Separation and stratification of the orbits of the representation of $SO_3(\mathbb{R})$ on piezoelectricity tensors

Martin Jalard

INRIA Sophia Antipolis

Wednesday 26, June

K ロ ▶ K 個 ▶ K 할 > K 할 > 1 할 > 1 이익어

We compute a set of invariant separating the orbits of some representations of $SO_3(\mathbb{R})$, and stratify the orbit space. We proceed by decomposing the representation V in a sequence of Seshadri slices.

Separating invariants

Let $\mathcal F$ be a set of invariant polynomials defined each on a G-stable subvariety in $\mathcal V$. We say that F separates the orbits in V if for any two points $x, y \in V$ which are not in the same orbit, there is some $P \in \mathcal{F}$ defined at x and y such that $P(x) \neq P(y)$.

KORKA BRADE KORA

Piezoelectricity tensors

Piez is the space of three order tensors verifying $\forall i, j, k \in \{1, 2, 3\}, P_{ijk} = P_{iki}$.

 $dim(\mathbb{P}iez) = 18.$ [\[Oli14\]](#page-25-0) provides a generating set of polynomials of cardinal 495. [\[Che+19\]](#page-25-1) deduces a minimal separating set of cardinality 260. It is difficult to stratify the orbit space with such a cardinality.

A separating set on H_3 [\[SB97\]](#page-25-2)

$$
\begin{cases}\nK_2 = \sum_{i,j,k} A_{ijk}^2 & K_4 = \sum_{i,j} B_{ij}^2 & K_6 = \sum_{i} C_i^2 \\
K_{10} = \sum_{i,j,k} A_{ijk} C_i C_j C_k & K_{15} = \sum_{i,j,k,p,q} \varepsilon_{ijk} C_i B_{jp} C_p A_{kqr} C_q C_r\n\end{cases}
$$

The stratification of the orbit space is then obtained by computing the ideal of relations on subvarieties:

Example: the strata of points of isotropy class C_2

The strata $\Sigma_{\rm{C}_2}$ is defined by the system

$$
\left\{\begin{array}{l} -2K_2^6+14K_2^4K_4-6K_2^3K_6-32K_2^2K_4^2+12K_2K_4K_6+24K_4^3+9K_6^2=0 \\ -K_2^5+5K_2^3K_4-6K_2^2K_6-6K_2K_4^2+9K_4K_6+9K_{10}=0 \end{array}\right.
$$

K ロ ▶ K 個 ▶ K 할 > K 할 > 1 할 > 1 이익어

2 [Slices in the piezoelectricity tensors](#page-8-0)

- \bullet [A slice with](#page-11-0) \mathcal{H}_1
- \bullet [Slices with](#page-14-0) \mathcal{H}_{2}

1 [Separating orbits with the Seshadri slice lemma](#page-3-0)

2 [Slices in the piezoelectricity tensors](#page-8-0)

- \bullet [A slice with](#page-11-0) \mathcal{H}_1
- [Slices with](#page-14-0) H_2

³ [Stratification of the orbit space](#page-19-0)

Sechadri slice Lemma [\[CS05\]](#page-25-3)

Let G be a real algebraic group acting on a geometrically irreducible variety $\mathcal V$. Take $S \subset V$ a geometrically irreducible subvariety and $N < G$ its normalizer. Assume that

- The closure of $G \times S$ is V .
- \bullet There is an non empty Zariski open subset $\mathcal{Z}\subset \mathcal{S}$ such that for all $\bm{g}\in \hat{\mathrm{G}}$ and $s \in \hat{Z}$ satisfying $g(s) \in \hat{Z}$, then there exists $h \in \hat{N}$ such that $h(s) = g(s)$.

Then, the restriction of invariants to S gives a field isomorphism

 $\mathbb{R}(\mathcal{V})^\mathrm{G}\cong\mathbb{R}(\mathcal{S})^\mathrm{N}$

KORKA BRADE KORA

Definition

The pair (S, N) is named a Seshadri slice.

