Separation and stratification of the orbits of the representation of $\mathrm{SO}_3(\mathbb{R})$ on piezoelectricity tensors

Martin Jalard

INRIA Sophia Antipolis

Wednesday 26, June

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

We compute a set of invariant separating the orbits of some representations of $SO_3(\mathbb{R})$, and stratify the orbit space. We proceed by decomposing the representation \mathcal{V} in a sequence of Seshadri slices.

Separating invariants

Let \mathcal{F} be a set of invariant polynomials defined each on a G-stable subvariety in \mathcal{V} . We say that \mathcal{F} separates the orbits in \mathcal{V} if for any two points $x, y \in \mathcal{V}$ which are not in the same orbit, there is some $P \in \mathcal{F}$ defined at x and y such that $P(x) \neq P(y)$.

Piezoelectricity tensors

Piez is the space of three order tensors verifying $\forall i, j, k \in \{1, 2, 3\}, P_{ijk} = P_{ikj}$.

 $\dim(\mathbb{P}iez) = 18.$ [Oli14] provides a generating set of polynomials of cardinal 495. [Che+19] deduces a minimal separating set of cardinality 260. It is difficult to stratify the orbit space with such a cardinality.

A separating set on \mathcal{H}_3 [SB97]

$$\left\{ \begin{array}{ll} \mathcal{K}_{2} = \sum\limits_{i,j,k} A_{ijk}^{2} & \mathcal{K}_{4} = \sum\limits_{i,j} B_{ij}^{2} & \mathcal{K}_{6} = \sum\limits_{i} C_{i}^{2} \\ \mathcal{K}_{10} = \sum\limits_{i,j,k} A_{ijk} C_{i} C_{j} C_{k} & \mathcal{K}_{15} = \sum\limits_{i,j,k,p,q} \varepsilon_{ijk} C_{i} B_{jp} C_{p} A_{kqr} C_{q} C_{r} \end{array} \right\}$$

The stratification of the orbit space is then obtained by computing the ideal of relations on subvarieties:

Example: the strata of points of isotropy class C_2

The strata $\overline{\Sigma_{\mathrm{C}_{2}}}$ is defined by the system

$$\begin{bmatrix} -2K_{2}^{6} + 14K_{2}^{4}K_{4} - 6K_{2}^{3}K_{6} - 32K_{2}^{2}K_{4}^{2} + 12K_{2}K_{4}K_{6} + 24K_{4}^{3} + 9K_{6}^{2} = 0 \\ -K_{2}^{5} + 5K_{2}^{3}K_{4} - 6K_{2}^{2}K_{6} - 6K_{2}K_{4}^{2} + 9K_{4}K_{6} + 9K_{10} = 0 \end{bmatrix}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

2 Slices in the piezoelectricity tensors

- A slice with \mathcal{H}_1
- Slices with \mathcal{H}_2

Separating orbits with the Seshadri slice lemma

2

Slices in the piezoelectricity tensors

- \bullet A slice with \mathcal{H}_1
- \bullet Slices with \mathcal{H}_2

3 Stratification of the orbit space

Sechadri slice Lemma [CS05]

Let G be a real algebraic group acting on a geometrically irreducible variety $\mathcal V.$ Take $\mathcal S\subset\mathcal V$ a geometrically irreducible subvariety and N< G its normalizer. Assume that

- The closure of $G \times S$ is \mathcal{V} .
- There is an non empty Zariski open subset $\mathcal{Z} \subset \mathcal{S}$ such that for all $g \in \hat{G}$ and $s \in \hat{\mathcal{Z}}$ satisfying $g(s) \in \hat{\mathcal{Z}}$, then there exists $h \in \hat{N}$ such that h(s) = g(s).

Then, the restriction of invariants to $\mathcal S$ gives a field isomorphism

 $\mathbb{R}(\mathcal{V})^{\mathrm{G}}\cong\mathbb{R}(\mathcal{S})^{\mathrm{N}}$

Definition

The pair (\mathcal{S}, N) is named a Seshadri slice.

Proposition

Note \mathcal{Z} the stable open subset satisfying the second condition of the Seshadri slice lemma and $\mathcal{F} \subset \mathbb{R}[\mathcal{S}]^N$ separating the orbits in \mathcal{Z} . Then, $\tilde{\mathcal{F}} \subset \mathbb{R}(\mathcal{V})^G$ separates orbits in $\tilde{\mathcal{Z}} = G \times \mathcal{Z}$.

