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Introduction

We compute a set of invariant separating the orbits of some representations of
SO3(R), and stratify the orbit space. We proceed by decomposing the representation
V in a sequence of Seshadri slices.

Separating invariants

Let F be a set of invariant polynomials defined each on a G-stable subvariety in V.
We say that F separates the orbits in V if for any two points x,y € V which are not in
the same orbit, there is some P € F defined at x and y such that P(x) # P(y).

Piezoelectricity tensors

Piez is the space of three order tensors verifying Vi, j, k € {1,2,3}, Pjx = Pj.

dim(Piez) = 18.

[Oli14] provides a generating set of polynomials of cardinal 495.
[Che+19] deduces a minimal separating set of cardinality 260.
It is difficult to stratify the orbit space with such a cardinality.



A first example: on symmetric traceless tensors of order three ;3

A separating set on H3 [SB97]

Ky = ZAl‘zjk K4:ZB[Jz' KGIZC,'Z
ijk ij i

Kio = > A CiCiCy Kis = > € CiBjpCpAkgrCqCr
isj,k ij,k:p,q

The stratification of the orbit space is then obtained by computing the ideal of
relations on subvarieties:

Example: the strata of points of isotropy class C»

The strata X ¢, is defined by the system

—2K$ + 14K3 Kq — 6K3 Ko — 32K2KZ + 12K2Ka Ko + 24K3 + 9KZ =0
—K3 +5K3Ks — 6K2Ke — 6K2 K2 + 9KaKs + 9K10 = 0
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The Seshadri slice lemma

Sechadri slice Lemma [CS05]

Let G be a real algebraic group acting on a geometrically irreducible variety V. Take
S C V a geometrically irreducible subvariety and N < G its normalizer. Assume that

@ The closure of G X S is V.

o There is an non empty Zariski open subset Z C S such that for all g € G and
s € Z satisfying g(s) € Z, then there exists h € N such that h(s) = g(s).

Then, the restriction of invariants to S gives a field isomorphism

R(V)E 2 R(S)N

Definition

The pair (S,N) is named a Seshadri slice.




Separating orbits with the Seshadri slice lemma

Proposition

Note Z the stable open subset satisfying the second condition of the Seshadri slice
lemma and F C R[S]N separating the orbits in Z. Then, 7 C R(V)C separates orbits
inZ=Gx Z.

It remains a subvariety @ = G x (S \ Z) where the orbits are not generated.

Vv = Qo D Q1 D D) On—1 D QO
| a \ v /‘
(S1,N1) (S2,N2) (Sn; Na)
+ + t
y = Z LI Zs L LI Z LI 9n

where for each 1 </ < n, Q; is the variety non separated by the previous slice, namely
Qi =91\ (G x Z;). For each 1 < < n, consider F; a set of polynomials in
\“.-,—/

Zj
R[S;]Ni separating orbits in Z;. Consider also a last set F,11 C R[Q,]C separating
- n+1
orbits in Q,. The union F = |J F; is a set of rational functions separating orbits in
i=1

the disjoint union V = 21 U...UZ,U Op.
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The space of piezoelectricity tensors

Harmonic polynomials
Let d be an integer. The space of homogeneous harmonic polynomials of degree d is

o?P  9*P  0°P
={PER[U,V,W]y|V(P)= >— + — =
Hd { S [Ua ) ]d v( ) aUz + 8V2 + aWz 0}
The spaces H4 are endowed with the action pg : { SOZ(R) {P%L?id;,l

Irreducible representations of SO3(R)

The irreducible representations of SO3(R) are {(p4, Hd4),d € N}.

Piezoelectricity tensors

Piez = H1®H1DH2D Hs
~ p1Dp1Dp2dp3




A slice with 1

Sy = Vect(U) D H1 D Ho D Hz C Piez
Then, (81,N1) is a Seshadri slice with
normalizer N1 2 Ox(R) :

det(g) 0 0
N1—{< 0 >,g602(R)}
0 g

The separated set

Here, we have Z; = {s € §1|d1 # 0} C S1.
The remaining not separated variety is thus Q1 = Piez \ SO3(R) x Z;.




The action of N7 on &

Irreducible representations of O2(R)

The two dimensional irreducible representations of O2(R) are p; : O2(R) — GL(V}),
Jj € N* with

j0)  —sin(j6 _ 0 in(j6
pf(g:;‘?) - (?:80)) cis(J(é))) 28e pj(ge”’) - (Z?:((je)) —Sco(:(j)é))

The representation of N7 on S

The representation of N1 22 O2(R) on Sy is isomorphic to V3, @ Vo © V3 @ V2 @ Vs.

