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Introduction

We compute a set of invariant separating the orbits of some representations of
SO3(R), and stratify the orbit space. We proceed by decomposing the representation
V in a sequence of Seshadri slices.

Separating invariants

Let F be a set of invariant polynomials defined each on a G-stable subvariety in V.
We say that F separates the orbits in V if for any two points x , y ∈ V which are not in
the same orbit, there is some P ∈ F defined at x and y such that P(x) 6= P(y).

Piezoelectricity tensors

Piez is the space of three order tensors verifying ∀i , j , k ∈ {1, 2, 3}, Pijk = Pikj .

dim(Piez) = 18.
[Oli14] provides a generating set of polynomials of cardinal 495.
[Che+19] deduces a minimal separating set of cardinality 260.
It is difficult to stratify the orbit space with such a cardinality.



A first example: on symmetric traceless tensors of order three H3

A separating set on H3 [SB97]


K2 =

∑
i,j,k

A2
ijk K4 =

∑
i,j

B2
ij K6 =

∑
i
C2
i

K10 =
∑
i,j,k

AijkCiCjCk K15 =
∑

i,j,k,p,q
εijkCiBjpCpAkqrCqCr


The stratification of the orbit space is then obtained by computing the ideal of
relations on subvarieties:

Example: the strata of points of isotropy class C2

The strata ΣC2 is defined by the system{
−2K6

2 + 14K4
2K4 − 6K3

2K6 − 32K2
2K

2
4 + 12K2K4K6 + 24K3

4 + 9K2
6 = 0

−K5
2 + 5K3

2K4 − 6K2
2K6 − 6K2K2

4 + 9K4K6 + 9K10 = 0



1 Separating orbits with the Seshadri slice lemma

2 Slices in the piezoelectricity tensors
A slice with H1
Slices with H2

3 Stratification of the orbit space



Table of Contents

1 Separating orbits with the Seshadri slice lemma

2 Slices in the piezoelectricity tensors
A slice with H1
Slices with H2

3 Stratification of the orbit space



The Seshadri slice lemma

Sechadri slice Lemma [CS05]

Let G be a real algebraic group acting on a geometrically irreducible variety V. Take
S ⊂ V a geometrically irreducible subvariety and N < G its normalizer. Assume that

The closure of G× S is V.
There is an non empty Zariski open subset Z ⊂ S such that for all g ∈ Ĝ and
s ∈ Ẑ satisfying g(s) ∈ Ẑ, then there exists h ∈ N̂ such that h(s) = g(s).

Then, the restriction of invariants to S gives a field isomorphism

R(V)G ∼= R(S)N

Definition

The pair (S,N) is named a Seshadri slice.



Separating orbits with the Seshadri slice lemma

Proposition

Note Z the stable open subset satisfying the second condition of the Seshadri slice
lemma and F ⊂ R[S]N separating the orbits in Z. Then, F̃ ⊂ R(V)G separates orbits
in Z̃ = G×Z.

It remains a subvariety Q = G× (S \ Z) where the orbits are not generated.

Strategy

V = Q0 ⊃ Q1 ⊃ ... ⊃ Qn−1 ⊃ Qn

| ↗ | ↗ ↗ | ↗
(S1,N1) (S2,N2) ... (Sn,Nn)
↓ ↓ ↓

V = Z̃1 t Z̃2 t ... t Z̃n t Qn

where for each 1 ≤ i ≤ n, Qi is the variety non separated by the previous slice, namely
Qi = Qi−1 \ (G×Zi )︸ ︷︷ ︸

Z̃i

. For each 1 ≤ i ≤ n, consider Fi a set of polynomials in

R[Si ]Ni separating orbits in Zi . Consider also a last set Fn+1 ⊂ R[Qn]G separating

orbits in Qn. The union F̃ =
n+1⋃
i=1
F̃i is a set of rational functions separating orbits in

the disjoint union V = Z̃1 t ... t Z̃n tQn.
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The space of piezoelectricity tensors

Harmonic polynomials

Let d be an integer. The space of homogeneous harmonic polynomials of degree d is

Hd :=

{
P ∈ R[U,V ,W ]d

∣∣∣∣∇(P) =
∂2P

∂U2 +
∂2P

∂V 2 +
∂2P

∂W 2 = 0
}

The spaces Hd are endowed with the action ρd :

{
SO3(R) −→ GL(Hd )

g 7−→ {P → P ◦ g−1

Irreducible representations of SO3(R)

The irreducible representations of SO3(R) are {(ρd ,Hd ), d ∈ N}.

