Two-Scale Geometric Modelling for Defective Media an approach using fibre bundles

Mewen Crespo

Supervised by Guy Casale and Loïc Le Marrec

Université de Rennes - IRMAR

Thursday 27 June 2024

GDM GDM plénière 2024 – La Rochelle

Introduction

transversal slice of wood with rings and cracks

isotropic tiling of the plane

E. Cosserat and F. Cosserat, Sur la théorie des corps déformables, 1909

E. Cartan, Sur une généralisation de la notion de courbure de Riemann et les espaces à torsion, 1922

V. H. Nguyen, G. Casale, L. Le Marrec, On tangent geometry and generalized continuum with defects, 2021 $\,$

Classical continuum mechanics

Continuous approximation of a macroscopic material

F = Tφ : TB → TE: space
gradient of the placement map

Université de Rennes

- $g \equiv Id$: Euclidean metric in \mathbb{E} .
- $\mathfrak{G} = \mathsf{F}^t \cdot \mathsf{g} \cdot \mathsf{F}$: Cauchy-Green tensor in \mathbb{B}

Objectivity

$$\begin{split} &\alpha:\mathsf{F}\longmapsto\alpha\,(\mathsf{F})\text{ is frame in-}\\ &\text{different iff one has}\\ &\tilde{\alpha}:\mathfrak{G}\longmapsto\tilde{\alpha}\,(\mathfrak{G})\text{ such that}\\ &\alpha\,(\mathsf{F})=\tilde{\alpha}\,(\mathfrak{G}). \end{split}$$

Generalised continuum mechanics

Continuous approximation of a macroscopic material

Continuous approximation of a micro-structured material

A natural fibre bundle structure

M. Epstein, The Geometrical Language of Continuum Mechanics, 2014

Ambiant Space

 $\mathcal{E} \text{ is holonomic, meaning } \mathcal{E} \simeq_{\mathrm{loc.}} \mathbb{E} \times \mathbb{E} := \mathrm{T}\mathbb{E} \text{ and } \mathcal{E}_x \simeq \mathrm{T}_x \mathbb{E}$

5 / 14

Ehresmann connection

Ehresmann connection

An (Ehresmann) connection on $\mathcal{E} \xrightarrow{\pi_{\mathcal{E}}} \mathbb{E}$ is the data at each point $(\bar{x}, \delta x) \in \mathcal{E}_{\bar{x}}$ of a linear injection

$$\gamma_{(\bar{\mathsf{x}}, \delta \mathsf{x})} : \mathrm{T}_{\bar{\mathsf{x}}} \mathbb{E} \longleftrightarrow \mathrm{T}_{(\bar{\mathsf{x}}, \delta \mathsf{x})} \mathcal{E}$$

which is horizontal (i.e. macroscopic). In other words:

$$\forall (\bar{\mathsf{x}}, \, \delta \mathsf{x}) \in \mathcal{E}_{\bar{\mathsf{x}}} \qquad \mathrm{T}\pi_{\mathcal{E}} \circ \gamma_{(\bar{\mathsf{x}}, \, \delta \mathsf{x})} = \mathrm{Id}_{\mathrm{T}_{\bar{\mathsf{x}}} \mathbb{E}}$$

C. Ehresmann, Les connexions infinitésimales dans un espace fibré différentiable, 1950

Covariant derivative (Koszul con.)

When γ is linear in the fibre's coordinates:

$$\gamma_{\left|\left(\bar{\mathbf{x}}, y^{i} \mathbf{y}_{i}\right)\right.}\left(\overline{u}^{j} \frac{\partial}{\partial \overline{\mathbf{x}}^{j}}\right) := \overline{u}^{j} \left[\frac{\partial}{\partial \mathbf{x}^{j}} + \gamma_{ij}^{k}\left(\overline{\mathbf{x}}\right) y^{i} \frac{\partial}{\partial \mathbf{y}^{k}}\right]$$

For $\sigma : \mathbb{E} \to \mathcal{E}$ a section of \mathcal{E} $(\pi_{\mathcal{E}} \cdot \sigma = \mathrm{Id}_{\mathbb{E}})$ and $\overline{u} \in \mathrm{T}_{\overline{\times}} \mathbb{E}$ we have:

$$\nabla_{\overline{u}} \boldsymbol{\sigma} := \mathbf{v}_{\boldsymbol{\gamma}} \cdot \mathbf{T}_{\overline{\mathbf{x}}} \boldsymbol{\sigma} \cdot \boldsymbol{\gamma}_{\boldsymbol{\sigma}(\overline{\mathbf{x}})} \cdot \overline{\mathbf{u}} = \left[\frac{\partial \boldsymbol{\sigma}^{k}}{\partial \mathbf{x}^{j}} - \boldsymbol{\gamma}_{ij}^{k}(\overline{\mathbf{x}}) \boldsymbol{\sigma}^{i} \right] \overline{u}^{j} \frac{\partial}{\partial \mathbf{y}^{k}}$$

with $\mathbf{v}_{\boldsymbol{\gamma}} = \mathrm{Id} - \boldsymbol{\gamma} \cdot \mathrm{T}\pi_{\mathcal{E}}$

