Time-space formulation of a conservative string subject to finite transformations

David Roze, Thomas Hélie, Emmanuelle Rouhaud

STMS lab, IRCAM, CNRS, Sorbonne Université STMS lab, IRCAM, CNRS, Sorbonne Université Université de technologie de Troyes

27 juin 2024

Introduction

- Study of the behavior of solids for acoustics
- Prediction of non linear effects

Figure - Laser interferometry

https://www.gurumed.org/2011/05/30/lasers-reveal-exactly-how-guitars-create-music/

Figure – Vibrating string https://www.pedagogie.ac-nantes.fr/physique-chimie/mutualisation/travailcollaboratif/a-la-decouverte-des-ondes-683840.kjsp

String equation

Consider the transverse displacement $w:(0,+\infty) imes(0,L) o\mathbb{R}$:

$$\mu \ddot{w} = T \partial_x^2 w + f$$

with $w(t,0) = w(t,L) = 0$ $w(0,x) = 0$

 $\mu = \rho A \text{ [kg.m}^{-1]}$ linear mass density, T [N] tension, f [N/m] external force

Power balance

$$\frac{d}{dt}\left(\int_0^L \left[\frac{\mu \dot{w}^2}{2} + \frac{T(\partial_x w)^2}{2}\right] \mathrm{d}x\right) = \int_0^L f \, \dot{w} \, \mathrm{d}x$$

Port Hamiltonian system for the string

The Hamiltonian $\mathcal{H}(\alpha) := \int_{0}^{L} \frac{1}{2} \alpha(x)^{T} W(x) \alpha(x) dx$ with $W = \text{diag}(1/\mu, T)$ and with

State α	Units	Flow	Units	Effort	Units
$\alpha_1 = \pi = \mu \dot{w}$	[kg/s]	$\dot{\pi} = \mu \ddot{w}$	[N/m]	$\pi/\mu = \dot{w}$	[m/s]
momentum		inertial force		material point velocity	
$\alpha_2 = \varepsilon = \partial_x w$	adim	$\dot{\varepsilon} = \frac{d}{dt}(\partial_x w)$	$[s^{-1}]$	T∂ _x w	[N]
infinitesimal strain		strain rate		elastic force	
Port		Ŵ	[m/s]	- <i>f</i>	[N/m]
		contact point velocity		force applied	
				to the a	ctuator

PHS

effort e flow f

 $\begin{pmatrix} \alpha \\ w \end{pmatrix} = \mathcal{J} \begin{pmatrix} \delta H(\alpha) \\ -f \end{pmatrix} \quad \text{where} \quad \mathcal{J} = \begin{vmatrix} 0 & \partial_x & -1 \\ \partial_x & 0 & 0 \\ 1 & 0 & 0 \end{vmatrix}$

leads to

string equation : $\mu \ddot{w} = T \partial_x (\partial_x w) + f$ $\frac{d}{dt}(\partial_x w) = \partial_x(\dot{w})$ kinematic concordance : $\dot{w} = \dot{w}$ idem :

D. Roze, T. Hélie, E. Rouhaud

Here, we focus on

Dynamic of a string undergoing reversible finite transformations

Questions

Can we find a modeling and numerical schemes that

- 1. verifies the principles of mechanics : principle of linear momentum, principles of thermodynamics?
- 2. is adapted to dynamics in finite transformations?
- ightarrow Review 3D continuum mechanics for the dynamics of solids
- → Raise issues.

Investigate

Time-space formulation and address 4D covariance

Plan

3D continuum mechanics of the string (under finite transformations)

Issues

3 Time-space covariant approach

Figure – The string kinematic hypothesis.

Transformation

$$x = \Phi(t, X_1, X_2, X_3)$$

For the string : Φ composed of longitudinal strain $U(\lambda)$ and rotation $R(\theta)$ where λ is the relative elongation along the string

Kinematics

Material configuration Lagrangian

Lagrange deformation tensor \pmb{E}

$$\boldsymbol{E} = rac{1}{2} \left(\boldsymbol{F}^{T} \boldsymbol{F} - \boldsymbol{I}
ight)$$

$$x = \Phi(t, X_1, X_2, X_3)$$
$$F_j^i = \frac{\partial x^i}{\partial X^j}$$
$$(F^{-1})^T E F^{-1} = e$$
$$E = F^T e F$$