Proposition

Note $\mathcal Z$ the stable open subset satisfying the second condition of the Seshadri slice lemma and $\mathcal F\subset\mathbb R[\mathcal S]^{\rm N}$ separating the orbits in $\mathcal Z.$ Then, $\tilde{\mathcal F}\subset\mathbb R(\mathcal V)^{\rm G}$ separates orbits in $\tilde{\mathcal{Z}} = G \times \mathcal{Z}$.

It remains a subvariety $\mathcal{Q} = G \times (\mathcal{S} \setminus \mathcal{Z})$ where the orbits are not generated.

Strategy \mathcal{V} = \mathcal{Q}_0 ⊃ \mathcal{Q}_1 ⊃ ... ⊃ \mathcal{Q}_{n-1} ⊃ \mathcal{Q}_n | % | % % | % (S_1, N_1) (S_2, N_2) ... (S_n, N_n) ↓ ↓ ↓ \mathcal{V} = $\tilde{\mathcal{Z}}_1$ to $\tilde{\mathcal{Z}}_2$ to ... to $\tilde{\mathcal{Z}}_n$ to \mathcal{Q}_n where for each $1\leq i\leq n,\,{\cal Q}_i$ is the variety non separated by the previous slice, namely $\mathcal{Q}_i = \mathcal{Q}_{i-1} \setminus (\mathrm{G} \times \mathcal{Z}_i)$ \overline{z} . \tilde{z} $\mathbb{R}[\mathcal{S}_i]^{\mathrm{N}_i}$ separating orbits in \mathcal{Z}_i . Consider also a last set $\mathcal{F}_{n+1} \subset \mathbb{R}[\mathcal{Q}_n]^{\mathrm{G}}$ separating . For each $1\leq i\leq n$, consider \mathcal{F}_i a set of polynomials in orbits in \mathcal{Q}_n . The union $\tilde{\mathcal{F}}=\bigcup^{n+1}\tilde{\mathcal{F}}_i$ is a set of rational functions separating orbits in the disjoint union $\mathcal{V} = \tilde{\mathcal{Z}}_1 \sqcup ... \sqcup \tilde{\mathcal{Z}}_n \sqcup \mathcal{Q}_n.$

1 [Separating orbits with the Seshadri slice lemma](#page-3-0)

2 [Slices in the piezoelectricity tensors](#page-8-0)

- \bullet [A slice with](#page-11-0) \mathcal{H}_1
- [Slices with](#page-14-0) \mathcal{H}_2

³ [Stratification of the orbit space](#page-19-0)

Harmonic polynomials

Let d be an integer. The space of homogeneous harmonic polynomials of degree d is

$$
\mathcal{H}_d := \left\{ P \in \mathbb{R}[U, V, W]_d \, \middle| \, \nabla(P) = \frac{\partial^2 P}{\partial U^2} + \frac{\partial^2 P}{\partial V^2} + \frac{\partial^2 P}{\partial W^2} = 0 \right\}
$$

The spaces \mathcal{H}_d are endowed with the action $\rho_d: \left\{ \begin{array}{ccc} \mathrm{SO}_3(\mathbb{R}) & \longrightarrow & \mathrm{GL}(\mathcal{H}_d) \ \pi & \longrightarrow & \rho \to P \circ a \end{array} \right.$ $g \qquad \longmapsto \quad \{P \to P \circ g^{-1}$

Irreducible representations of $SO_3(\mathbb{R})$

The irreducible representations of $\text{SO}_3(\mathbb{R})$ are $\{(\rho_d, \mathcal{H}_d), d \in \mathbb{N}\}.$

Piezoelectricity tensors

Piez \cong $\mathcal{H}_1 \oplus \mathcal{H}_1 \oplus \mathcal{H}_2 \oplus \mathcal{H}_3$ $\rho \sim \rho_1 \oplus \rho_1 \oplus \rho_2 \oplus \rho_3$

KORKA BRADE KORA

The separated set

Here, we have $\mathcal{Z}_1 = \{s \in \mathcal{S}_1 | d_1 \neq 0\} \subset \mathcal{S}_1$. The remaining not separated variety is thus $Q_1 = \text{Pic} \setminus \text{SO}_3(\mathbb{R}) \times \mathcal{Z}_1$.