The spherical harmonic basis

For 1 < m < d note P the (d, m)t associated Legendre polynomial. The following
set of functions of (r, 8, ) is a polynomial basis for Ty

ym=  imtddeime pmicos(h)), 1< m<d
By:=< Y;m= i"m=drdemime Pm(cos(f)), 1<m<d
rd Pg(cos(e))

0
Yd

Then, the subspace generated by Y and YJ'" is stable by Ny, and it results:



The first separating set

Let (d1, do,ds, t1,y1,¥—-1,---, Y6, Y—6) be coordinates on
aiVaj ajVaj
Py

S1 =2V, Voo VIoVie Vs For1<i<j<6,wenotep =y 7 y 7
1 1 2 ) i J

A set separating orbits in Z; [HJ24]

The following set in IR[S1]N1 separates the orbits in Z3:

t1
7 Dy; = did;, 1<j<3
YT Po= 3(pojte)  1<i<j<6
Sin. = i(p—j—p—ji)di, 1<i<j<6

NB: #£F1 = 62 4 4 = 40.

It remains to separate orbits in the variety Q1 = H1 & Ho & Hs.



A second slice of same type

The set Fy separate orbits everywhere but in Q1 = H1 @ Hz @ Hiz. We identify the
slice (S1,N1) by the same method.

: e /
A set separating orbits in Z]

The following set in R[S]]N1 separates the orbits in Z]:

t
]_—/ Déj =] d]_dj, 2SJS3
17 P = 2(p—j+p-i) ZSISIS0
5[.’].1 = i(p—j—pji)di, 2<i<j<6

#F| = 28.

It remains to separate orbits in the variety Q) = Ho ® Hs.



A slice with >

S3(R) — Rz[U, \/7 W]

Recall the isomorphism { S s {xrsxiSx mapping Hz C Ro[U, V, W]

to traceless matrices A.

Proposition

Note D C S3(R) the subspace of diagonal matrices and S» = D @ H3z. Its normalizer
is N2 = Bz N SO3(R). The pair (S2,N32) is a Seshadri slice.

Then, 25 = (Hz \ D°) @ Hs, where D° is the subspace of diagonal matrices with two
identic coefficients.

The non separated variety

The remaining varitey is Q2 = (SO3(R) x D°) @ Hz = A* & H3z, where A* is the
space of traceless matrices with two identic eigenvalues.




The separating set on 2>

We endow H3 with the cubic harmonic basis (a1, a2, as, b1, b2, b3, ¢).
Note [)\] = ()\1 — )\2)()\1 — )\3)()\2 — )\3).

A set separating orbits in Z3

Re = [ANe, Ro = bibabs, Ry = [\ (a1b2bs + azb1 b3 + asb1by),
Ry = [M\]? (b1azaz + bpaias + bsaraz), Rs = [M3a1az2a3 and the twelve entries of
the following matrix separates the orbits of Ny in Z5.

1 1 1 A1 i bi [Aa1b1
R=1|X1 X A3 X2 a5 b5 [MNaxb2
)\% )\% )\% )\3 a% b% [)\] as b3

[}

NB: #F, = 17.

The non separated variety

The remaining varitey is Q2 = (SO3(R) x D°) @ Hz = A* & H3z, where A* is the
space of traceless matrices with two identic eigenvalues.




The slice in 9>

Proposition

Consider the matrix M := Diag(2,—1,—1), and
Uz C A* the vector line {t1M, t; € R}. Complete
it by S3 = U3 @ H3. Then, (S3,N3) is a Seshadri
slice with normalizer N3 22 O2(R) given by

[ det(g) | 0 0

N3={k 0‘ ),gGOz(R)}
0 g
Figure: The Seshadri slice in Q5.

Z3 ={t1 #0} and Q3 = H3

4

The separating set [HJ24]

The set F3 € R[S3]N3 of cardinal 12 separates orbits in Z3:

t1 d? Sss3  Ssez  Sses
F3 = P33 P35 P3ss Pss Pse  Pee

Tser = (vsy23 — y—5y2)(Yey33 — y—6¥3)




Separating orbits in O3 = H;3

At this step, orbits are separated everywhere but in Q3 = H3.
Here a separating set is provided in the literature:

A separating set on Q3 = H3 [SB97]

The following set of polynomials separates the orbits of SO3(R) in the space of
symmetric traceless tensors:

Ko = EkAUk Ka =3 B? Ko =3 C?
Fa = 1sJs 1) i
& Kio = > AjCiCiCk Kis = > eiCiBjpCoAigrCqCr

ik ijsk.pq




The final separating set

The union ¥ = F1 U ]:'{ U F> U F3 U Fy separates the orbits of the representation of
SO3(R) on Piez.

NB: We obtain the final cardinal #F; = 40 + 28 + 17 + 12+ 5 = 102.

To compare

[Oli14] provides a generating set of R[Piez]3°3(R) of cardinality 495.
[Che+19] deduces, by another method, a minimal separating set of cardinality 260.
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To stratify with the decomposition Piez = Z; U Z; U Z> U Z3 U H3

We aim to give polynomial equalities
defining the strata of the orbit space
Piez/SO3(R). The set of isotropy classes
is provided by clip operations [Azz23].

The induced decomposition of Piez in
disjoint subsets provides an efficient
strategy to determine the isotropy group of
a vector h:

e The evaluation of some specific
polynomials in F allows to determine
which subset Z; contains h.

e Then the set F; determines the isotropy
group in N;.

Figure: Poset of isotropy classes for Piez

SO3(R)
02(R)
/
SO2(R)
T
D> D3
Cz C3

/
\



First case: he€ Z; U Z;

Proposition [HJ24]

If D11 € Fi1 does not vanish at h, then h € Z; = Piez \ H1 ® H2 @ Hsz. In that case
we have the following stratification:

e he zSOg(R) S V1I<i<6, P,',‘(h) =0.
e heTc, & Vi=1,2,3,6, Pi(h) =0.
e he ZCB < Vi=1,2,3,4,5, P,,(h) =0.

Suppose now that Di1(h) = 0. Thatis h ¢ Z1 and:

Proposition [HJ24]

If D}, € Fj does not vanish at h, then h € Z{ In that case we have the following
stratification:

e he ZSOZ(R) & V2<i<6, Plll(h) =0.

e heXc, & Vi=2,3,6, Pi(h) =0.

e he¥c, & Vi=23,4,5 Pi(h)=0.




Second case: h € Z>

Assume that Dy1(h) = Db,(h) = 0. Thatis, h ¢ Z1 U Z] and:

Proposition

If [)\]2 does not vanish at h, then h € Z5. In that case we have the following
stratification:

— =2 2 2 _
OhEZDzﬁ{ Ruia(h) =ag + 23 +25 =0

Ry2(h) = b? + b3 + b§ =0
VO<j<3, Ri(h)=0
Ri1R31 — R§,1 (h)=0
Ri2Rs2 — R3,) (h) =0
)=0

([/\]2R1,1R1,2 —Rf3) (h

ehelc, &




Third case: h € Z3

Assume that Dy1(h) = Dby(h) = [N]2(h) = 0. That'is, h ¢ Z; U Z, U Z5 and:

Proposition [HJ24]

If 1 € F3 does not vanish at h, then h € Z3. In that case we have the following

stratification:

Oh6202<:>P33(h) Pe ()_0

e hc 203 = P33(h) P55( ) 0.
33

.heZiDz@{ Das Pes(h) = 0

- P: = Ps5(h) =
oheZD3©{ Pea(h) = Pos(h) = 0

h) =

) =
h)
)=0

e he ZSOZ(R) 54 P33(h) = P55(h) = Pﬁﬁ(h) =0.
3((’7

'hemé{% )) Pss(h) = Pes(h) =0

h) =0

AA AA




Fourth and last case: h € Hj3

Assume that Dy11(h) = Djy(h) = [A]?(h) = t1(h) = 0. That is, h € H3. the
representation on 3 is simple enough to compute directly the stratification:

® The strata >, is defined by the system

—2K$ + 14K3 Ky — 6K3 Ko — 32KZK2 + 12K2Ka Ko + 24K3 + 9KZ2 =0
—K3 +5K3Ks — 6K2Ks — 6K2 K2 + 9Ka Ko + 9K10 = 0

® The strata >, is defined by the system

KS — 8KSKa + 6K3Ks + 21KZKZ — 18KoKa K — 18K3 +2TK2 =0
—K3 +5K3Ks + 3K2Ke — 6K2 K2 — 18KaKg + 27K10 = 0

- —K22 +3Ks =0
e The strata X7 is defined by the system Ke =0
Kio =0
L —KZ +2Ks =0
e The strata X p, is defined by the system Ke =0
—11KZ + 25K4 = 0
e The strata X530, (r) is defined by the system —8K§’ + 125Ke =0

—32K3 +3125K10 =0




To go further

@ Provides inequalities defining each strata has a semialgebraic set.
For the same reason, the sequencing seems to helps efficiently.

o Make the same on the Elasticity tensors: Ela = Ho & Ho & Ha & Ha D Ha.

o Extension to the action of O3(C) on Piez?
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Polynomial or rational invariants?

e For 1 << n, F;is a set of polynomials defined on S;:
F; CR[SN
e They correspond to rational functions on Q;_; with singularities on Q;:
Fi CR(Qi-1)¢

e In our examples, Q; is an irreducible subvariety in Q;_1, defined by the polynomial
Q;. Then, the denominators of functions f € F; is a power of Q;.

Polynomial separating set

Note F; = {%, ey %} C R(Q;_1)S. Then, the set composed with Q; and the

numerators F; = {Q;, P1, ..., Pn} C R[Q;_1]C still separate orbits in Z;.




Extending polynomials of /3 on Piez D O».

Q> is not a vector space. Hence, polynomials of
Fo C R[Q2]893(®) cannot be extended algebraically
on Piez.

A separating set

Let F be a set of invariant polynomials defined
each on a G-stable subvariety in V. We say that F
separates the orbits in V if for any two points

x,y € V which are not in the same orbit, there is
some P € F defined at x and y such that

P(x) # P(y).

Q=A"®Hs3

Figure: The variety Q.
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