Piezoelectricity tensors

Piez ∼= H1 ⊕H1 ⊕H2 ⊕H3
ρ ∼ ρ1 ⊕ ρ1 ⊕ ρ2 ⊕ ρ3



A slice with H1

S1 := Vect(U)⊕H1 ⊕H2 ⊕H3 ⊂ Piez
Then, (S1,N1) is a Seshadri slice with
normalizer N1 ∼= O2(R) :

N1 =


 det(g) 0 0

0
0 g

 , g ∈ O2(R)


S2

U

S1

V

W

The separated set

Here, we have Z1 = {s ∈ S1 | d1 6= 0} ⊂ S1.
The remaining not separated variety is thus Q1 = Piez \ SO3(R)×Z1.



The action of N1 on S1

Irreducible representations of O2(R)

The two dimensional irreducible representations of O2(R) are ρj : O2(R) 7−→ GL(Vj ),
j ∈ N∗ with

ρj (g
+
eiθ

) =

(
cos(jθ) − sin(jθ)
sin(jθ) cos(jθ)

)
and ρj (g

−
eiθ

) =

(
cos(jθ) sin(jθ)
sin(jθ) − cos(jθ)

)

The representation of N1 on S1

The representation of N1 ∼= O2(R) on S1 is isomorphic to V3
−1 ⊕ V0 ⊕ V3

1 ⊕ V2
2 ⊕ V3.

The spherical harmonic basis

For 1 ≤ m ≤ d note Pm
d the (d ,m)th associated Legendre polynomial. The following

set of functions of (r , θ, ϕ) is a polynomial basis for Ĥd :

B̂d :=


Ym
d = im+d rd eimϕ Pm

d (cos(θ)), 1 ≤ m ≤ d

Y−m
d = i−m−d rd e−imϕ Pm

d (cos(θ)), 1 ≤ m ≤ d
Y 0
d = rd P0

d (cos(θ))


Then, the subspace generated by Ym

d and Y−m
d is stable by N1, and it results:



The first separating set

Let (d1, d2, d3, t1, y1, y−1, ..., y6, y−6) be coordinates on

S1 ∼= V3
−1 ⊕ V0 ⊕ V3

1 ⊕ V2
2 ⊕ V3. For 1 ≤ i ≤ j ≤ 6, we note p−ij = y

ai∨aj
ai
−i y

ai∨aj
aj

j .

A set separating orbits in Z1 [HJ24]

The following set in R[S1]N1 separates the orbits in Z1:

F1 =


t1

D1j = d1dj , 1 ≤ j ≤ 3
Pij = 1

2 (p−ij + p−ji ) 1 ≤ i ≤ j ≤ 6
Sij1 = i

(
p−ij − p−ji

)
d1, 1 ≤ i < j ≤ 6


NB: #F1 = 62 + 4 = 40.

It remains to separate orbits in the variety Q1 = H1 ⊕H2 ⊕H3.



A second slice of same type

The set F̌1 separate orbits everywhere but in Q1 = H1 ⊕H2 ⊕H3. We identify the
slice (S′1,N1) by the same method.

A set separating orbits in Z′1
The following set in R[S′1]N1 separates the orbits in Z′1:

F ′1 =


t′1

D′2j = d1dj , 2 ≤ j ≤ 3
P′ij = 1

2 (p−ij + p−ji ) 2 ≤ i ≤ j ≤ 6
S ′ij1 = i

(
p−ij − p−ji

)
d1, 2 ≤ i < j ≤ 6


#F ′1 = 28.

It remains to separate orbits in the variety Q′1 = H2 ⊕H3.



A slice with H2

Recall the isomorphism
{

S3(R) −→ R2[U,V ,W ]
S 7→ {x 7→ x tSx

mapping H2 ⊂ R2[U,V ,W ]

to traceless matrices A.

Proposition

Note D ⊂ S3(R) the subspace of diagonal matrices and S2 = D ⊕H3. Its normalizer
is N2 = B3 ∩ SO3(R). The pair (S2,N2) is a Seshadri slice.

Then, Z2 = (H2 \ Do)⊕H3, where Do is the subspace of diagonal matrices with two
identic coefficients.

The non separated variety

The remaining varitey is Q2 = (SO3(R)×Do)⊕H3 = A∗ ⊕H3, where A∗ is the
space of traceless matrices with two identic eigenvalues.



The separating set on Z2

We endow H3 with the cubic harmonic basis (a1, a2, a3, b1, b2, b3, c).
Note [λ] = (λ1 − λ2)(λ1 − λ3)(λ2 − λ3).

A set separating orbits in Z2

Rc = [λ]c, R0 = b1b2b3, R1 = [λ] (a1b2b3 + a2b1b3 + a3b1b2),
R2 = [λ]2 (b1a2a3 + b2a1a3 + b3a1a2) , R3 = [λ]3a1a2a3 and the twelve entries of
the following matrix separates the orbits of N2 in Z2.

R =

 1 1 1
λ1 λ2 λ3
λ2

1 λ2
2 λ2

3

λ1 a2
1 b2

1 [λ]a1b1
λ2 a2

2 b2
2 [λ]a2b2

λ3 a2
3 b2

3 [λ]a3b3


NB: #F2 = 17.

The non separated variety

The remaining varitey is Q2 = (SO3(R)×Do)⊕H3 = A∗ ⊕H3, where A∗ is the
space of traceless matrices with two identic eigenvalues.



The slice in Q2

Proposition

Consider the matrix M := Diag(2,−1,−1), and
U3 ⊂ A∗ the vector line {t1M, t1 ∈ R}. Complete
it by S3 = U3 ⊕H3. Then, (S3,N3) is a Seshadri
slice with normalizer N3 ∼= O2(R) given by

N3 =


 det(g) 0 0

0
0 g

 , g ∈ O2(R)


Piez

S3

Q2

0

(M,H)

SO3(R)× (M,H)

Figure: The Seshadri slice in Q2.

Z3 = {t1 6= 0} and Q3 = H3

The separating set [HJ24]

The set F3 ∈ R[S3]N3 of cardinal 12 separates orbits in Z3:

F3 =


t1 d2

3 S353 S363 S563
P33 P35 P36 P55 P56 P66

T561 = (y5y2
−3 − y−5y2

3 )(y6y3
−3 − y−6y3

3 )





Separating orbits in Q3 = H3

At this step, orbits are separated everywhere but in Q3 = H3.
Here a separating set is provided in the literature:

A separating set on Q3 = H3 [SB97]

The following set of polynomials separates the orbits of SO3(R) in the space of
symmetric traceless tensors:

F4 =


K2 =

∑
i,j,k

A2
ijk K4 =

∑
i,j

B2
ij K6 =

∑
i
C2
i

K10 =
∑
i,j,k

AijkCiCjCk K15 =
∑

i,j,k,p,q
εijkCiBjpCpAkqrCqCr





The final separating set

The final set

The union F̌ = F̌1 ∪ F̌ ′1 ∪ F̌2 ∪ F̌3 ∪ F̌4 separates the orbits of the representation of
SO3(R) on Piez.

NB: We obtain the final cardinal #F̌4 = 40 + 28 + 17 + 12 + 5 = 102.

To compare

[Oli14] provides a generating set of R[Piez]SO3(R) of cardinality 495.
[Che+19] deduces, by another method, a minimal separating set of cardinality 260.
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To stratify with the decomposition Piez = Z̃1 t Z̃ ′1 t Z̃2 t Z̃3 tH3

We aim to give polynomial equalities
defining the strata of the orbit space
Piez/SO3(R). The set of isotropy classes
is provided by clip operations [Azz23].
The induced decomposition of Piez in
disjoint subsets provides an efficient
strategy to determine the isotropy group of
a vector h:

Strategy

• The evaluation of some specific
polynomials in F̌ allows to determine
which subset Z̃i contains h.
• Then the set F̌i determines the isotropy
group in Ni .

Figure: Poset of isotropy classes for Piez

SO3(R)

SO2(R)

O2(R)

T

D2 D3

C2 C3

{e}



First case: h ∈ Z̃1 t Z̃ ′1

Proposition [HJ24]

If D11 ∈ F1 does not vanish at h, then h ∈ Z̃1 = Piez \ H1 ⊕H2 ⊕H3. In that case
we have the following stratification:
• h ∈ ΣSO2(R) ⇔ ∀1 ≤ i ≤ 6, Pii (h) = 0.
• h ∈ ΣC2 ⇔ ∀i = 1, 2, 3, 6, Pii (h) = 0.
• h ∈ ΣC3 ⇔ ∀i = 1, 2, 3, 4, 5, Pii (h) = 0.

Suppose now that D11(h) = 0. That is h /∈ Z̃1 and:

Proposition [HJ24]

If D′22 ∈ F ′1 does not vanish at h, then h ∈ Z̃′1. In that case we have the following
stratification:
• h ∈ ΣSO2(R) ⇔ ∀2 ≤ i ≤ 6, P′ii (h) = 0.
• h ∈ ΣC2 ⇔ ∀i = 2, 3, 6, P′ii (h) = 0.
• h ∈ ΣC3 ⇔ ∀i = 2, 3, 4, 5, P′ii (h) = 0.



Second case: h ∈ Z̃2

Assume that D11(h) = D′22(h) = 0. That is, h /∈ Z̃1 t Z̃′1 and:

Proposition

If [λ]2 does not vanish at h, then h ∈ Z̃2. In that case we have the following
stratification:

• h ∈ ΣD2 ⇔
{

R1,1(h) = a2
1 + a2

2 + a2
3 = 0

R1,2(h) = b2
1 + b2

2 + b2
3 = 0

• h ∈ ΣC2 ⇔


∀ 0 ≤ j ≤ 3, Rj (h) = 0(

R1,1R3,1 − R2
2,1

)
(h) = 0(

R1,2R3,2 − R2
2,2

)
(h) = 0(

[λ]2R1,1R1,2 − R2
1,3

)
(h) = 0



Third case: h ∈ Z̃3

Assume that D11(h) = D′22(h) = [λ]2(h) = 0. That is, h /∈ Z̃1 t Z̃′1 t Z̃2 and:

Proposition [HJ24]

If t1 ∈ F3 does not vanish at h, then h ∈ Z̃3. In that case we have the following
stratification:
• h ∈ ΣC2 ⇔ P33(h) = P66(h) = 0.
• h ∈ ΣC3 ⇔ P33(h) = P55(h) = 0.

• h ∈ ΣD2 ⇔
{

P33(h) = P66(h) = 0
D33(h) = 0

• h ∈ ΣD3 ⇔
{

P33(h) = P55(h) = 0
D33(h) = 0

• h ∈ ΣSO2(R) ⇔ P33(h) = P55(h) = P66(h) = 0.

• h ∈ ΣO2(R) ⇔
{

P33(h) = P55(h) = P66(h) = 0
D33(h) = 0



Fourth and last case: h ∈ H3

Assume that D11(h) = D′22(h) = [λ]2(h) = t1(h) = 0. That is, h ∈ H3. the
representation on H3 is simple enough to compute directly the stratification:

Proposition

• The strata ΣC2 is defined by the system{
−2K6

2 + 14K4
2K4 − 6K3

2K6 − 32K2
2K

2
4 + 12K2K4K6 + 24K3

4 + 9K2
6 = 0

−K5
2 + 5K3

2K4 − 6K2
2K6 − 6K2K2

4 + 9K4K6 + 9K10 = 0

• The strata ΣC3 is defined by the system{
K6

2 − 8K4
2K4 + 6K3

2K6 + 21K2
2K

2
4 − 18K2K4K6 − 18K3

4 + 27K2
6 = 0

−K5
2 + 5K3

2K4 + 3K2
2K6 − 6K2K2

4 − 18K4K6 + 27K10 = 0

• The strata ΣT is defined by the system

 −K2
2 + 3K4 = 0

K6 = 0
K10 = 0

• The strata ΣD3 is defined by the system

 −K2
2 + 2K4 = 0

K6 = 0
K10 = 0

• The strata ΣSO2(R) is defined by the system

 −11K2
2 + 25K4 = 0

−8K3
2 + 125K6 = 0

−32K5
2 + 3125K10 = 0



To go further

Provides inequalities defining each strata has a semialgebraic set.
For the same reason, the sequencing seems to helps efficiently.

Make the same on the Elasticity tensors: Ela = H0 ⊕H0 ⊕H2 ⊕H2 ⊕H4.

Extension to the action of O3(C) on Piez?
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Polynomial or rational invariants?

• For 1 ≤ i ≤ n, Fi is a set of polynomials defined on Si :

Fi ⊂ R[Si ]Ni

• They correspond to rational functions on Qi−1 with singularities on Qi :

F̃i ⊂ R(Qi−1)G

• In our examples, Qi is an irreducible subvariety in Qi−1, defined by the polynomial
Qi . Then, the denominators of functions f ∈ F̃i is a power of Qi .

Polynomial separating set

Note F̃i =

{
P1
Q

a1
i

, ..., Pn

Q
an
i

}
⊂ R(Qi−1)G. Then, the set composed with Qi and the

numerators F̌i = {Qi ,P1, ...,Pn} ⊂ R[Qi−1]G still separate orbits in Z̃i .



Extending polynomials of F̌3 on Piez ⊃ Q2.

Q2 is not a vector space. Hence, polynomials of
F̌2 ⊂ R[Q2]SO3(R) cannot be extended algebraically
on Piez.

A separating set

Let F be a set of invariant polynomials defined
each on a G-stable subvariety in V. We say that F
separates the orbits in V if for any two points
x , y ∈ V which are not in the same orbit, there is
some P ∈ F defined at x and y such that
P(x) 6= P(y).

Piez

Q2 = A∗ ⊕H3

det(A) ≥ 0

det(A) ≤ 0

0

Figure: The variety Q2.
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