Irreducible representations of $O_2(\mathbb{R})$

The two dimensional irreducible representations of $\mathrm{O}_2(\mathbb{R})$ are $\rho_j:\mathrm{O}_2(\mathbb{R})\longmapsto \mathrm{GL}(\mathcal{V}_j),$ $j \in \mathbb{N}^*$ with

$$
\rho_j(g_{e^{i\theta}}^+) = \begin{pmatrix} \cos(j\theta) & -\sin(j\theta) \\ \sin(j\theta) & \cos(j\theta) \end{pmatrix} \quad \text{ and } \quad \rho_j(g_{e^{i\theta}}^-) = \begin{pmatrix} \cos(j\theta) & \sin(j\theta) \\ \sin(j\theta) & -\cos(j\theta) \end{pmatrix}
$$

The representation of $\overline{\mathrm{N}}_1$ on $\overline{\mathcal{S}}_1$

The representation of $N_1\cong O_2(\mathbb R)$ on \mathcal{S}_1 is isomorphic to $\mathcal{V}_{-1}^3\oplus\mathcal{V}_0\oplus\mathcal{V}_1^3\oplus\mathcal{V}_2^2\oplus\mathcal{V}_3$.

The spherical harmonic basis

For $1 \leq m \leq d$ note P^m_d the $(d,m)^{th}$ associated Legendre polynomial. The following set of functions of (r,θ,φ) is a polynomial basis for $\hat{\mathcal{H}}_d$:

$$
\hat{\mathcal{B}}_d := \left\{ \begin{array}{rcl} Y_d^m = & i^{m+d} r^d \, e^{im\varphi} \, P_d^m(\cos(\theta)), & 1 \leq m \leq d \\ Y_d^{-m} = & i^{-m-d} r^d \, e^{-im\varphi} \, P_d^m(\cos(\theta)), & 1 \leq m \leq d \\ Y_d^0 = & r^d \, P_d^0(\cos(\theta)) \end{array} \right\}
$$

KORKA BRADE KORA

Then, the subspace generated by Y_d^m and Y_d^{-m} is stable by N_1 , and it results:

Let $(d_1, d_2, d_3, t_1, y_1, y_{-1}, ..., y_6, y_{-6})$ be coordinates on $\mathcal{S}_1\cong\mathcal{V}^3_{-1}\oplus\mathcal{V}_0\oplus\mathcal{V}^3_1\oplus\mathcal{V}^2_2\oplus\mathcal{V}_3.$ For $1\leq i\leq j\leq 6,$ we note $p_{-ij}=y$

A set separating orbits in \mathcal{Z}_1 [\[HJ24\]](#page-25-4)

The following set in $\mathbb{R}[\mathcal{S}_1]^{\mathrm{N}_\mathbf{1}}$ separates the orbits in $\mathcal{Z}_\mathbf{1}$:

$$
\mathcal{F}_1 = \left\{ \begin{array}{rcl} t_1 & = & d_1 d_j, & 1 \leq j \leq 3 \\ P_{ij} & = & \frac{1}{2} (p_{-ij} + p_{-ji}) & 1 \leq i \leq j \leq 6 \\ S_{ij1} & = & i \left(p_{-ij} - p_{-ji} \right) d_1, & 1 \leq i < j \leq 6 \end{array} \right\}
$$

 $\frac{a_i \vee a_j}{a_i}$ y

KORKA BRADE KORA

 $rac{a_i \vee a_j}{a_j}$.

NB: $\#\mathcal{F}_1 = 6^2 + 4 = 40$.