It remains a subvariety $\mathcal{Q} = \mathrm{G} imes (\mathcal{S} \setminus \mathcal{Z})$ where the orbits are not generated.

Strategy where for each $1 \leq i \leq n$, Q_i is the variety non separated by the previous slice, namely $Q_i = Q_{i-1} \setminus (G \times Z_i)$. For each $1 \le i \le n$, consider \mathcal{F}_i a set of polynomials in $\mathbb{R}[\mathcal{S}_i]^{N_i}$ separating orbits in \mathcal{Z}_i . Consider also a last set $\mathcal{F}_{n+1} \subset \mathbb{R}[\mathcal{Q}_n]^G$ separating orbits in \mathcal{Q}_n . The union $\tilde{\mathcal{F}} = \bigcup_{i=1}^{n+1} \tilde{\mathcal{F}}_i$ is a set of rational functions separating orbits in the disjoint union $\mathcal{V} = \tilde{\mathcal{Z}}_1 \sqcup ... \sqcup \tilde{\mathcal{Z}}_n \sqcup \mathcal{Q}_n$.

Separating orbits with the Seshadri slice lemma

2 Slices in the piezoelectricity tensors

- A slice with \mathcal{H}_1
- \bullet Slices with \mathcal{H}_2

3 Stratification of the orbit space

Harmonic polynomials

Let d be an integer. The space of homogeneous harmonic polynomials of degree d is

$$\mathcal{H}_d := \left\{ P \in \mathbb{R}[U, V, W]_d \left| \nabla(P) = \frac{\partial^2 P}{\partial U^2} + \frac{\partial^2 P}{\partial V^2} + \frac{\partial^2 P}{\partial W^2} = 0 \right\} \right\}$$

The spaces \mathcal{H}_d are endowed with the action $\rho_d : \begin{cases} \operatorname{SO}_3(\mathbb{R}) & \longrightarrow & \operatorname{GL}(\mathcal{H}_d) \\ g & \longmapsto & \{P \to P \circ g^{-1} \end{cases}$

Irreducible representations of $SO_3(\mathbb{R})$

The irreducible representations of $SO_3(\mathbb{R})$ are $\{(\rho_d, \mathcal{H}_d), d \in \mathbb{N}\}$.

Piezoelectricity tensors

 $\begin{array}{rcl} \mathbb{P}\mathrm{iez} &\cong& \mathcal{H}_1 \oplus \mathcal{H}_1 \oplus \mathcal{H}_2 \oplus \mathcal{H}_3 \\ \rho &\sim& \rho_1 \oplus \rho_1 \oplus \rho_2 \oplus \rho_3 \end{array}$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

The separated set

Here, we have $\mathcal{Z}_1 = \{s \in \mathcal{S}_1 \mid d_1 \neq 0\} \subset \mathcal{S}_1$. The remaining not separated variety is thus $\mathcal{Q}_1 = \mathbb{P}iez \setminus SO_3(\mathbb{R}) \times \mathcal{Z}_1$.

Irreducible representations of $O_2(\mathbb{R})$

The two dimensional irreducible representations of $O_2(\mathbb{R})$ are $\rho_j : O_2(\mathbb{R}) \longmapsto GL(\mathcal{V}_j)$, $j \in \mathbb{N}^*$ with

$$\rho_j(g_{e^{i\theta}}^+) = \begin{pmatrix} \cos(j\theta) & -\sin(j\theta) \\ \sin(j\theta) & \cos(j\theta) \end{pmatrix} \quad \text{and} \quad \rho_j(g_{e^{i\theta}}^-) = \begin{pmatrix} \cos(j\theta) & \sin(j\theta) \\ \sin(j\theta) & -\cos(j\theta) \end{pmatrix}$$

The representation of N_1 on \mathcal{S}_1

The representation of $N_1 \cong O_2(\mathbb{R})$ on \mathcal{S}_1 is isomorphic to $\mathcal{V}_{-1}^3 \oplus \mathcal{V}_0 \oplus \mathcal{V}_1^3 \oplus \mathcal{V}_2^2 \oplus \mathcal{V}_3$.