Solder form

Solder form

A solder form on $\mathcal{E} \xrightarrow{\pi_{\mathcal{E}}} \mathbb{E}$ is the data at each point $(\bar{x}, \delta x) \in \mathcal{E}_{\bar{x}}$ of a linear injection

$$\vartheta_{(\bar{\mathsf{x}}, \delta \mathsf{x})} : \mathrm{T}_{\bar{\mathsf{x}}} \mathbb{E} \longrightarrow \mathrm{T}_{(\bar{\mathsf{x}}, \delta \mathsf{x})} \mathcal{E}$$

which is vertical (i.e. microscopic). In other words:

 $\forall (\bar{\mathsf{x}}, \, \delta \mathsf{x}) \in \mathcal{E}_{\bar{\mathsf{x}}} \qquad \mathrm{T}\pi_{\mathcal{E}} \circ \vartheta_{(\bar{\mathsf{x}}, \, \delta \mathsf{x})} = \mathbf{0}_{\mathrm{T}_{\bar{\mathsf{x}}} \mathbb{E}}$

The pseudo-metric

Kernel of the interpretation

10 / 14

Placement map

 $\overline{\varphi} \circ \pi_{\mathcal{B}} = \pi_{\mathcal{E}} \circ \varphi$

using overlines for projections:

 $\forall X \in \mathcal{B} \qquad \overline{\varphi}\left(\overline{X}\right) = \overline{\varphi\left(X\right)}$

Pull-backs

Université

de Rennes

Generalised Galilean invariants

Orbital invariants

$$\label{eq:F} \begin{split} \mathsf{F} &\mapsto \alpha(\mathsf{F}) \text{ is frame indifferent iff there exists } \tilde{\alpha} \text{ such that } \\ \alpha(\mathsf{F}) &= \tilde{\alpha}\left(\mathfrak{G}\right) \end{split}$$

- $F = T\varphi : T\mathcal{B} \longrightarrow T\mathcal{E}$
- $\mathfrak{G} = \mathsf{F}^{\mathrm{t}} \cdot \mathfrak{g} \cdot \mathsf{F}$

first order placement map material pseudo-metric

Generalised Galilean invariants

Orbital invariants

$$\begin{split} \mathsf{F} &\mapsto \alpha(\mathsf{F}) \text{ is frame indifferent iff there exists } \tilde{\alpha} \text{ such that} \\ \frac{\alpha(\mathsf{F}) = \tilde{\alpha} \left(\mathfrak{G} \right)}{\alpha(\mathsf{F}) = \tilde{\alpha} \left(\mathfrak{G}_{v}^{v}, \Theta, \mathsf{F} \right) } \end{split}$$

- $F = T\varphi : T\mathcal{B} \longrightarrow T\mathcal{E}$ first order placement map • $\mathfrak{G} = F^{t} \cdot \mathfrak{g} \cdot F$ material pseudo-metric • \mathfrak{G}^{v}_{v} material micro-metric (*i.e.* microscopic Cauchy-Green) • $\Theta = F^{*}\vartheta : T\mathbb{B} \longrightarrow V\mathcal{B}$ material solder form
- $\Gamma = F^* \gamma : T\mathbb{B} \longrightarrow H^{\Gamma} \mathcal{B}$

material connection

Generalised Galilean invariants

Orbital invariants

$$\begin{split} \mathsf{F} &\mapsto \alpha(\mathsf{F}) \text{ is frame indifferent iff there exists } \tilde{\alpha} \text{ such that} \\ \hline \alpha(\mathsf{F}) &= \tilde{\alpha} \left(\mathfrak{G} \right) & (\text{ only if micro-linear}) \\ \hline \alpha(\mathsf{F}) &= \tilde{\alpha} \left(\mathfrak{G}_v^v, \Theta, \mathsf{F} \right) & (\text{ only if } \mathsf{F} = \mathrm{T}\varphi) \\ \hline \alpha(\mathsf{F}) &= \tilde{\alpha} \left(\mathfrak{G}_v^v, \Theta, \mathsf{F}, \mathsf{\Gamma}_{\mathrm{holo}} \right) \end{split}$$

- $\bullet \ \ {\sf F}: {\rm T}{\cal B} \longrightarrow {\rm T}{\cal E} \qquad \qquad {\rm generalised} \ {\rm first} \ {\rm order} \ {\rm placement} \ {\rm map}$
- $\bullet \ \mathfrak{G} = \mathsf{F}^{\mathrm{t}} \cdot \mathfrak{g} \cdot \mathsf{F} \qquad \qquad \mathsf{material pseudo-metric}$
- \mathfrak{G}_v^v material micro-metric (*i.e.* microscopic Cauchy-Green)
- $\Theta = \mathsf{F}^* \vartheta : \mathrm{T}\mathbb{B} \longrightarrow \mathrm{V}\mathcal{B}$ material solder form
- $\Gamma = F^* \gamma : T\mathbb{B} \longrightarrow H^{\Gamma} \mathcal{B}$ material connection
- $\Gamma_{holo} = (T\varphi)^* \gamma : T\mathbb{B} \longrightarrow H^{\Gamma_{holo}} \mathcal{B}$ holonomic material connection

Conclusion.

Results

- Mechanical construction: no thermodynamics, viscosity, etc.
- Generic vector bundles: dislocations, disclinations, meta-materials, etc.
- Obtained from general principles (Frame-indifference, interpretation preservation, etc.)
- · Degenerated lengths: pseudo-metrics

Results not shown

- Reduction to micromorphic media (with dim(𝔅) = 3 and F = Tφ)
- Reduction to beam models & measures of deformation
- · Beam theory energy functionals

Future goals

- Static equilibrium equations (W.I.P)
- · Dynamical equations
- · Reduction to other models (Cosserat, etc.)

Thank you four your attention

Example: The beam

Isometric projection of a micro-structured configuration of a beam (a 1×3 fibre bundle).

 $\mbox{Cross-section}$ "along" the macroscopic axis of the same micro-structured configuration.

Reduction to other models

Timoshenko-Ehrenfest

 $\begin{array}{c} \bullet \text{ slices rigidity:} \\ \hat{G}_v^v = 0 \\ \bullet \text{ no disclinaison:} \\ F = T\varphi \\ \end{array} \right\} \implies F = \begin{bmatrix} \widehat{F}_h^h & 0 \\ \widehat{F}_h^v & \vartheta \cdot Q \cdot \vartheta^{-1} \end{bmatrix} \cdot F_{|_{f=0}} \\ \text{with } Q(x) \in O\left(g_{eucl}, \mathbb{E}\right) \text{ for } x \in \mathbb{E} \\ \end{array}$

Euler-Bernoulli

• slices orthogonality: $\varepsilon = 0$ + Timoshenko assumptions $F = \begin{bmatrix} \gamma \cdot \mathbf{Q} \cdot T\pi_{\mathcal{B}} & 0\\ \hat{\mathbf{F}}_{h}^{v} & \vartheta \cdot \mathbf{Q} \cdot \vartheta^{-1} \end{bmatrix} \cdot \mathbf{F}_{|_{t=0}}$

with $\mathsf{Q}(x)\in \mathrm{O}\left(g_{eucl},\mathbb{E}\right)$ for $x\in\mathbb{E}$

Rigid bar

• slices parallelism: $\begin{array}{c} \kappa = 0 \\ + \text{ Euler-Bernoulli assumptions} \end{array} \end{array} \right\} \implies \mathsf{F} = \begin{bmatrix} \gamma \cdot Q \cdot T\pi_{\mathcal{B}} & 0 \\ 0 & \vartheta \cdot Q \cdot \vartheta^{-1} \end{bmatrix} \cdot \mathsf{F}_{|_{t=0}} \\ \text{ with } Q \in O\left(\mathsf{g}_{\text{encl}}, \mathbb{E}\right) \text{ constant} \end{cases}$

Inextensible beams' standard measures of deformation:

 $\kappa : \mathbb{TB} \longrightarrow \operatorname{Im}(\Theta)$ = $\Gamma - \Gamma_{|_{t=0}}$

 $\begin{aligned} \varepsilon : \mathbb{TB} &\longrightarrow \mathrm{Im}\left(\Theta\right) \\ &= \Theta - \Theta_{|_{t=0}} \end{aligned}$

$$\begin{split} \mathsf{G}_{v}^{v} &: \mathrm{Im}\left(\Theta\right) \longrightarrow \mathrm{Im}^{\star}\left(\Theta\right) \\ &= \mathsf{F}^{t} \cdot \mathsf{g}_{v}^{v} \cdot \mathsf{F}_{\big|_{V\mathcal{B}}} \\ &= \mathsf{F}^{t} \cdot \vartheta^{-1^{t}} \cdot \mathsf{g}_{\mathsf{eucl}} \cdot \vartheta^{-1} \cdot \mathsf{F}_{\big|_{V\mathcal{B}}} \end{split}$$

2/3

Conclusion.

Results Mechanical construction: no

- thermodynamics, viscosity, etc.
- Generic vector bundles: dislocations, disclinations, meta-materials, etc.
- Obtained from general principles (Frame-indifference, interpretation preservation, etc.)
- Degenerated lengths: pseudo-metrics
- Reduction to micromorphic media (with $\dim(\mathbb{B}) = 3$ and $F = T\varphi$)
- Reduction to beam models & measures of deformation
- · Beam theory energy functionals

Future goals

- Static equilibrium equations (W.I.P)
- Dynamical equations
- Reduction to other models (Cosserat, etc.)

Thank you four your attention