It remains to separate orbits in the variety $\mathcal{Q}_1 = \mathcal{H}_1 \oplus \mathcal{H}_2 \oplus \mathcal{H}_3$.

The set $\check{\mathcal{F}}_1$ separate orbits everywhere but in $\mathcal{Q}_1 = \mathcal{H}_1 \oplus \mathcal{H}_2 \oplus \mathcal{H}_3$. We identify the slice (S'_1, N_1) by the same method.

A set separating orbits in \mathcal{Z}'_1

The following set in $\mathbb{R}[\mathcal{S}'_1]^{N_\mathbf{1}}$ separates the orbits in \mathcal{Z}'_1 :

$$
\mathcal{F}_1' = \left\{ \begin{array}{lcl} t_1' & = & d_1 d_j, & 2 \leq j \leq 3 \\ P_{ij}' & = & \frac{1}{2}(p_{-ij} + p_{-ji}) & 2 \leq i \leq j \leq 6 \\ S_{ij1}' & = & i (p_{-ij} - p_{-ji}) d_1, & 2 \leq i < j \leq 6 \end{array} \right\}
$$

 $\#F_1' = 28.$

It remains to separate orbits in the variety $\mathcal{Q}'_1 = \mathcal{H}_2 \oplus \mathcal{H}_3.$

Recall the isomorphism $\begin{cases} S_3(\mathbb{R}) & \longrightarrow & \mathbb{R}_2[U, V, W] \\ S & \downarrow & \downarrow \vee \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \end{cases}$ $S \rightarrow \begin{array}{c} \mathbb{R}_2[\nu, v, w] \\ \rightarrow \\ \{x \mapsto x^t S x \end{array}$ mapping $\mathcal{H}_2 \subset \mathbb{R}_2[U, V, W]$ to traceless matrices A.

Proposition

Note $\mathcal{D} \subset S_3(\mathbb{R})$ the subspace of diagonal matrices and $S_2 = \mathcal{D} \oplus \mathcal{H}_3$. Its normalizer is $N_2 = B_3 \cap SO_3(\mathbb{R})$. The pair (S_2, N_2) is a Seshadri slice.

Then, $\mathcal{Z}_2=(\mathcal{H}_2\setminus\mathcal{D}^o)\oplus\mathcal{H}_3$, where \mathcal{D}^o is the subspace of diagonal matrices with two identic coefficients.

The non separated variety

The remaining varitey is $\mathcal{Q}_2 = (\mathrm{SO}_3(\mathbb{R}) \times \mathcal{D}^o) \oplus \mathcal{H}_3 = \mathcal{A}^* \oplus \mathcal{H}_3$, where \mathcal{A}^* is the space of traceless matrices with two identic eigenvalues.

We endow H_3 with the cubic harmonic basis $(a_1, a_2, a_3, b_1, b_2, b_3, c)$. Note $[\lambda] = (\lambda_1 - \lambda_2)(\lambda_1 - \lambda_3)(\lambda_2 - \lambda_3)$.

A set separating orbits in \mathcal{Z}_2

 $R_c = [\lambda]c$, $R_0 = b_1b_2b_3$, $R_1 = [\lambda] (a_1b_2b_3 + a_2b_1b_3 + a_3b_1b_2)$, $R_2 = [\lambda]^2 \left(b_1a_2a_3 + b_2a_1a_3 + b_3a_1a_2 \right), \ R_3 = [\lambda]^3a_1a_2a_3$ and the twelve entries of the following matrix separates the orbits of N_2 in \mathcal{Z}_2 .

$$
R = \begin{pmatrix} 1 & 1 & 1 \\ \lambda_1 & \lambda_2 & \lambda_3 \\ \lambda_1^2 & \lambda_2^2 & \lambda_3^2 \end{pmatrix} \begin{pmatrix} \lambda_1 & a_1^2 & b_1^2 & [\lambda] a_1 b_1 \\ \lambda_2 & a_2^2 & b_2^2 & [\lambda] a_2 b_2 \\ \lambda_3 & a_3^2 & b_3^2 & [\lambda] a_3 b_3 \end{pmatrix}
$$

NB: $\#\mathcal{F}_2 = 17$.