The spherical harmonic basis

For $1 \leq m \leq d$ note P_d^m the $(d, m)^{th}$ associated Legendre polynomial. The following set of functions of (r, θ, φ) is a polynomial basis for $\hat{\mathcal{H}}_d$:

$$\hat{\mathcal{B}}_d := \left\{ \begin{array}{cc} \mathsf{Y}_d^m = & \mathrm{i}^{m+d} \, r^d \, \mathrm{e}^{\mathrm{i} m \varphi} \, \mathcal{P}_d^m(\cos(\theta)), & 1 \leq m \leq d \\ \mathsf{Y}_d^{-m} = & \mathrm{i}^{-m-d} \, r^d \, \mathrm{e}^{-\mathrm{i} m \varphi} \, \mathcal{P}_d^m(\cos(\theta)), & 1 \leq m \leq d \\ \mathsf{Y}_d^0 = & r^d \, \mathcal{P}_d^0(\cos(\theta)) \end{array} \right\}$$

Then, the subspace generated by Y_d^m and Y_d^{-m} is stable by N_1 , and it results:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Let $(d_1, d_2, d_3, t_1, y_1, y_{-1}, ..., y_6, y_{-6})$ be coordinates on $S_1 \cong \mathcal{V}_{-1}^3 \oplus \mathcal{V}_0 \oplus \mathcal{V}_1^3 \oplus \mathcal{V}_2^2 \oplus \mathcal{V}_3$. For $1 \le i \le j \le 6$, we note $p_{-ij} = y_{-i}^{\frac{a_i \lor a_j}{a_i}} y_j^{\frac{a_i \lor a_j}{a_j}}$

A set separating orbits in \mathcal{Z}_1 [HJ24]

The following set in $\mathbb{R}[\mathcal{S}_1]^{N_1}$ separates the orbits in \mathcal{Z}_1 :

$$\mathcal{F}_1 = \left\{egin{array}{cccc} t_1 & & 1 \leq j \leq 3 \ D_{1j} & = & d_1d_j, & 1 \leq j \leq 3 \ P_{ij} & = & rac{1}{2}(p_{-ij}+p_{-ji}) & 1 \leq i \leq j \leq 6 \ S_{ij1} & = & \mathrm{i} \left(p_{-ij}-p_{-ji}
ight)d_1, & 1 \leq i < j \leq 6 \end{array}
ight.$$

NB: $\#\mathcal{F}_1 = 6^2 + 4 = 40$.

It remains to separate orbits in the variety $\mathcal{Q}_1 = \mathcal{H}_1 \oplus \mathcal{H}_2 \oplus \mathcal{H}_3$.

The set $\check{\mathcal{F}}_1$ separate orbits everywhere but in $\mathcal{Q}_1 = \mathcal{H}_1 \oplus \mathcal{H}_2 \oplus \mathcal{H}_3$. We identify the slice (\mathcal{S}'_1, N_1) by the same method.

A set separating orbits in \mathcal{Z}'_1

The following set in $\mathbb{R}[\mathcal{S}'_1]^{N_1}$ separates the orbits in \mathcal{Z}'_1 :

$$\mathcal{F}_{1}' = \left\{ \begin{array}{rrr} t_{1}' & = & d_{1}d_{j}, & 2 \leq j \leq 3 \\ D_{2j}' & = & \frac{1}{2}(p_{-ij} + p_{-ji}) & 2 \leq i \leq j \leq 6 \\ S_{ij1}' & = & i\left(p_{-ij} - p_{-ji}\right)d_{1}, & 2 \leq i < j \leq 6 \end{array} \right\}$$

 $\#\mathcal{F}'_1 = 28.$

It remains to separate orbits in the variety $\mathcal{Q}_1'=\mathcal{H}_2\oplus\mathcal{H}_3.$

 $\begin{array}{ccc} \text{Recall the isomorphism} \left\{ \begin{array}{ccc} \mathrm{S}_3(\mathbb{R}) & \longrightarrow & \mathbb{R}_2[U,V,W] \\ S & \mapsto & \{x \mapsto x^t Sx \end{array} \right. \end{array} \\ \text{ to traceless matrices } \mathcal{A}. \end{array}$

Proposition

Note $\mathcal{D} \subset S_3(\mathbb{R})$ the subspace of diagonal matrices and $\mathcal{S}_2 = \mathcal{D} \oplus \mathcal{H}_3$. Its normalizer is $N_2 = B_3 \cap SO_3(\mathbb{R})$. The pair (\mathcal{S}_2, N_2) is a Seshadri slice.

