
of E0), which carries the likely symmetry coordinate system.

The optimal tensor E, used to define an upper bound estimate as
‖E0 − E‖, is determined a priori. This allows to consider readily other
norms than the Euclidean norm.
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LOG-EUCLIDEAN UPPER BOUNDS ESTIMATES

For a given tensor E0, once an elasticity tensor E either cubic (E ∈ Σ[O]) or
orthotropic (E ∈ Σ[D2]) has been computed according to the symmetry group
of a second-order tensor, say a, one can easily calculate the upper bounds
estimates Δa(E0,Σ[G]) for any norm.

Since an elasticity tensor has to be positive definite, one can consider the
Log-Euclidean norm (Arsigny et al, 2005, Moakher and Norris, 2006),

‖E‖L := ‖ln(E)‖ = ‖ln([E])‖R6 ,

which has the property of invariance by inversion.
For this norm, the upper bounds estimates of the distance

d(E0,Σ[G]) = min
Σ[G]

‖E0 − E‖L,

can then be expressed as

Δa(E0,Σ[G]) := ‖E0 − E‖L = ‖ln(E0)− ln(E)‖.
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EXAMPLES WITH LOG-EUCLIDEAN NORM

(CUBIC SYMMETRY)

Δt0 Δd20 Δa′

Relative Euclidean estimate: 0.3388 0.3344 0.1610
Relative Log-Euclidean estimate: 0.1365 0.1353 0.0616

Table: Comparison of cubic upper bounds estimates for Ni-based single crystal
superalloy.
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The symmetry classes, their number, and their partial ordering are strongly
dependent on the tensor type.

There are two symmetry classes for a vector v:

[SO(2)] (axial symmetry, if v ̸= 0)

and [SO(3)] (isotropy, if v = 0).

There are three symmetry classes for a symmetric second-order tensor a (and
for a deviatoric tensor a′):

[D2] (orthotropy, if a has three distinct eigenvalues),

[O(2)] (transverse isotropy, if a has two distinct eigenvalues),

and [SO(3)] (isotropy, if a′ = 0);

The symmetry classes for an harmonic (totally symmetric and traceless)
fourth-order tensor H are the same eight symmetry classes as those of an
elasticity tensor (Ihrig and Golubitsky, 1984, Forte and Vianello, 1996):
[1], [Z2], [D2], [D3], [D4], [O], [O(2)] and [SO(3)] (isotropy, H = 0).
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GEOMETRIC CONSEQUENCES
1 the vector covariants v(E) of a monoclinic elasticity tensor E are all

collinear,
2 the vector covariants v(E) of an elasticity tensor E either orthotropic,

tetragonal, trigonal, cubic, transversely isotropic or isotropic, all vanish:

v(E) = 0 ∀E ∈ Σ[D2] ∪ Σ[D3] ∪ Σ[D4] ∪ Σ[O] ∪ Σ[O(2)] ∪ Σ[SO(3)],

3 the second-order covariants c(E) of an elasticity tensor either cubic or
isotropic are all isotropic,

4 the second-order covariants c(E) of an elasticity tensor E either
tetragonal, trigonal or transversely isotropic, of axis ⟨nnn⟩, are all at least
transversely isotropic of axis ⟨nnn⟩,

5 the second-order covariants c(E) of an orthotropic elasticity tensor E are
all at least orthotropic (and all of them commute with each other).

6 the second-order covariants c(E) of a triclinic elasticity tensor E are all
at least orthotropic (but the natural basis may differ from one covariant to
another).
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Remark

Any other second-order covariant c(E0) of the elasticity tensor E0 can be
added to the list {t0,d20, a′,b′}, such as

d0, v0, d2
0, v2

0, (d0v0)
s,

H0 : d0, H0 : v0, H0 : d2
0, H0 : v2

0, H0 : (d0v0)
s,

c3 = H0 : d20, c4 = H0 : c3, c5 = H0 : c4, . . .
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EXPLICIT HARMONIC DECOMPOSITION
The explicit harmonic decomposition of E is (Backus, 1970, Spencer, 1970)

E = 2𝜇 I + 𝜆 1 ⊗ 1 +
2
7

1 ⊙ (d′ + 2v′) + 2 1 ⊗(2,2) (d′ − v′) + H,

which can also be written as (Cowin, 1989, Baerheim, 1993)

E =2𝜇 I + 𝜆 1 ⊗ 1

+
1
7

(︁
1 ⊗ (5d′ − 4v′) + (5d′ − 4v′)⊗ 1

+ 2 1 ⊗ (6v′ − 4d′) + 2(6v′ − 4d′)⊗ 1
)︁

+ H,

where ⊗(2,2) is the Young-symmetrized tensor product,

a ⊗(2,2)b =
1
3
(︀
a ⊗ b + b ⊗ a − a ⊗ b − b ⊗ a

)︀
,

(a ⊗ b)ijkl :=
1
2
(aikbjl + ailbjk), Iijkl = (1 ⊗ 1)ijkl =

1
2
(𝛿ik𝛿jl + 𝛿il𝛿jk).
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The normal form EO of the cubic estimate E is obtained directly, as

[E] =

⎛⎜⎜⎜⎜⎜⎜⎝

(E)1111 (E)1122 (E)1122 0 0 0
(E)1122 (E)1111 (E)1122 0 0 0
(E)1122 (E)1122 (E)1111 0 0 0

0 0 0 2(E)1212 0 0
0 0 0 0 2(E)1212 0
0 0 0 0 0 2(E)1212

⎞⎟⎟⎟⎟⎟⎟⎠ ,

in Kelvin matrix representation, with

(EO)1111 = 2𝜇0 + 𝜆0 −
2√
30

Ca :: H0,

(EO)1122 = 𝜆0 +
1√
30

Ca :: H0,

(EO)1212 = 𝜇0 +
1√
30

Ca :: H0.
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