The non separated variety

The remaining varitey is $\mathcal{Q}_2 = (\mathrm{SO}_3(\mathbb{R}) \times \mathcal{D}^\circ) \oplus \mathcal{H}_3 = \mathcal{A}^* \oplus \mathcal{H}_3$, where \mathcal{A}^* is the space of traceless matrices with two identic eigenvalues.

Proposition

Consider the matrix $M := \text{Diag}(2, -1, -1)$, and $U_3 \subset A^*$ the vector line $\{t_1M, t_1 \in \mathbb{R}\}$. Complete it by $S_3 = U_3 \oplus H_3$. Then, (S_3, N_3) is a Seshadri slice with normalizer N₃ \cong O₂(\mathbb{R}) given by

$$
N_3 = \left\{ \left(\begin{array}{rr|rr} det(g) & 0 & 0 \\ \hline 0 & & g \\ 0 & & g \end{array} \right), g \in O_2(\mathbb{R}) \right\}
$$

Figure: The Seshadri slice in Q_2 .

$$
\mathcal{Z}_3 = \{t_1 \neq 0\} \text{ and } \mathcal{Q}_3 = \mathcal{H}_3
$$

The separating set [\[HJ24\]](#page-25-4)

The set $\mathcal{F}_3\in\mathbb{R}[\mathcal{S}_3]^{\text{N}_3}$ of cardinal 12 separates orbits in \mathcal{Z}_3 :

$$
\mathcal{F}_3=\left\{\begin{array}{ccc} & t_1 & d_3^2 & S_{353} & S_{363} & S_{563} \\ & P_{33} & P_{35} & P_{36} & P_{55} & P_{56} & P_{66} \\ & T_{561}=(y_5y_{-3}^2-y_{-5}y_3^2)(y_6y_{-3}^3-y_{-6}y_3^3) \end{array}\right\}
$$

KO > KA > KE > KE > E + ORA

At this step, orbits are separated everywhere but in $Q_3 = H_3$. Here a separating set is provided in the literature:

A separating set on $Q_3 = H_3$ [\[SB97\]](#page-25-2)

The following set of polynomials separates the orbits of $SO_3(\mathbb{R})$ in the space of symmetric traceless tensors:

$$
\mathcal{F}_4 = \left\{\begin{array}{cc} K_2 = \sum_{i,j,k} A_{ijk}^2 & K_4 = \sum_{i,j} B_{ij}^2 & K_6 = \sum_{i} C_i^2 \\ K_{10} = \sum_{i,j,k} A_{ijk} C_i C_j C_k & K_{15} = \sum_{i,j,k,p,q} \varepsilon_{ijk} C_i B_{jp} C_p A_{kqr} C_q C_r \end{array}\right\}
$$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 이익C*

The final set

The union $\check{\mathcal{F}} = \check{\mathcal{F}}_1 \cup \check{\mathcal{F}}_1' \cup \check{\mathcal{F}}_2 \cup \check{\mathcal{F}}_3 \cup \check{\mathcal{F}}_4$ separates the orbits of the representation of $SO_3(\mathbb{R})$ on $Pic.$

NB: We obtain the final cardinal $\# \check{\mathcal{F}}_4 = 40 + 28 + 17 + 12 + 5 = 102$.

To compare

[\[Oli14\]](#page-25-0) provides a generating set of $\mathbb{R}[\mathbb{P}\text{iez}]^{\mathrm{SO}_3(\mathbb{R})}$ of cardinality 495. [\[Che+19\]](#page-25-1) deduces, by another method, a minimal separating set of cardinality 260.