Then, $\mathcal{Z}_2 = (\mathcal{H}_2 \setminus \mathcal{D}^o) \oplus \mathcal{H}_3$, where \mathcal{D}^o is the subspace of diagonal matrices with two identic coefficients.

The non separated variety

The remaining varitey is $\mathcal{Q}_2 = (\mathrm{SO}_3(\mathbb{R}) \times \mathcal{D}^\circ) \oplus \mathcal{H}_3 = \mathcal{A}^* \oplus \mathcal{H}_3$, where \mathcal{A}^* is the space of traceless matrices with two identic eigenvalues.

We endow \mathcal{H}_3 with the cubic harmonic basis $(a_1, a_2, a_3, b_1, b_2, b_3, c)$. Note $[\lambda] = (\lambda_1 - \lambda_2)(\lambda_1 - \lambda_3)(\lambda_2 - \lambda_3)$.

A set separating orbits in \mathcal{Z}_2

 $\begin{array}{l} R_c = [\lambda]c, \ R_0 = b_1b_2b_3, \ R_1 = [\lambda] \left(a_1b_2b_3 + a_2b_1b_3 + a_3b_1b_2\right), \\ R_2 = [\lambda]^2 \left(b_1a_2a_3 + b_2a_1a_3 + b_3a_1a_2\right), \ R_3 = [\lambda]^3a_1a_2a_3 \ \text{and the twelve entries of} \\ \text{the following matrix separates the orbits of N_2 in \mathcal{Z}_2.} \end{array}$

$$R = \begin{pmatrix} 1 & 1 & 1 \\ \lambda_1 & \lambda_2 & \lambda_3 \\ \lambda_1^2 & \lambda_2^2 & \lambda_3^2 \end{pmatrix} \begin{pmatrix} \lambda_1 & a_1^2 & b_1^2 & [\lambda]a_1b_1 \\ \lambda_2 & a_2^2 & b_2^2 & [\lambda]a_2b_2 \\ \lambda_3 & a_3^2 & b_3^2 & [\lambda]a_3b_3 \end{pmatrix}$$

NB: $\# \mathcal{F}_2 = 17$.

The non separated variety

The remaining varitey is $\mathcal{Q}_2 = (\mathrm{SO}_3(\mathbb{R}) \times \mathcal{D}^\circ) \oplus \mathcal{H}_3 = \mathcal{A}^* \oplus \mathcal{H}_3$, where \mathcal{A}^* is the space of traceless matrices with two identic eigenvalues.

Proposition

Consider the matrix M := Diag(2, -1, -1), and $\mathcal{U}_3 \subset \mathcal{A}^*$ the vector line $\{t_1M, t_1 \in \mathbb{R}\}$. Complete it by $\mathcal{S}_3 = \mathcal{U}_3 \oplus \mathcal{H}_3$. Then, $(\mathcal{S}_3, \mathbb{N}_3)$ is a Seshadri slice with normalizer $\mathbb{N}_3 \cong \mathcal{O}_2(\mathbb{R})$ given by

$$N_{3} = \left\{ \begin{pmatrix} \det(g) & 0 & 0 \\ 0 & g \\ 0 & g \end{pmatrix}, g \in O_{2}(\mathbb{R}) \right\}$$

Figure: The Seshadri slice in Q_2 .

$$\mathcal{Z}_3 = \{t_1 \neq 0\}$$
 and $\mathcal{Q}_3 = \mathcal{H}_3$

The separating set [HJ24]

The set $\mathcal{F}_3 \in \mathbb{R}[\mathcal{S}_3]^{N_3}$ of cardinal 12 separates orbits in \mathcal{Z}_3 :

$$\mathcal{F}_{3} = \begin{cases} t_{1} \ d_{3}^{2} \ S_{353} \ S_{363} \ S_{563} \\ P_{33} \ P_{35} \ P_{36} \ P_{55} \ P_{56} \ P_{66} \\ T_{561} = (y_{5}y_{-3}^{2} - y_{-5}y_{3}^{2})(y_{6}y_{-3}^{3} - y_{-6}y_{3}^{3}) \end{cases}$$

At this step, orbits are separated everywhere but in $\mathcal{Q}_3 = \mathcal{H}_3$. Here a separating set is provided in the literature:

A separating set on $\mathcal{Q}_3 = \mathcal{H}_3$ [SB97]

The following set of polynomials separates the orbits of $\mathrm{SO}_3(\mathbb{R})$ in the space of symmetric traceless tensors:

$$\mathcal{F}_{4} = \left\{ \begin{array}{ccc} K_{2} = \sum\limits_{i,j,k} A_{ijk}^{2} & K_{4} = \sum\limits_{i,j} B_{ij}^{2} & K_{6} = \sum\limits_{i} C_{i}^{2} \\ K_{10} = \sum\limits_{i,j,k} A_{ijk} C_{i} C_{j} C_{k} & K_{15} = \sum\limits_{i,j,k,p,q} \varepsilon_{ijk} C_{i} B_{jp} C_{p} A_{kqr} C_{q} C_{r} \end{array} \right\}$$

▲□ > ▲□ > ▲目 > ▲目 > ▲目 > ● ●

The final set

The union $\check{\mathcal{F}} = \check{\mathcal{F}}_1 \cup \check{\mathcal{F}}_1' \cup \check{\mathcal{F}}_2 \cup \check{\mathcal{F}}_3 \cup \check{\mathcal{F}}_4$ separates the orbits of the representation of $\mathrm{SO}_3(\mathbb{R})$ on $\mathbb{P}\mathrm{iez}$.

NB: We obtain the final cardinal $\#\check{\mathcal{F}}_4 = 40 + 28 + 17 + 12 + 5 = 102$.

To compare

[Oli14] provides a generating set of $\mathbb{R}[\mathbb{P}iez]^{SO_3(\mathbb{R})}$ of cardinality 495. [Che+19] deduces, by another method, a minimal separating set of cardinality 260.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Separating orbits with the Seshadri slice lemma

2

Slices in the piezoelectricity tensors

- \bullet A slice with \mathcal{H}_1
- \bullet Slices with \mathcal{H}_2

3 Stratification of the orbit space

We aim to give polynomial equalities defining the strata of the orbit space $\mathbb{P}iez/SO_3(\mathbb{R})$. The set of isotropy classes is provided by clip operations [Azz23]. The induced decomposition of $\mathbb{P}iez$ in disjoint subsets provides an efficient strategy to determine the isotropy group of a vector *h*:

Strategy

- The evaluation of some specific polynomials in $\check{\mathcal{F}}$ allows to determine which subset $\tilde{\mathcal{Z}}_i$ contains *h*.
- Then the set $\check{\mathcal{F}}_i$ determines the isotropy group in N_i .

Figure: Poset of isotropy classes for $\mathbb{P}iez$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Proposition [HJ24]

If $D_{11} \in \mathcal{F}_1$ does not vanish at h, then $h \in \tilde{\mathcal{Z}}_1 = \mathbb{P}iez \setminus \mathcal{H}_1 \oplus \mathcal{H}_2 \oplus \mathcal{H}_3$. In that case we have the following stratification:

- $h \in \overline{\Sigma_{SO_2(\mathbb{R})}} \Leftrightarrow \forall 1 \leq i \leq 6, P_{ii}(h) = 0.$
- $h \in \overline{\Sigma_{C_2}} \Leftrightarrow \forall i = 1, 2, 3, 6, P_{ii}(h) = 0.$
- $h \in \overline{\Sigma_{C_3}} \Leftrightarrow \forall i = 1, 2, 3, 4, 5, P_{ii}(h) = 0.$

Suppose now that $D_{11}(h) = 0$. That is $h \notin \tilde{\mathbb{Z}}_1$ and:

Proposition [HJ24]

If $D'_{22} \in \mathcal{F}'_1$ does not vanish at h, then $h \in \tilde{\mathcal{Z}}'_1$. In that case we have the following stratification:

A D > 4 回 > 4 回 > 4 回 > 1 回 9 Q Q

•
$$h \in \overline{\Sigma_{SO_2(\mathbb{R})}} \Leftrightarrow \forall 2 \leq i \leq 6, P'_{ii}(h) = 0.$$

•
$$h \in \overline{\Sigma_{C_2}} \Leftrightarrow \forall i = 2, 3, 6, P'_{ii}(h) = 0.$$

• $h \in \overline{\Sigma_{C_3}} \Leftrightarrow \forall i = 2, 3, 4, 5, P'_{ii}(h) = 0.$