Spatial configuration Eulerian

Euler Almansi deformation tensor \boldsymbol{e}

$$\boldsymbol{e} = rac{1}{2} \left(\boldsymbol{I} - (\boldsymbol{F}^{-1})^{T} \boldsymbol{F}^{-1}
ight)$$

For the string

$$\Phi \begin{cases} x^1 = X^1 + W^1(t, X^1, X^2) \\ x^2 = X^2 + W^2(t, X^1, X^2) \\ x^3 = X^3 \end{cases}$$

with the identification $\boldsymbol{F}(\theta, \lambda) = \boldsymbol{R}(\theta) \boldsymbol{U}(\lambda)$:

$$F_j^i = \begin{pmatrix} 1 + \partial_{X^1} W^1 & \partial_{X^2} W^1 & 0\\ \partial_{X^1} W^2 & 1 + \partial_{X^2} W^2 & 0\\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} \lambda \cos \theta & -\sin \theta & 0\\ \lambda \sin \theta & \cos \theta & 0\\ 0 & 0 & 1 \end{pmatrix}$$

and
$$\boldsymbol{E} = \frac{1}{2} \begin{pmatrix} \lambda^2 - 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Principle of linear momentum (Newton)

Material configuration Lagrangian

Piola-Kirchhoff 2 stress tensor Σ

$$J^{-1} \mathbf{F} \Sigma \mathbf{F}^{\mathsf{T}} = \sigma$$
$$\Sigma = J \mathbf{F}^{-1} \sigma (\mathbf{F}^{-1})^{\mathsf{T}}$$

Spatial configuration Eulerian

Cauchy stress tensor σ

Principle of linear momentum : or its weak formulation

 $div(\sigma) + \mathbf{f} =
ho \mathbf{a}$ \Downarrow

Power balance

$$\int_{\Omega} \left(\rho \boldsymbol{a} . \boldsymbol{v} + \boldsymbol{\sigma} : \boldsymbol{d} \right) \mathrm{d}\Omega = \mathcal{P}^{\mathsf{ext}}$$

 $\begin{array}{l} \rho \mbox{ the mass density} \\ (\rho a. v) \mbox{ the power density for inertia} \\ (\sigma: d) \mbox{ the mechanical power} \\ \mbox{ density with } d \mbox{ the rate of} \\ \mbox{ deformation} \\ \mathcal{P}^{ext} \mbox{ the external power density} \end{array}$

First principle of thermodynamics

Hyper-elasticity : adiabatic or isothermal reversible transformations

Anisotropic model for the string.

This yields

$$\psi = \frac{Y}{8} \left[\left(\lambda^2 - 1 \right)^2 \right]$$

The Piola-Kirchhoff 2 stress tensor is then :

$$\Sigma^{ij} = rac{\partial \psi}{\partial E_{ij}} = rac{Y}{2} egin{pmatrix} \lambda^2 - 1 & 0 & 0 \ 0 & 0 & 0 \ 0 & 0 & 0 \end{pmatrix}$$

Plan

3D continuum mechanics of the string (under finite transformations)

2 Issues

Time-space covariant approach

Material configuration Lagrangian

Piola-Kirchhoff 2 stress tensor Σ

No principle of linear momentum on the Lagrangian configuration

 $J^{-1} \mathbf{F} \Sigma \mathbf{F}^{T} = \sigma$ $\Sigma = J \mathbf{F}^{-1} \sigma (\mathbf{F}^{-1})^{T}$

Spatial configuration Eulerian

Cauchy stress tensor σ

Principle of linear momentum : or its weak formulation

 $div(\sigma) + \mathbf{f} = \rho \mathbf{a}$

Power balance

$$\int_{\Omega} \left(\rho \boldsymbol{a}.\boldsymbol{v} + \boldsymbol{\sigma} : \boldsymbol{d} \right) \mathrm{d}\Omega = \mathcal{P}^{ext}$$

 $\begin{array}{l} \rho \mbox{ the mass density} \\ (\rho {\pmb{a}}. {\pmb{v}}) \mbox{ the power density for inertia} \\ ({\pmb{\sigma}}: {\pmb{d}}) \mbox{ the mechanical power} \\ \mbox{ density with } {\pmb{d}} \mbox{ the rate of} \\ \mbox{ deformation} \\ \mathcal{P}^{ext} \mbox{ the external power density} \end{array}$