K ロ X K 레 X K 회 X X 회 X 및 X X X X X 전

1 [Separating orbits with the Seshadri slice lemma](#page-3-0)

2 [Slices in the piezoelectricity tensors](#page-8-0)

- \bullet [A slice with](#page-11-0) \mathcal{H}_1
- [Slices with](#page-14-0) H_2

3 [Stratification of the orbit space](#page-19-0)

We aim to give polynomial equalities defining the strata of the orbit space $\text{Pic}_Z/\text{SO}_3(\mathbb{R})$. The set of isotropy classes is provided by clip operations [\[Azz23\]](#page-25-5). The induced decomposition of Piez in disjoint subsets provides an efficient strategy to determine the isotropy group of a vector h:

Strategy

- The evaluation of some specific polynomials in $\check{\mathcal{F}}$ allows to determine which subset $\tilde{\mathcal{Z}}_i$ contains h.
- \bullet Then the set $\check{\mathcal{F}}_i$ determines the isotropy group in N_i .

Figure: Poset of isotropy classes for Piez

KORKA SERKER ORA

Proposition [\[HJ24\]](#page-25-4)

If $D_{11} \in \mathcal{F}_1$ does not vanish at h, then $h \in \tilde{\mathcal{Z}}_1 = \mathbb{P}$ iez $\setminus \mathcal{H}_1 \oplus \mathcal{H}_2 \oplus \mathcal{H}_3$. In that case we have the following stratification:

- $h \in \overline{\Sigma_{\text{SO}_2(\mathbb{R})}} \Leftrightarrow \forall 1 \leq i \leq 6, P_{ii}(h) = 0.$
- $h \in \overline{\Sigma_{C_{2}}} \Leftrightarrow \forall i = 1, 2, 3, 6, P_{ii}(h) = 0.$
- $h \in \overline{\Sigma_{\text{C}}}, \Leftrightarrow \forall i = 1, 2, 3, 4, 5, P_{ii}(h) = 0.$

Suppose now that $D_{11}(h) = 0$. That is $h \notin \tilde{Z}_1$ and:

Proposition [\[HJ24\]](#page-25-4)

If $D'_{22} \in \mathcal{F}'_1$ does not vanish at h , then $h \in \tilde{\mathcal{Z}}'_1.$ In that case we have the following stratification:

•
$$
h \in \overline{\Sigma_{\text{SO}_2(\mathbb{R})}} \Leftrightarrow \forall 2 \leq i \leq 6, P'_{ii}(h) = 0.
$$

•
$$
h \in \overline{\Sigma_{\mathrm{C}_2}} \Leftrightarrow \forall i = 2, 3, 6, P'_{ii}(h) = 0.
$$

•
$$
h \in \overline{\Sigma_{\mathrm{C}_3}}
$$
 $\Leftrightarrow \forall i = 2, 3, 4, 5, P'_{ii}(h) = 0.$

Assume that $D_{11}(h) = D'_{22}(h) = 0$. That is, $h \notin \tilde{Z}_1 \sqcup \tilde{Z}'_1$ and:

Proposition

If $[\lambda]^2$ does not vanish at h , then $h\in\tilde{\mathcal Z}_2.$ In that case we have the following stratification:

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q ·

•
$$
h \in \overline{\Sigma_{D_2}} \Leftrightarrow \begin{cases} R_{1,1}(h) = a_1^2 + a_2^2 + a_3^2 = 0 \\ R_{1,2}(h) = b_1^2 + b_2^2 + b_3^2 = 0 \end{cases}
$$

\n• $h \in \overline{\Sigma_{C_2}} \Leftrightarrow \begin{cases} \forall 0 \le j \le 3, R_j(h) = 0 \\ (R_{1,1}R_{3,1} - R_{2,1}^2)(h) = 0 \\ (R_{1,2}R_{3,2} - R_{2,2}^2)(h) = 0 \\ ([\lambda]^2 R_{1,1}R_{1,2} - R_{1,3}^2)(h) = 0 \end{cases}$

Assume that $D_{11}(h) = D'_{22}(h) = [\lambda]^2(h) = 0$. That is, $h \notin \tilde{Z}_1 \sqcup \tilde{Z}'_1 \sqcup \tilde{Z}_2$ and:

Proposition [\[HJ24\]](#page-25-4)

If $t_1 \in \mathcal{F}_3$ does not vanish at h, then $h \in \tilde{\mathcal{Z}}_3$. In that case we have the following stratification:

K ロ X K 레 X K 회 X X 회 X 및 X X X X X 전

\n- $$
h \in \overline{\Sigma_{C_2}} \Leftrightarrow P_{33}(h) = P_{66}(h) = 0.
$$
\n- $h \in \overline{\Sigma_{C_3}} \Leftrightarrow P_{33}(h) = P_{55}(h) = 0.$
\n- $h \in \overline{\Sigma_{D_2}} \Leftrightarrow \begin{cases} P_{33}(h) = P_{66}(h) = 0\\ D_{33}(h) = 0 \end{cases}$
\n- $h \in \overline{\Sigma_{D_3}} \Leftrightarrow \begin{cases} P_{33}(h) = P_{66}(h) = 0\\ D_{33}(h) = 0 \end{cases}$
\n- $h \in \overline{\Sigma_{SO_2(\mathbb{R})}} \Leftrightarrow P_{33}(h) = P_{55}(h) = P_{66}(h) = 0.$
\n- $h \in \overline{\Sigma_{O_2(\mathbb{R})}} \Leftrightarrow \begin{cases} P_{33}(h) = P_{55}(h) = P_{66}(h) = 0\\ D_{33}(h) = 0 \end{cases}$
\n

Fourth and last case: $h \in \mathcal{H}_3$

Assume that $D_{11}(h) = D'_{22}(h) = [\lambda]^2(h) = t_1(h) = 0$. That is, $h \in H_3$. the representation on \mathcal{H}_3 is simple enough to compute directly the stratification:

Proposition

 \bullet The strata $\Sigma_{\rm C_2}$ is defined by the system

$$
\begin{cases}\n-2K_2^6 + 14K_2^4K_4 - 6K_2^3K_6 - 32K_2^2K_4^2 + 12K_2K_4K_6 + 24K_4^3 + 9K_6^2 = 0\\ \n-K_2^5 + 5K_2^3K_4 - 6K_2^2K_6 - 6K_2K_4^2 + 9K_4K_6 + 9K_{10} = 0\n\end{cases}
$$

 \bullet The strata $\Sigma_\mathrm{C_3}$ is defined by the system

$$
\left\{\begin{array}{l} K_2^6 - 8 K_2^4 K_4 + 6 K_2^3 K_6 + 21 K_2^2 K_4^2 - 18 K_2 K_4 K_6 - 18 K_4^3 + 27 K_6^2 = 0\\ - K_2^5 + 5 K_2^3 K_4 + 3 K_2^2 K_6 - 6 K_2 K_4^2 - 18 K_4 K_6 + 27 K_{10} = 0 \end{array}\right.
$$

\n- The strata
$$
\overline{\Sigma}_{\mathcal{T}}
$$
 is defined by the system $\left\{\n \begin{array}{l}\n -K_2^2 + 3K_4 = 0 \\
 K_6 = 0 \\
 K_{10} = 0\n \end{array}\n \right.$ \n
\n- The strata $\overline{\Sigma}_{\text{D}_3}$ is defined by the system $\left\{\n \begin{array}{l}\n -K_2^2 + 2K_4 = 0 \\
 K_6 = 0 \\
 K_1 = 0\n \end{array}\n \right.$ \n
\n- The strata $\overline{\Sigma}_{\text{SO}_2(\mathbb{R})}$ is defined by the system $\left\{\n \begin{array}{l}\n -1K_2^2 + 25K_4 = 0 \\
 K_1 = 0 \\
 -8K_2^3 + 125K_6 = 0 \\
 -32K_2^5 + 3125K_{10} = 0\n \end{array}\n \right.$ \n
\n

KORK STRAIN A STRAIN A STRAIN

- Provides inequalities defining each strata has a semialgebraic set. For the same reason, the sequencing seems to helps efficiently.
- Make the same on the Elasticity tensors: $\mathbb{E}\text{la} = \mathcal{H}_0 \oplus \mathcal{H}_0 \oplus \mathcal{H}_2 \oplus \mathcal{H}_4$.