Assume that $D_{11}(h) = D'_{22}(h) = 0$. That is, $h \notin \tilde{\mathcal{Z}}_1 \sqcup \tilde{\mathcal{Z}}'_1$ and:

Proposition

If $[\lambda]^2$ does not vanish at h, then $h \in \tilde{\mathcal{Z}}_2$. In that case we have the following stratification:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

•
$$h \in \overline{\Sigma_{D_2}} \Leftrightarrow \begin{cases} R_{1,1}(h) = a_1^2 + a_2^2 + a_3^2 = 0 \\ R_{1,2}(h) = b_1^2 + b_2^2 + b_3^2 = 0 \\ \forall 0 \le j \le 3, R_j(h) = 0 \\ \begin{pmatrix} \forall 0 \le j \le 3, R_j(h) = 0 \\ (R_{1,1}R_{3,1} - R_{2,1}^2)(h) = 0 \\ (R_{1,2}R_{3,2} - R_{2,2}^2)(h) = 0 \\ ([\lambda]^2 R_{1,1}R_{1,2} - R_{1,3}^2)(h) = 0 \end{cases}$$

Assume that $D_{11}(h) = D'_{22}(h) = [\lambda]^2(h) = 0$. That is, $h \notin \tilde{\mathcal{Z}}_1 \sqcup \tilde{\mathcal{Z}}_1' \sqcup \tilde{\mathcal{Z}}_2$ and:

Proposition [HJ24]

If $t_1 \in \mathcal{F}_3$ does not vanish at h, then $h \in \tilde{\mathcal{Z}}_3$. In that case we have the following stratification:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

$$\begin{split} \bullet & h \in \overline{\Sigma_{C_2}} \Leftrightarrow P_{33}(h) = P_{66}(h) = 0. \\ \bullet & h \in \overline{\Sigma_{C_3}} \Leftrightarrow P_{33}(h) = P_{55}(h) = 0. \\ \bullet & h \in \overline{\Sigma_{D_2}} \Leftrightarrow \begin{cases} P_{33}(h) = P_{66}(h) = 0\\ D_{33}(h) = 0 \end{cases} \\ \bullet & h \in \overline{\Sigma_{D_3}} \Leftrightarrow \begin{cases} P_{33}(h) = P_{55}(h) = 0\\ D_{33}(h) = 0 \end{cases} \\ \bullet & h \in \overline{\Sigma_{SO_2(\mathbb{R})}} \Leftrightarrow P_{33}(h) = P_{55}(h) = P_{66}(h) = 0. \\ \bullet & h \in \overline{\Sigma_{O_2(\mathbb{R})}} \Leftrightarrow \begin{cases} P_{33}(h) = P_{55}(h) = P_{66}(h) = 0\\ D_{33}(h) = 0 \end{cases} \\ \end{split}$$

Fourth and last case: $h \in \mathcal{H}_3$

Assume that $D_{11}(h) = D'_{22}(h) = [\lambda]^2(h) = t_1(h) = 0$. That is, $h \in \mathcal{H}_3$. the representation on \mathcal{H}_3 is simple enough to compute directly the stratification:

Proposition

 \bullet The strata $\overline{\Sigma_{\mathrm{C_2}}}$ is defined by the system

$$\begin{bmatrix} -2K_2^6 + 14K_2^4K_4 - 6K_2^3K_6 - 32K_2^2K_4^2 + 12K_2K_4K_6 + 24K_4^3 + 9K_6^2 = 0 \\ -K_2^5 + 5K_2^3K_4 - 6K_2^2K_6 - 6K_2K_4^2 + 9K_4K_6 + 9K_{10} = 0 \end{bmatrix}$$

 \bullet The strata $\overline{\Sigma_{\mathrm{C}_{\boldsymbol{3}}}}$ is defined by the system

$$\left(\begin{array}{c} K_2^6 - 8K_2^4K_4 + 6K_2^3K_6 + 21K_2^2K_4^2 - 18K_2K_4K_6 - 18K_4^3 + 27K_6^2 = 0\\ -K_2^5 + 5K_2^3K_4 + 3K_2^2K_6 - 6K_2K_4^2 - 18K_4K_6 + 27K_{10} = 0 \end{array} \right)$$