Issue 1 : configurations : Lagrange vs Euler

Hyper-elasticity : adiabatic or isothermal reversible transformations

Issue 2 : strain rate in power balance

Material configuration Lagrangian

Piola-Kirchhoff 2 stress tensor Σ

$$J^{-1} \mathbf{F} \Sigma \mathbf{F}^T = \sigma$$
$$\Sigma = J \mathbf{F}^{-1} \sigma (\mathbf{F}^{-1})^T$$

Spatial configuration Eulerian

Cauchy stress tensor σ

Principle of linear momentum : or its weak formulation

 $div(\sigma) + \mathbf{f} = \rho \mathbf{a}$

Power balance

$$\int_{\Omega} \left(\rho \boldsymbol{a} . \boldsymbol{v} + \boldsymbol{\sigma} : \boldsymbol{d} \right) \mathrm{d}\Omega = \mathcal{P}^{ext}$$

 ρ the mass density, ($\rho a.v$) the power density for inertia, ($\sigma : d$) the mechanical power density with d the rate of deformation \mathcal{P}^{ext} the external power density

Mechanical power

The mechanical power density (σ : d) in the power balance is not the differentiation with respect to time of the mechanical energy *density* because

 $\dot{e} \neq d$ infinitesimal transformations $\dot{\varepsilon} \approx d$

 $\dot{\rho} \neq 0$ infinitesimal transformations $\dot{\rho} \approx 0$

These issues prevent from writing a proper PHS formulation for finite transformations involving the time derivative of a state whether in the Lagrangian or the Eulerian point of view. Every other nonlinear model considered in the literature should encounter the same difficulties.

Plan

1 3D continuum mechanics of the string (under finite transformations)

Issues

3 Time-space covariant approach

4D manifold

Universe : connected orientable 4D Riemannian manifold ${\cal M}$

- Continuum (continuously distributed matter : rest mass density ρ̃_c...)
- Metric tensor field g
- Event P ∈ M identified by a set x of four coordinates (x^µ)_{µ∈{0,1,2,3}}
- Worldline $\gamma_P(s)$ curve in \mathcal{M} ,

$$\gamma_P : \mathbb{R} \to \mathcal{M}, s \mapsto \gamma_P(s) = \{\phi_s(P)\}.$$

time-space counterpart of trajectories

• 4-velocity noted **u** :

$$u^{\mu}=rac{dx^{\mu}}{ds}$$
 with $ds^2=g_{\mu
u}\,dx^{\mu}dx^{
u}.$

time-like future oriented unit vector

Principle of covariance

World-tube

Figure – Example for current basis vectors \hat{e}_{μ} and proper basis vectors \hat{e}_{μ} for sliding.

Covariance

Principle of covariance : the formulation of the laws of physics should be invariant to changes of observers.

- Observer : a 4D coordinate system
- Transformations of coordinates :

$$arphi:\widetilde{x}^
u\in \mathcal{S}_lpha\mapsto x^\mu=arphi^\mu(\widetilde{x}^
u)\in \mathcal{S}_eta$$

basis vectors e_{μ} and e_{μ} ; Jacobian matrix of $\varphi : \left(\frac{\partial x^{\kappa}}{\partial \tilde{x}^{\mu}}\right) \in GL(4, \mathbb{R})$

- A vector V is invariant to changes of observers : $\mathbf{V} = \mathbf{V}^{\mu} \ \mathbf{e}_{\mu} = \widetilde{\mathbf{V}}^{\mu} \ \widetilde{\mathbf{e}}_{\mu} = \widehat{\mathbf{V}}^{\mu} \ \widehat{\mathbf{e}}_{\mu}$
- Proper observer \hat{x} , a coordinate system with basis vectors \hat{e}_{μ} such that :

 $\widehat{u}^{\mu} = (1,0,0,0)$ for all events.

time-space counterpart of the Lagrangian description

 \rightarrow Only one manifold (no configuration) Issue 1

Time-space kinematics

Figure – Example for current basis vectors \hat{e}_{μ} and proper basis vectors \hat{e}_{μ} for sliding.

Time-space deformation **b**

Second order covariant tensor

$$oldsymbol{b}=\eta_{\mu
u}\widehat{oldsymbol{e}}^{oldsymbol{\mu}}\otimes\widehat{oldsymbol{e}}^{oldsymbol{
u}}$$

with
$$\eta_{\mu
u}=egin{pmatrix} 1&0&0&0\ 0&-1&0&0\ 0&0&-1&0\ 0&0&0&-1 \end{pmatrix}$$

Time-space strain *e*

Second order covariant tensor

$$oldsymbol{e}=rac{1}{2}\left(oldsymbol{g}-oldsymbol{b}
ight)$$

Time-space counterpart of Euler-Almansi tensor

Energy-momentum tensor T

 $T^{\mu
u} = 2 rac{\partial \mathcal{L}_{\mathrm{M}}}{\partial g_{\mu
u}}$

where \mathcal{L}_M is the material contribution to the energy density Issue 2 Time-space counterpart of the stress tensor

Definition verified for any observer

The conservation of energy and momentum

 $\nabla_{\nu} T^{\mu\nu} = 0$

where $\boldsymbol{\nabla}$ denotes the covariant derivative.

Time-space counterpart of BOTH :

- power balance
- principle of linear momentum

Conservation verified for any observer

Projectors

To identify the time-like or space-like contributions, define $% \left({{{\rm{D}}_{{\rm{D}}}}_{{\rm{D}}}} \right)$

- A *time projector* : projection on the 4-velocity **u**.
- A spatial projector

Time and space decomposition of \boldsymbol{T}

$$T^{\mu\nu} = \mathcal{U}u^{\mu}u^{\nu} + \underline{T}^{\mu}u^{\nu} + \underline{T}^{\nu}u^{\mu} + \underline{T}^{\mu\nu}$$

A scalar quantity \mathcal{U} , the projection of \boldsymbol{T} twice on time, material energy density :

$$\mathcal{U} = T_{\kappa\lambda} u^{\kappa} u^{\lambda} = \mathcal{L}_{\mathbf{M}}$$

A vector noted $\underline{\mathcal{T}},$ its projection on time and space, a heat flux,

$$\underline{T}^{\mu} = T_{\kappa\lambda} \underline{\underline{g}}^{\mu\kappa} u^{\lambda} = \mathbf{0}$$

A second order contravariant tensor noted $\underline{\underline{T}}_{\!\!\!\!\!\!\!\!\!},$ its projection twice on space, a stress tensor.

Hypotheses

Phenomena limited to :

- mechanical effects
- small speed (compared to the speed of light in vaccum)
- no gravitation

Constitutive model

$$\begin{split} \mathcal{L}_{\mathrm{M}}(\boldsymbol{g},\widetilde{\rho}_{c},\boldsymbol{\mathcal{C}},\boldsymbol{b}) &= \widetilde{\rho}_{c}c^{2} + W(\boldsymbol{g},\boldsymbol{\mathcal{C}},\boldsymbol{b}) \\ W &= \frac{1}{2}\mathcal{C}^{\alpha\beta\kappa\lambda}\underline{\underline{e}}_{\alpha\beta}\underline{\underline{e}}_{\kappa\lambda} \end{split}$$

W is the time-space counterpart of ψ

The components of the fourth order tensor C are measured in the proper coordinate system, in Voigt notation, to give :

	/0	0	0	0	0	0	0\
	0	Y	0	0	0	0	0
	0	0	0	0	0	0	0
$\widehat{\mathcal{C}}^{\alpha\beta\kappa\lambda}$:	0	0	0	0	0	0	0
	0	0	0	0	0	0	0
	0	0	0	0	0	0	0
	0/	0	0	0	0	0	0/

where Y is a constant scalar. The energy-momentum tensor :

$$egin{aligned} T^{\mu
u} &= 2rac{\partial \mathcal{L}_{\mathrm{M}}}{\partial g_{\mu
u}} \ &= 2rac{\partial W}{\partial g_{\mu
u}} + (\widetilde{
ho}_{c}c^{2} + W)g^{\mu
u} \end{aligned}$$

	HPP	Finite transformations				
		Advantages	Drawbacks	TBD		
PDE	OK (linear)		Linear momentum :			
			Euler config.			
			Material law :			
			Lagrange config.			
			Covariance ?			
PHS	OK (linear)	Passive	Power balance :			
		formulation	Which flow for the strain?			
			Covariance ?			
TSC	OK (nonlinear)	Passive		Write the		
	and useless	covariant		numerical scheme		
		formulation		for dynamic case		
PHSTSC				Find a state space		
				representation		