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q ·

• Extension to the action of $O_3(\mathbb{C})$ on $\mathbb{P}\text{iez?}$

Bibliography

- [SB97] GF Smith and G Bao. "Isotropic invariants of traceless symmetric tensors of orders three and four". In: International journal of engineering science 35.15 (1997), pp. 1457–1462.
- [CS05] J-L. Colliot-Thélene and J-J. Sansuc. "The rationality problem for fields of invariants under linear algebraic groups (with special regards to the Brauer group)". In: arXiv preprint math/0507154 (2005).
- [Oli14] M. Olive. "Géométrie des espaces de tenseurs Une approche effective appliquée à la mécanique des milieux continus". PhD thesis. AMU, 2014.
- [Che+19] Y. Chen, Z. Ming, L. Qi, and W. Zou. "A Polynomially Irreducible Functional Basis of Hemitropic Invariants of Piezoelectric Tensors". In: arXiv preprint arXiv:1901.01701 (2019).
- [Azz23] Perla Azzi. "Geometry of isotropy classes for representation of groups with applications in Mechanics of Materials". PhD thesis. Sorbonne université, 2023.
- [HJ24] E Hubert and M Jalard. "Separation of orbits of O2 and SO2". In: (June 2024). working paper or preprint. URL: <https://inria.hal.science/hal-04604969>.

KORKA SERKER ORA

• For $1 \leq i \leq n$, \mathcal{F}_i is a set of polynomials defined on \mathcal{S}_i :

 $\mathcal{F}_i \subset \mathbb{R}[\mathcal{S}_i]^{\mathrm{N}_i}$

 \bullet They correspond to rational functions on \mathcal{Q}_{i-1} with singularities on \mathcal{Q}_i :

 $\tilde{\mathcal{F}}_i \subset \mathbb{R}(\mathcal{Q}_{i-1})^\mathrm{G}$

 \bullet In our examples, \mathcal{Q}_i is an irreducible subvariety in \mathcal{Q}_{i-1} , defined by the polynomial Q_i . Then, the denominators of functions $f \in \tilde{\mathcal{F}}_i$ is a power of Q_i .

Polynomial separating set

Note $\tilde{\mathcal{F}}_i = \begin{cases} \frac{P_1}{Q_i^{31}}, ..., \frac{P_n}{Q_i^{3n}} \end{cases}$ $\Big\} \subset \mathbb{R}(\mathcal{Q}_{i-1})^{\mathrm{G}}.$ Then, the set composed with \mathcal{Q}_i and the numerators $\check{\mathcal{F}}_i=\{Q_i,P_1,...,P_n\}\subset\mathbb{R}[\mathcal{Q}_{i-1}]^{\rm G}$ still separate orbits in $\tilde{\mathcal{Z}}_i$.

KORKAR KERKER EL VOLO

Extending polynomials of \mathcal{F}_3 on $\mathbb{P}\textup{iez}\supset\mathcal{Q}_2$.

 \mathcal{Q}_2 is not a vector space. Hence, polynomials of $\check{\mathcal{F}}_2\subset\mathbb{R}[\mathcal{Q}_2]^{\text{SO}_3(\mathbb{R})}$ cannot be extended algebraically on Piez.

A separating set

Let F be a set of invariant polynomials defined each on a G-stable subvariety in $\mathcal V$. We say that $\mathcal F$ separates the orbits in V if for any two points $x, y \in V$ which are not in the same orbit, there is some $P \in \mathcal{F}$ defined at x and y such that $P(x) \neq P(y)$.

Figure: The variety Q_2 .

KORKA SERKER ORA