• The strata
$$\overline{\Sigma_{\mathcal{T}}}$$
 is defined by the system
$$\begin{cases} -K_2^2 + 3K_4 = 0\\ K_6 = 0\\ K_{10} = 0 \end{cases}$$
• The strata $\overline{\Sigma_{D_3}}$ is defined by the system
$$\begin{cases} -K_2^2 + 2K_4 = 0\\ K_6 = 0\\ K_{10} = 0 \end{cases}$$
• The strata $\overline{\Sigma_{SO_2(\mathbb{R})}}$ is defined by the system
$$\begin{cases} -11K_2^2 + 25K_4 = 0\\ -8K_3^2 + 125K_6 = 0\\ -32K_2^5 + 3125K_{10} = 0 \end{cases}$$

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

n

- Provides inequalities defining each strata has a semialgebraic set.
 For the same reason, the sequencing seems to helps efficiently.
- Make the same on the Elasticity tensors: $\mathbb{E}la = \mathcal{H}_0 \oplus \mathcal{H}_0 \oplus \mathcal{H}_2 \oplus \mathcal{H}_2 \oplus \mathcal{H}_4$.

• Extension to the action of $O_3(\mathbb{C})$ on $\mathbb{P}iez$?

Bibliography

- [SB97] GF Smith and G Bao. "Isotropic invariants of traceless symmetric tensors of orders three and four". In: International journal of engineering science 35.15 (1997), pp. 1457–1462.
- [CS05] J-L. Colliot-Thélene and J-J. Sansuc. "The rationality problem for fields of invariants under linear algebraic groups (with special regards to the Brauer group)". In: arXiv preprint math/0507154 (2005).
- [Oli14] M. Olive. "Géométrie des espaces de tenseurs Une approche effective appliquée à la mécanique des milieux continus". PhD thesis. AMU, 2014.
- [Che+19] Y. Chen, Z. Ming, L. Qi, and W. Zou. "A Polynomially Irreducible Functional Basis of Hemitropic Invariants of Piezoelectric Tensors". In: arXiv preprint arXiv:1901.01701 (2019).
- [Azz23] Perla Azzi. "Geometry of isotropy classes for representation of groups with applications in Mechanics of Materials". PhD thesis. Sorbonne université, 2023.
- [HJ24] E Hubert and M Jalard. "Separation of orbits of O2 and SO2". In: (June 2024). working paper or preprint. URL: https://inria.hal.science/hal-04604969.

• For $1 \leq i \leq n$, \mathcal{F}_i is a set of polynomials defined on \mathcal{S}_i :

 $\mathcal{F}_i \subset \mathbb{R}[\mathcal{S}_i]^{N_i}$

• They correspond to rational functions on Q_{i-1} with singularities on Q_i :

$$ilde{\mathcal{F}}_i \subset \mathbb{R}(\mathcal{Q}_{i-1})^{\mathrm{G}}$$

• In our examples, Q_i is an irreducible subvariety in Q_{i-1} , defined by the polynomial Q_i . Then, the denominators of functions $f \in \tilde{\mathcal{F}}_i$ is a power of Q_i .

Polynomial separating set

Note $\tilde{\mathcal{F}}_i = \left\{\frac{P_1}{Q_i^{a_1}}, ..., \frac{P_n}{Q_i^{a_n}}\right\} \subset \mathbb{R}(\mathcal{Q}_{i-1})^{\mathrm{G}}$. Then, the set composed with Q_i and the numerators $\check{\mathcal{F}}_i = \{Q_i, P_1, ..., P_n\} \subset \mathbb{R}[\mathcal{Q}_{i-1}]^{\mathrm{G}}$ still separate orbits in $\tilde{\mathcal{Z}}_i$.

Extending polynomials of \mathcal{F}_3 on $\mathbb{P}iez \supset \mathcal{Q}_2$.

 \mathcal{Q}_2 is not a vector space. Hence, polynomials of $\check{\mathcal{F}}_2 \subset \mathbb{R}[\mathcal{Q}_2]^{\mathrm{SO}_3(\mathbb{R})}$ cannot be extended algebraically on Piez.

A separating set

Let \mathcal{F} be a set of invariant polynomials defined each on a G-stable subvariety in \mathcal{V} . We say that \mathcal{F} separates the orbits in \mathcal{V} if for any two points $x, y \in \mathcal{V}$ which are not in the same orbit, there is some $P \in \mathcal{F}$ defined at x and y such that $P(x) \neq P(y)$.

Figure: The variety Q_2 .

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @