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Summary

2.1) Based on classical general relativity of gravitational waves - Basic polarizations and strains in transverse planes - isotropic transverse medium in sheets not connected to
gather

2.2) Based on modified general relativity of gravitational waves - complementary polarizations and strains in the propagation direction —isotropic transverse medium in sheets
connected to gather

3.1) Practical characteristic of the elastic medium isotropic transverse
3.2) Study of several mechanical S. Timoshenko models of the space time that can reproduce the order of magnitude of the strains forecast and measured in general relativity

4.1) Models in plane with spatial component of strains (h for space associated at hl-j for Gravitational wave GW or space part of gravity prob B experiment)
4.2) Models perpendicular at the plane with temporal component of the strains
4.3) Spatial models

5.1) Interval of special relativity

5.2) Mechanic transposition

5.3) Case of the light type interval and associated equation

5.4) Test of the equation basing on the previous model unifying the different Young’s modulus obtained

6.1) Didactic explanations proposed by the elastic analogy of the general relativity in weak field
6.2) Predictive consequences of the elastic analogy of the general relativity in weak field

7.1) Measure complementary polarisations and study of their shapes
7.2) Measure lateral motions of the interferometer in 3D
7.3) Measure of the Casimir’s strains and forces to have a realistic value of the space Young’s modulus and strain elastic energy

8.1) In Strong field? Example of theoretical frame dragging for a neutron star

8.2) Analyse of the CMB power spectrum as a diffractogram X

8.3) Geometrical torsion in CMB logical to take into account in Einstein-Cartan

8.4) Self-repair/self-clogging of space after the passage of a rotating black hole, a sign of its great plasticity
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Figure 142<: Electron micrograph Bright and dark, diffraction X and grain size of a nanocrystal Ni-
2.0 wt% P [318]

Structure of the cosmic web, sky with stars and galaxy andromeda, variation density and power
spectrum of the Young universe at 380000 years-
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Y. Zhou et al.: Young’s modulus in nanostructured metals
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Young S modulus in nanostructured metals

Aim of the analogy and study,
Confirm links between elastic analogy and general
relativity in weak field by several fundamental
principles
Propose several type of Timoshenko’s mechanical
models compatible with the strains measured
data of the general relativity
Look for via these adequate mechanical models
the Young’s modulus necessary (adjustment
variable) to find the different strains observed by
the different general relativity test experiments
(calibration of the models)
Analyse these Young’s modulus and see if thereis
a link between them - junction approaches in the
plane and perpendicular at the plane
Come back from analogy to physic to extract
potential didactic information's about general
relativity and predictive informations for physic
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1) Principles of equivalence
between the elastic analogy of
the space medium and general

relativity in weak field

G;w =R,y — _gﬁvR - KT;W
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6 principles of equivalences between classical
relativity in weak field and general relativity (1/5)
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The perturbation of the metric tensor in Weakf [a is equivalent at a
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Stra|n tensor: The components of the
polarisation of the
gravitational waves can be
seen as components of

Principe 2:

The stress Energy tensor is equivalent at stress
tensor (4d =>3d):

strain tensor
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6 principles of equivalences between classical
relativity in weak fleld and general relativity (2/5)

The Einstein constant k can be seen as the fleX|b|l|ty characteristic

° L] “ L4 s ,’
of the space time in 4 D “Timoshenko theory of the space time
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6 principles of equivalences between classical
relativity in weak field and general relativity (3/5)

Principle 4:

In consequences of the principles 1 to 3, the Einstein’s field
equation can be seen as a Hooke's law in 4 dimensions:
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A FOUR-DIMENSIONAL HOOKE’S LAW CAN
ENCOMPASS LINEAR ELASTICITY AND INERTIA

S. ANTOCI AND L. MIHICH

ABSTRACT. The question is examined, whether the formally straight-
forward extension of Hooke’s time-honoured stress-strain relation to the
four dimensions of special and of general relativity can make physical
sense. The four-dimensional Hooke's law is found able to account for
the inertia of matter; in the flat space, slow motion approximation the
field equations for the “displacement” four-vector field £ can encom-
pass both linear elasticity and inertia. In this limit one just recovers the
equations of motion of the classical theory of elasticity.
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6 principles of equivalences between classical
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Principe 5:

Mechanical conversion of the gravitational Einstein’s constant «

ek for

The Mechanics of Spacetime — A Solid Mechanics Perspective on the
Theory of General Relativity

In the case of wave (mechanical or gravitational) there is Correspdndéhbe
between the energy density and the young’s modulus of the medium
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6 principles of equivalences between classical

relativity in weak field and general relativity (5/5)
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Mechanical conve! of the gravitational Einstein’s constant « Theory of f General Relativ Ly

From principle 1: In the case of grawtatlonal waves, the Component of t'he
perturbation tensor huv (polarizations) can be read as the component of

an associate strain tensor

Measured by Ligo

0 0 0 0
0 41 0 0 1 foe 00
w o
h,, = A,cos (? (ct — z)) 0 0 -1 ol 7fvan= EA““ COS (; (ct — z)) [ 0 —g 0‘
0o 0 0 o0 o0 0

General relativity in weak field Mechanical analogy
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2) Consequence of these 6-
equivalence principles on the
characteristics of the
equivalent elastic medium
associated at the space time
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« 2.1) Based on classical general relativity of gravitational waves - Basic
polarizations and strains in transverses planes -

isotropic transverse medium in sheets not connected out of plane to gather

Classical polarisation of the gravitational
wave of the general relativity not modified

David Izabel GDR GDM 28 06 2024 11



An isotropic transverse material worked as a
succession

Under gravitational
wave h,, = A, cos (% (ct — z))

« Sheet of particles »

created by dynamic
screen effect by GW

h,, = Ay cos (% (ct — z))

Isotropic
plane

Gravitational wave

3

y
.J "z Nothingin z for the strains

N\

An elastic medium made of
independent sheets
=>jsotropic transverse

X

coo o

of unconnected sheets
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Classical General relativity

Law of passage in elasticity between classical general relativity and
the associated deformation tensors in 2D - via continuum mechanic

Before deformation 28" (in mechanics) - h*" (in GR in weak field)

TorSion pu re: 2 For a polarised wave A:
expressions of the b = A oo -
strain tensor

000
0+1 0 0
0 0-1 OF

Pure mechanical

Torsion strain
\ [&H }/ ( tensors

X

0 0 0 0 Oy=7 O,=~T :
_ o, No +1 0o o No connection
huV—A+cos(C(ct z)) o 0 -1 0
o 0 0 o0 (30t) between the sheets

Test mass

Ligo/VIRGO
X X

==

Elastic space medium
made by a sandwich of
thin sheets

Imply for a mechanical model of
medium made of stacking of thin
sheets : space isotope transverse

anisotropic of space
David Izabel GDR GDM 28 06 2024
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Position of the shear wave during
the time (speed c), torsion of the
sheets of the space medium



Numerical gravitation in 3D confirm the field of strain
deformation/force (thin shell/thin sheet + screen effect)

SciDAC 2007 IOP Publishing

Journal of Physics: Conference Series 78 (2007) 012010 doi:10.1088/1742-6596/78/1/012010 Journal of Physics: Conference

Series

OPEN ACCESS

Binary black holes, gravitational waves, and
numerical relativity

To cite this article: Joan M Centrella et al 2007 J. Phys.: Conf. Ser. 78 012010

Torsion of space

Equivalent Sheets of space of
Figure 5. Contours of gravitational radiation for the merger of equal mass binary black holes. identical g ravity/ strains

The radiation amplitude is denoted by the colors, increasing from red through orange and into
yellow. (left) just before the black holes merge (right) shortly after the merger.
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* 2.2) Based on modified general relativity of gravitational waves -
complementary polarizations and strains in the propagation direction -
isotropic transverse medium in sheets connected out of plane to gather

ATt A~ Breathm ..
2 This time there are some
X0ry_p y —» . ..
_ . possible strainin z
Complementary /\ l. - s
polarisations ; 4 Ry | )y 5
\.‘\j’j A ‘ N
Longitudinal Vector X Vector y
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Approach 1: Einstein-Cartan Theory and elasticity

Theory (1/2) - 3 intersecting publications

Connection between the Einstein-
Cartan theory (general relativity
modified with geometric torsion

added in the Riemann tensor) and

defect theory plastic crystallography

Polarisation following the
propagation direction of the

gravitational wave in the case of
Einstein-Cartan theor

Nonlinear Passage law between the

perturbation of the metric in Einstein

Cartan-theory and equivalent strains
of the medium

David Izabel GDR GDM 28 06 2024

Einstein-Cartan theory as a theory of defects in space-time

M. L. Ruggiero® and A. Tartaglia!
Dip. Fisica, Politecnico and INFN, Torino, Ialy, I-10129

The Einstein-Cartan theory of gravitation and the classical theory of defects in an elastic medinm
are presented and compared. The former is an extension of general relativity and refers to four-
dimensional space-time, while we introduce the latter as a description of the equilibrium state of
a three-dimensional continunum. Despite these important differences, an analogy is built on their
common geometrical foundations, and it is shown that a space-time with curvature and torsion can
be considered as a state of a four-dimensional continuum containing defects. This formal analogy is
useful for illustrating the geometrical concept of torsion by applying it to conerete physical problems.
Moreover, the presentation of these theories using a common geometrical basis allows a deeper
understanding of their foundations.

Gravitational Waves in ECSK theory:
Robustness of mergers as standard sirens
and nonvanishing torsion

Emilio Elizalde!* . Fernando [zaurieta?t @ | Cristian Riveros Gonzalo Sz\lgad025

and Omar Valdivial-451

Eur Phys. 1. C (2021} 81:67 THE EUROPEAN
hitps:fidod org/ 10,1 140Epjc/s] 0052-02 1 -08362-x PHYsICAL JOURMAL C

Non-linear plane gravitational waves as space-time defects

F. L. Carneiro'®, 8. C. Ulhoa®", LW Mnluf""', 1. K. da Rocha-Neto

! Instituto de Fisica, Universidade de Brastlia, Brastlia, DF 70010-070, Brazil
2 Imemational Center of Physics, Instituto de Fisica, Universidade de Brastlia. Brastlia, DF 70010-000, Brazil
3 Canadian Quantum Research Center, 204-2002 32 Ave, Yemon, BC V1T 217, Canada




Example of complementary polarisations with
Einstein-Cartan theory in link with defect theory
—(2/2)

Einstein N PR Non linear passage law (plasticity)
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But taking into account the torsion in the sense of Einstein Cartan potentially generates other types of
deformations and constraints concerning for the last 3 in red the direction of propagation of the wave
(z here).
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Noninsae Plne Graviatonsl Wavesss Space-ime Defects Law of passage in_plasticity between Einstein Cartan polarization and
P Comarol” 5 € URon 1) 3 N and L E o o the associated deformation tensors in 3D - via the theory of defects Additional

nstituto de Fisica, Universidade de Brasilia

70.919-970 Brasilia DF, Brazil
International Center of Physics, Instituto de Fisica,

Universidade de Brasilia, 70910-900, Brasilia, DF, Brazil

deformation
direction xz
and yz

SCanadian Quantum Research Center,

204-3002 32 Ave Vernon, BC VIT 2L7 Canada

Abstract
We consider non-linear plane gravitational waves as propagating space-time defects, and construct the
Burgers vector of the waves. In the context of classical continuum systems, the Burgers vector is a measure
of the deformation of the medium, and at a microscopic (atomic) scale, it is a naturally quantized object.
One purpose of the present article is ultimately to probe an alternative way on how to quantize plane

gravitational waves.

Continuum Mechanical in plastic

Non-linear plane gravitational waves and space-time defects share many features. Both field

configurations (i) are established over a flat space-time background, (ii) induce a local deformation

Equivalent
elastic
Medium

in the background geomelry, (iii) may have an axial symmelry (along the z axis, for inslance), (iv)

may have a singularity along an axis (the z axis, for instance). Therefore, it is possible to define

Einstein-Cartan Polarisations , - |
and evaluate the Burgers vector for non-linear plane gravitational waves. The Burgers vector in a

The first two terms are those of general relativity giving the two classical polarizations as measured by crystalline lattice or inside a metal determines the nature of the defect.

Ligo/Virgo. . .
. 000 0 . 000 0 269] Carneiro F L,Ulhoa S C, Maluf J W, da Rocha-Neto J F (2021) «Non-linear plane
w_1[o 10 o co_L1fo o010 itati i i
P = \/E(O o D) By \/5(0 v 0) gravitational waves as space-time defects» Europran Physical Journal C 81 67
00 0 0 0 0 0 0O
Which corresponds to pure torsion in the mechanical sense of the term studied in this thesis:
0 0 o0 0 00 00
+ 1[0 &g 0 0 0  1]0o 0 &y O
v 7 5lo 0 -5y 0 far 750 & 0 0 i i f
vz\o 0 o 0 Z\0 G 00 Reconstitution of an

But taking into account the torsion in the sense of Einstein Cartan potentially generates other types of

deformations and stresses concerning for the last 3 in red the direction of propagation of the wave (z eq u iva Ie nt 3 D m ed i u m onnection between
here). .
isotrope transverse he sheets

0 0 o0 0 00 00
10 0 0 1{o 0o o0 o0
by = Exx o =
fr Tl0 0 &y 0 b7 Flo 0 0 0
0o 0 0 0 0 0 0 &,
0 0 0 0 00 0 o0
(xz) L0 0 0 &; (vz) 1fo 0 o 0 o .
@ " Hlo 0o o0 o “ 2500 0 & Plasticity
0 & 0 0 00 & 0

Polarisation associated with Defect theory // Einstein-Cartan

Defect theory // Crystallography

Einstein-Cartan theor theor
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Approach 2: Other general relativity modified

Not only Einstein-Cartan theory allows theOrieS
to have complementary polarisations
Theories Polarization modes Theory + X x y | B L
Metric f(g) gravity A+,A X, breathing, longitudinal
Palatini f g, gravity A+, A X, General relatvity Yes | Yes | No | No | No | No
Scalar tensor theory (massive) A+,A X, breathing, longitudinal _ : '
Brans-Dicke theory (massive) A+,A X, breathing, longitudinal GR in noncompactified 4/6D | Yes | Yes | Yes | Yes | Yes | Yes
Brans-Dicke theory (mass less) A+,A X, breathing : )
Minkovski
Einstein/Aether Yes | Yes | Yes | Yes | Yes | Yes
On the Polarization Gravitational Wave Polarizations: A test of General Relativity usinJ 5D Kaluza-Klein Yes | Yes | Yes | Yes | Yes | No
of Gravitational Waves Binary Black hole mergers
Randall-Sundrum braneworls Yes | Yes | No | No | No | No
Plasertation Sudhi Mathur Dvali-Gabadadze-Porrati Yes | Yes | Dep | Dep | Dep | Dep
Filangung der natunvissenschafichen Doktorwirde In Partial Fulfillment of the Requirements for the bl‘aIleW'Ol'd
(Dr. sc. nat.) Degree of
vorgelegt der Bachelor of Science. Physics - — —
o . Brans-Dicke Yes | Yes | No | No | Yes | Yes
Mathematisch-naturwissenschaftlichen Fakultdt
der
Universii Zisich F(R) gravity Yes | Yes | No | No | Yes | Yes
Bimetric Theory Yes | Yes | Yes | Yes | Yes | Yes
Lionel Antoine Philippoz
Leytron VS
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Approach 3: General relativity in second order

Gravitomagnetic induction in the field of a gravitational wave

Se C O n d O rd e r ge n e ra l @ Matteo Luca Ruggiero®
.. X =Xo+——AY1 = cos(T)|(¥2 = 23) e g T B 08 TEF g o T :
- = - (T) 1] ] o Dipartimento di Matematica “G.Peano”, Universita degli studi di Torino,
Elasticity solid relativity also forecast e
) + == A%sin(eT)ZoY, e
ﬂd . . . . 2c INFN - LNL , Viale dell’Universita 2, 35020 Legnaro (PD), Italy
WL TUECE R | strains in z direction + o
A A
Yoy = [1 - TSin[(oT)I ¥+ - [1 — cos(eT)]Z, Abstract

The interaction of a plane gravitational wave with test masses can be described in the proper

Via Carlo Alberto 10, 10123 Torino, Italy and

22)

le ) ) ) ) A ) )
+ E_’q+ ICOE (OT) -1 ]XD Yl] detector frame, using Fermi coordinates, in terms of a gravitoelectric and a gravitomagnetic field.
c

We use this approach to calculate the displacements produced by gravitational waves up to second

Gravitational Wave _ 1O sintemX, 2,
2¢

| H H contribution related to gravitational induction. In addition, we show how this approach can be
p olari satl ons L. . . Ass oc | a te d generalized to calculate displacements up to arbitrary order.
Atand A* and Transposition via Fermi

Classical general relativity
in

2" order gravito-

- elastic
electromagnetism combination of these ~ coordinates & - .

o medium &
polarisations VA

dix

==k :
ar EO = —gp® |E,' (1) | L

E =" 4 g1 1y _ (1) 234
EX=-V¢ caT

— ~—~8x 1072 f

, , E@] ¢ 2 4km/ \1000Hz
c R o

¢ =—— Roi; (Mxxr — & Roivjm (MXXXx™ . .

2y = Il +?sfn(c)T)IZu +7[1 —cos(oT)]Y;

o +22 41 - cos(@T) oz Motion of the test mass out
o . -
Y = — 4 eos(@N (2 = 2%) = 24%sin(@NYZ Gouponents of the gravitational force in the ficld of —%3 A*sin(@T)X Yy of the transverse plane

[

a gravitational wave

2
| c -
% == Roug; (NX'X/

6= #0440

D. Baskaran} and L. P. Grishchukti$
{ Department of Physics and Astronomy, Cardiff University, Cardiff CF24 3YB.

United Kingdom
 Sternberg Astronomical Institute, Moscow University, Moscow 119809, Russia

Test mass

Abstract.
. Gravitational waves bring about the relative motion of free test masses.
G ra V I to The detailed knowledge of this motion is important conceptually and practically,
because the mirrors of laser interferometric detectors of gravitational waves are
essentially free test masses, There exists an analogy between the motion of free
. masses in the field of a gravitational wave and the motion of free charges in the field
of an electromagnetic wave. In particular, a gravitational wave drives the masses
eltectromagnetism el of e . et e a1 sl entent, bk T it
direction of the wave’s propagation. To describe this motion, we introduce the
notion of “clectric” and “magnetic’ components of the gravitational force. This
analogy is not perfect, but it reflects some important features of the phenomenon.
Using different methods, we demonstrate the presence and importance of what
we call the “magnetic” component of motion of frec masses. It contributes to

the variation of distance between a pair of particles. We exp derive the
full response function of a 2-arm laser interferometer to a gravitational wave of
arbitrary polariza We give a description of the response function
in terms of the spin-weighted spherical harmonics. We show that the previously
ignored “magnetic” component may provide a correction of up to 10%, or so,
to the usual “electric” component of the response function. The “magnetic”
contribution must be taken into account in the data analysis, if the parameters 20
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Approach 4 : General relativity by
hydrodynamic approach (1/2)

c the speed of sound relative to the fluid,
v the speed of the moving fluid,
n the unit vector,

We can therefore write with respect to the laboratory that the sound ray propagates with respect to

the fluid at a speed:

dx — vdt = endt

Either by defining: n? = 1 normalization condition that defines a sound cone:

—c?dt? + (dx —vdt)? =0

Or by expanding the expression below:

—c2dt? + dx? — 2vdxdt + v3dt? =0
[vz - cz]drz +1dx? — 2vdxdt =0

So, we have a metric of the following form:

g= _Qz [[vz _ Cz] —“UT]
—v I
Q) a function
| the Identity matrix 3 X 3

In the case of the fluid dynamic the metric becomes:

P
c

—[ar:2 — vz] —v
—v I

g;w{ tx) =
Wit | = [I] the identity matrix.

David Izabel GDR GDM 28 06 2024

T

Parameter

Classical theory of the gravitational wave
(see appendix A of this thesis for the
proof)

Analogy acoustic binary in a fluid in
movement (Aeroacoustic quadrupole)

Expression of the strain
h generated by the
binary on the medium
(transverse stain)

Transverse component

_ k¢ d* r
TT _ FTT _ ™
Bje = Iy = 4mrcot de? ¥ ( 60)

Magnitude of the metric perturbation see
Formula 3.27 [250] with k=87

Strain in the direction
Longitudinal
(propagation direction
of the wave)

Acoustic wave on a
fluid in motion can
recreate the behaviour
of the gravitational
wave with also z
direction strains

( ¥+ 1) « fd(l) (:Z: t)

Does not exist we suppose in general that
space is a incompressible medium

Longitudinal component

Dﬂhlm*(:zr t) =0

0 0

o t
(3 ,)X/d(l)(z )

_ g
2 P,
- 0
h_m'(zr t) = 2
0
—v(y(zt)

(3-9 FwEd
0 2 Po

o

If compressible medium of density p in a
linear theory with specific Newtonian gauge
at higher order of the compactness of the
source that imply that an additional
compression wave is possible.

2
‘hig CJZE(QD) |ETT

00ln,  5\2¢,/ 'k
Magnitude of the metric perturbation see
Formula 3.28 [250]

—v3)(z,t)
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Approach 4 : General relativity by

hydrodynamic approach (2/2)

Technische Universitit Berlin
Fakultit V - Verkehrs- und Maschinensysteme
Institut fiir Stromungsmechanik und Technische Akustik
Fachgebiet Technische Akustik
Sekr. TA 7 - Einsteinufer 25 - 10587 Berlin

Acoustic analogies with general relativity,
quantum fields, and thermodynamics

Drasko Masovie, TU Berlin, 2018 (last update: August 15, 2022)

DB: Psidr 0, xy."5
Cych: 560128 Time: 135027
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Space time is model by a dynamic fluid

and the acoustic wave model
gravitational wave
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Synthesis of the Modified General —
relativity If we read the additional

component of polarisation

y (o) -
e /T\ C oo o 0 00 as xx xz and yz additional
> * > P§;)=%(8 0 % 8>P¢f§>=%§(3 o1 8) strains we obtain a coherent
il s L0 e 3D material
Einstein-Cartan theory (0 00 0) (0 00 0
p®»_Lf0 1 0 0)pw_21f0 0 0 0 ’
ab 2\0 0 1 0) ab 2\0 0 O
s 000 000 Equivalent
0 0 0 0 0 0 0 O .
Longitudinal P(ﬂ)_i(ﬂ 0 O(yz)=L(0 00 elastic
ab V21 0 0 fib v2\0 O .
polarisation @ 0 /0, Medium
Second order general relativity Pz Strain in the
k9 ‘| longitudinal
T direction
: : z
Hydrodynamic and acoustic 26 d? R
RIT = RIT TT (t _ _) Connection between
ij ij 4 J§2 0
e Rc* dt c the sheets
G N e e e 2
éﬁzﬂﬂﬁ:g Yes | Yes | Yes | Yes | Yes | Yes th' f— ETE kG d Tg’ (t — i)
. . m Yes W Yes | Yes | Yes T - ] ]
Other general relativity RS 5| 4mregt de? Co
modified g:z:‘i‘-jadze. Yes | Yes | dep | dep | dep | dep 2
B 1g1 o 2 (QD\" C i inin th
everd | g|Lto _ &[22 TT ompression strain in the
F(R) gravity Yes | Yes i\Io No | Yes | Yes Oﬂ - -k . . . N 23
Bimetric]:heor\’ Yes | Yes | Yes | Yes | Yes | Yes Qr 5 ZCﬂ } Iongltudlnal dlrectlon
David lzabel GDR GDM 28 06 2024




What are the message of the different
tentative of modified general relativity?

* The different approaches to modify the general relativity converge all
in direction of additional polarisations at A+ A*

* Based on the principle 1 between the polarisation and the strain,
these approaches allow to «rebuild « a 3 D medium with sheets of
space connected together

 But this third dimension is associated:
* For Einstein Cartan-theory at defect theory so at plasticity in crystallography
* For Einstein’s general relativity at second order deformation out of the plane
* For Einstein’s general relativity at an hydroacoustic fluid theory

For all several theories at complementary polarisation that are not measured
until to day



3) Consegquences about the
potential models that can be
used to reproduce the forecast
and measured strains of the
space-time
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3.1

medium isotropic transverse

Practical characteristic of the elastic

International Journal of Modern Physics D
(© World Scientific Publishing v

The Mechanics of Spacetime — A Solid Mechanics Perspective on the
Theory of General Relativity

. . . o
Grain size thickness?®
_35 hitps:/fdoi.org/10.1007/512043-020-01954-5

* Tenev and Horstemeyer: 10°°m ®

*  Quantum gravity : 103> m -

e Stri ng theo ry: 103°m Mechanical conversion of the gravitational Einstein’s constant «

. . IZABEL DAVID
- > We ke e p th I S hyp Ot h e S I S Brazilian Journal of Physics, vol. 35. no. 24, June, 2005
Emerging Gravity from Defects in World Crystal
H. Kleinert
Institut fiir Theoretische Physik, Freie Universitit Berlin, Arnimallee 14, D14195 Berlin

Recerved on 25 January, 2005

e Structure in sheet by screen dynamic effect under gravitational wave?

* Tenev and Horstemeyer : hyper surface

Elastic constants:

Youngs’s modulus?
* Following quantum field Theory 103 Pa
* Following gravitational Wave (R Weiss Nobel Prize lec

=>we will extract Y of our models basing

Y =6¢" [2nhG?, v =1

ture) 103! Pa
GR Strains Rainer Weiss Lecture

Ligo and the Discovery of
Gravitational Waves, |

Nobel Lecture, December 8, 2017 by Rainer Weiss
Massachusetts Institute of Technology (MIT), Cambridge, MA, USA}

Poisson’s ratio?
* Tenev and Horstemeyer v=1 compatible with strains
measured in the interferometers

David Izabel GDR GDM 28 06 2024

The power per area in the wave is proportional to the square of the rate
of change of the strain times a gigantic factor which tells that a small
amount of strain in space is accompanied by a huge amount of energy. In
other words, it takes enormous amounts of energy to distort space. One
way to say it is, the stiffness (Young’s modulus) of space at a distortion
frequency of 100 Hz is 10 larger than steel.
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Consequences => rass [SOtropy =>non isotropy
of the medium? Limit validity analogy?

Direction of the gravitational
waves

Y Gravitational wave “X a) Inthe LT plan (x,y)
For Young's modulus Y=E:

Space '.ua-n‘

Planes deforming
independently of

For the Poisson’s ratio:
each other

: B S ey
(sz_""yfo) R { ! VrL = vir
- 3\ s 1 " E,
vK<1=0? 2(1+ vip)
Virgo 2018
b) InLN (xz) and TN plans (yz)
For the Poisson’s ratio:
VNT = VNL
Y = WA
R LN TN
For shear modulus:
Gry = Gy
For the following key relationships between Poisson's ratio and Young's modulus:
v=1 T N
David Izabel GDR GDM 28 06 2024 Ex E, 27




Clay HDL Analogy of the space Space under

medium behaviour gravitational wave

Plan:

~ isotroped] 774 as clay in sheets

‘ Plan

isotrope
z
* 21 / Onde gravitationnelle

I
o s Same
v different v y
= _ ratio as space|
Eh Eh. Ev p
! 1 1 0 0 0 H Z
e 00 0 time
&n = Sxx h h v 0 0 0 - Op = Oxx - H X -
e I I o=y | | following v=1
&, = &, T, = O. .
G 1| different
w VZ
= = & 0 0 = . M
Shy = Exz Ohy = Oxz d . . .
2G Irection
fn = Exy 0 0 0 e Onn = Gy Necessity to have an anisotropic model of space to
. . . . .
0 0 0 0 55— O be in accordance with the Poisson's ratio v=1
0 0 0
o o Ltvm Horstemeyer Poisson’s ratio v =1
Ey * We demonstrate based on 3 different approaches:
Exa m ple Of the Clay First Approach: Analysis of the Movements
Ré&férences E, E, Vo Vi Vi Gy of Particles Positioned in Space on a Circle Checked on
| e ) ) s e Pt Gt S
Résultats 400 500 0.4 0.8 0.6- 1.0 - = W msofVirgo
expérimentaux Second Approach: In the z Direction, - B
Proposition 230 500 0.3 0.3 0.54 130 the Gravitational Wave is a Transverse Coresmuse = ,V.“"" TH_y o T EEaa-m
pour le modéle Wave and is Not a Compression Wave !
anisotrope -onsequence 2 hird Approach: Based on Available Datas conseqf"ce ! ~ , Trins"ersels?ea: ‘_’;a"teh
I ) E . i Implies v = outside =
Francois et al | 200 400 0.125 0.125 - 178 ‘ PeE TV mga, ! N TR Y range-.l,O,S) so\.t\fe_h;__\,qs_!;g
(201 2) Imply also a behavic?ur of space as a some Continuous conﬂde:;r;iaur;lnsotroplc
Bernier et al | 300 300 0.125 0.125 - - of plans deformed independently during medium?
the passage of the gravitational wave
(2007)
Yu et al (2013) | 700 1400 0.125 0.125 - 28
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3.2) Study of several mechanical S. Timoshenko models of the space
time that can reproduce the order of magnitude of the strains forecast
and measured in general relativity in weak field

Weak field general relativity is continuous and deterministic. It
can be modeled by an elastic analogy, a Hooke's law via the
theory of elasticity in a continuous medium and in weak fields
with resistance models of type strength of materials.
Timochenko if:

- we place ourselves far from the point of application of the
efforts, that is to say (far from the point of coalescence of black
holes, far in space and time from the big bang).

-We reduce the dynamics of space-time to a sum of equivalent
static cases “screen shot” which follow one another following
the arrow of time.



Link between the metric tensor perturbation hyy,

and gravitation experiments

G/zv = R,uv - Eg/IVR = KT//V
Angle 871G Energy
= X

Curvature =

Volume

Surface c*

Mewton Gravitation
Agp =4xGp

Einstein in weak Field

Gravitational wave polarisation A

Gravitational wave

polarisation 4™

Gravitational wave with possible new
polarisations (Einstein-Cartan theory etc)

2 8aG
Ahge = —2‘5(3’: 2 PC
c c
Lense Thirringframe dragging and geodetic effect [
Angle
0°x GMowl*[4x* +y* —2z°0dy 12yzdz] GMx ;"II
a2 12 r |5 12 ot 512 at] 1 r
a*y GM ol*[4x* + y* — 22° dx N 12xzdz| GMy |/
atz 1% r |5 r? at  5r2 at| r*r |
ay dax
| 3’z GMol*|12zX5; — Y g¢ R T T
o> > r |5r 7 e I % - P
: 1 ir'osindsing’ —ir'wsindc Sy P B
- (g) ir'osindsino 0 0 L T 0
woo\ds/) | —ir' osindcosd 0 0 IR M
0 0 0 T om gy eplam

Hypothetic new polarisations

with Einstein-Cartan theory
(geometrical torsion)
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Consequence about the models that can -+

reproduce the strain of the space-time

Mechanical conversion of the gravitational Einstein’s constant « c") C 0 n s e q u e n c e 1 : I n t h e p la n e a p p ro a c h N EW

The Einstein’s field equation in weak field is equivalent at structure
In one or two dimensions in compression/traction:

Normal effort dun® 2 U 2 U s U

Nixy dx ES" L ¥s'L kgm m

General relativity 1 8nG 1 52 u
Ry——=g,R +Ag,.=——5 T —

w3 Gy G P m kgm > m

El.m

60 000 Km

Direction Z of the
grawtational wave

propagatio
ngo/Vlrg,o
X, :/v z &
/' 4 >
.
0w
Elastic space medium _ 60000 Km ,|
45 made by a sandwich of 4
thin shee(; Figure 106: Lattice geometry and loading medeling the space sheet of thickness of the order of magnitude of Ph
ty
y il A Blocking displacement x and y
€arth DaVId lzabel GDR GDM 28 06 2024 8 - e 31
Position of the shear wave during Wave direction }ﬁmﬂlﬂn e
ofp
the time (speed ), to °“he i E =—10000MN Ay =£, = 10735 x 6000000 = 6.0 x 10~m?
sheets of the space me d um

E, = —10000MN Y =3.0x 10°MPa (3.0 x 10%Pa)



Consequence about the models that can
reproduce the strain of the space-time

Consequence 1:In the plane approach space put in torsion

The Einstein’s field equation in weak field is equivalent at structure

In one or two dimensions in compression/traction:

7
e —, =
4/ / Orz, space = Qspace q’@e?
I 000[% \7
f Planc] cted to :anm/( the rot: v
Space ti ) E Figure 7: Space twisted by the rotation of the Earth—
Space time frame dragging Gyroscope 2 km
effect O on board - . .
-37.2+/-7.2 nulh arcsecond °
2 il e \prb Frame dragging: the Earth by
. S f Earth H H
V4 rotation its rotation drags space

Y Dayid Izabel GDR GDM 28 06 2024 .
horizontally (imposed strain)

Geodetic effect (curvature)
-6601.8+/-18.3 mulli arcsecond /year

NEW Timoshenko’s
, model of truss of beam
A A A A A A AT
A° ¢ ¢ @ o0 I ? A
A © © © o O O o4
Lo l | < S
A O ©0© 0 A
D =7}
A ? OO Iy ° a
G
A ® Fi _ A
a0 P bl oo by
A © 9 A G A AR A Y
T o fL _Y
A oo 0 ¢ A
A0 ° o oo ° ° a
o A I """ A A L A A A
‘ 60 000 Km 00013:17 _‘
A cking displacement x and y
O -
Im pwx MPa
’E F, = —10000 MN 32

F, = —10000MN




Consequence about the models that can
reproduce the strain of the space-time

Yot

Consequence 2: Perpendicular at the plan approach (cissicaigravitation)

The Einstein’s field equation in weak field is equivalent at the
Poisson equation that is equivalent in 2 dimension at
membrane:

Einstein’s equation in weak field

Al _zﬂ@_am )
o T 2T

Poisson’s equation/Newton in
weak field

',_.,.3
Eﬂ.hﬂ.n - ﬂ.@: 4}2{;}?

Membrane equation in weak
field (Timoshenko

1,1'-. 1|w(x,y) *wix,y) 1 (gM)xL
— —_ — = ¥
LWL a2z 3y? ES AL X L2

Curvature (1/R)*= flexibility (1/ES=1/N) x energy density N.m/m?

TARDIO IOP Publishing
I0P Conf. Series: Journal of Physics: Conf. Series 845 (2017) 012003 doi: 10, 1088/1 742-6596/845/1/012003

Introducing surtface tension to spacetime

H A Perko’
"Koppa Research, Office 11, 140 E. 4th Street, Loveland, CO, USA 80337

1ARD 2020 10P Publishing
Journal of Physics: Conference Serics 1956 (2021) 012004 doi:10.1088/1742-6596/1956/1/012004

Gravitation in the surface tension model of spacetime

H A Perko*
1Dffice 14, 140 E. 4th Street, Loveland. CO, USA 80337

Dark matter and dark energy: cosmology of spacetime with
surface tension

David lzapel.&DR GDM 28 06 2024

'Office 14, 140 E. 4th Street, Loveland, CO, USA 80537
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Consequence about the models that can

reproduce the strain of the space-time

Consequence 2: Perpendicular at the plan approach

D§
éf’:'.- +30) - I'L:i: (2| ar (2
_ (24 :::-.—— ZjE]fiilJ — HE
(225 4 22) — 2| (25) (2) x5 (24 :j:‘ ||;::.'
@@©©®®® ® rmct e Metric
ONONCRORONORNORORONONORC Dl L (ua , dug) _ L
©@ ©©@© ©@©©©®©® @ @ © ©@ © © 5_2 dxg Oxq 2
(a.) (b.)

Figure 2. Probability Density of Interacting Particles (a. in continuum, b. with boundary)

Figure 3. Hypersurface Stretched Across a Wire Frame Window with One Moveable Side

1 1
] :Egm)g-‘”[,vg _ERQ;W

1
Gluv = R;fv_ E.gﬂvR = KTHV
Angle 872G Energy
Curvature = =
Surface c* 7 Volume
3D Space 4D Spacetime
o ) Energy o . Energy
Surface Energy =9 = ———— Surface Energy =0 = ———
Area Volume
i Force  Energy /L i Force  Energy fL
Surface Tension = 9/ =0 | Surface Tension = = 9/ =0
Width  Area JL Area  Volume [L

31;:9) dug
dxg

PERKO approach

axg

David Izabel GDR GDM 28 06 2024

dimensions [14]. Since @ and £ are dummy indices, one can change indices such that Dﬁ Guv =

D Gav F Dyv- Hence,

dt’

sy Link with GR

The rate of deformation tensor with two covariant components is the Einstein Tensor given in [14].

D R,

uv

Returning attention to the constitutive relationship (5), it can be seen that,

D
a B v
"Dg = ¢

wa

T = Co

uve

Contracting the elasticity tensor, moving it to the stress energy side, and inserting (13) yields an equation
closely analogous to general relativity,

1
T 1C§ = Ry = 5 RO (14)

except the Einstein constant from [15] 1s replaced by a symmetric nondegenerate anisotropic elasticity
tensor,

2

arl,Y” 0 0 0
1 0 0
a _ pva _ 2
Cf =g Ci =2 o 1 o (15)
0 0 0 1
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Consequence about the models that can
reproduce the strain of the space-time

Consequence 2: Perpendicular at the plan approach (

The Einstein’s field equation in weak field is equivalent at the Poisson
equation that is equivalent in 2 dimension at membrane:

e

?w(x,y) *w(xy) ;1
pw = W) xy) _gu_1 S~
dx? dy? T R
W(I; }r) The ver“cal. ﬂiSplECE‘ﬁmEﬂl Df the membrﬂﬂe iI"I m. N EW J N EW Ellj.?l;ah];r;;lffectln!l_spacetim;
/ e e

T=N/L The force by meter along the membrane in Newton/m

brane

Tension of the Curvature
membrane of the
membrane

Curvature (1/R)* = flexibility (1/ES=1/N) x energy density N.m/m? David Izabel GDR GDM 28 06 2024

1t The mass by square meter of the membrane in kg/m”
Equivalence of the geodetics angle

B with the angle B° of the parabola
(deformation of the space
| equivalent membrane by the

g= i‘—fThe acceleration g: in m/s’

M
ﬂzw(x.y]l ’w x}rj Q'Lz B
2
dx ay? E-S—
|: —_—

Aw =

1 gﬂrf ) ® L

1 1|*w(x,y) 0 w(x
—Aw = — ' '
L L dx? ﬂyz AL X L2




Consequence about the models that can
reproduce the strain of the space-time

Consequence 3:In plane +spatial (Frame dragging) R

The Einstein’s field equation in weak field is equivalent in 3D at
equivalent at cylinder in torsion:

Twisting i_i E_ixg 1 52 U =l= =
torqueT,, RZTGL L uL L me kgm3 XE
General relativity 1 B 1 5° U
Ruy——guR + Agw=——Tp i " —
g G Lt Py mE - kgm < m3

Pramana —J. Phys. (2020)94:119
https://doi.org/10.1007/512043-020-01954-5 Equlvalellt Cyli.ﬂder Of Space pui l.ﬂ

torsion by the Earth rotation

updates

Mechanical conversion of the gravitational Einstein’s constant «

(2) Horizontal | waves,

created by the black

NEW

NEW

Block of space-time
considered by analogy as
an elastic medium

Section from Earth to
Ecuador

Rotation imposed by the Earth at

(1) Black holes or neutron
tars il

the cylinder of space

stars in rof
Myand M,
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Consequence about the models that can
reproduce the strain of the space-time

Consequence 4:spatial shell

The Einstein’s field equation in weak field is equivalent in 3D at
equivalent at sphere with internal pression :

ﬁ Qda:?g W-9dv (5
a v

which means by direct comparison of (4) and (5).
V-Q=—dP (6)
Differential temporal pressure (mass energy) is the spatial divergence of surface tension.

Tlus line of logic is somewhat analogous to the treatment of corpuscular. capillary. and meniscus
geometry in physical chemistry of surfaces. An example of corpuscular geometry is shown in Figure 5.
For two-dimensional curved surfaces. surface tension acts against differential surface pressure, dP.

Q 2R = dP nR?
20 2-D Surface in 3-Space

R dP

Figure 5. Corpuscular Analog of the Divergence

Theorem in Physical Chemistry of Surfaces

From this analogy, one can intuitively derive a similar relationship for spatial three-surfaces intrinsic in

4
2= gp 2R3
@ 4nR* = dP 3 R } 3-D Surface in 4-Space
3Q

=ar )

time,

Dark Matter and Dark Energy: Cosmology of Spacetime with
Surface Tension

H A Perko!
1Office 14. 140 E. 4th Street. Loveland, CO. USA 80537
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Consequence about the models that can
reproduce the strain of the space-time

Consequence 4:spatial

et

The Einstein’s field equation in weak field is equivalent in 3D at

equivalent at sphere with internal pression:

The data about the sphere with an internal pression is given at the figure 129.
b

4) Curvature of
the space time
a N EW around the sun

that bend the
light

Figure 129: Notation for a sphere loading by an internal pression
In elasticity, we have the differential equation [308]:

d*u, 2du, 2
i Mt Al

dr® rdr 27

So, the beginning of the equation follow the form of:

R @ 2 ¢ 1 ¢, 1 _ap 1 a2 1) Postulate
O e T et T GF T Pane 76 e G Space __——
2 o
=30 medium
So, it’s a development of the Poisson’s equation that is this modified by a distribution f that is not with
constant. The solution is on the form: Youne's
C. i i = i
w =t S)Gfa_wtatlon. against
" pression applied by the
With for the 2 constants: elastic medium on the
=tV e pression produce by the
2(1+29)
. star (Newton force
-2y a » view)+strain and curvatute
E b —ad

around the sun in the space

We know the displacement w, S0 we can extract the Young's modulus E=Y : i . . N .
time itself (Einstein View)

o

A the space time

3)Extension of

in tension
around the sun /
generate L
curvature of/]
space time

2)The sun by its mass,

~___ 1nclusion inside the space

time mmply and expansion
under the nuclear
reaction create pression
and a curvature
(mechanical and thermal)
of the space-time, and
thus generate tension n
the space medium around
that 1s stramed

R Er ] ST David Izabel GDR GDM 28 06 2024

The Sun tries to explode because of
the nuclear reaction butit can't
because space-time is in tension
around it, trying to compress it
uniformly. As space is in tension it
extends like a membrane locally or a
sphere globally 38



Consequence about the models that can |
reproduce the strain of the space-time - w——

Consequence 5:spatial in 4D (classical gravitation)

The Einstein’s field equation in weak field is equivalent in 4D at
Hypersurface membrane:

Bending moment i_ixﬁ_ixﬁ 1 s? u '
0 of Mgy R Bl L YI L mZ kgm® m
50 a9
General relativity 1 8nG 1 s* u
100 Rm-_ EQMR + —"lg,uvz _?wa — = 3

% 109]

acceleration [m"sz]
g

x? (proper distance) [kpc]

X2 [m

250 I m——— o
Simulation
= Hyper surface of Planck Thickness
] 500 1000 1500 Strain S
() ' [m = 109 i EIN 6988
5 0
Mississippi State University € 2
- \ 3 Tz |
0 H ¥  Observed g ¢ \
\‘ SChOIarS JunCtlon —-—-—Simulated without inherent curvature & &l N s
| 0.01 Simulated with inherent curvature 8 A
— 1000 : 1
E ! & 002 0 @ % \
El | = a . . ] ; ¥
= d 2T E-om Theses and Dissertations Theses and Dissertations 7 ~
g =} < P ) e o 0 N 698.4
E ) & §oo | 15 // 1, o 2 4 6 8 10 12 14 16 18 20 w0 2 4 6 & t0muismm
500 | 5 005 = - _ ! (proper distance) [kpc] X! (proper distance) [kpc]
\ 3 i 12-14-2018 £ - s
! T 006 ! > s =
1 N — Z o
o7 { ——=Theory . . . . . . . 10 _Z 15 Figure 7.4
/ ) An Elastic Constitutive Model of Spacetime and its Applications s
nos s 100 200 7 Fabric strain due to the M33 galaxy.
(e) 1 o : : 5l=2 1
x'[m x 107 Tichomir G. Tenev 0 5 10 15 20 25 Fabric strain due to the M33 galaxy without (a) and with (b) inherent curvature.
x! (proper distance) [kpc] The top panels visualize a quadrant of the strain field, while the bottom panels
. " show the density and strain profiles. The density profile used here is from
Figure 7.3 Figure 10 of Corbelli et al. [37].
. . P Figure 7.5
Fabric strain and acceleration due to the Sun < \ . =
e ;\_/’ L Rotation curve of the M33 galaxy
Panel (a) shows the variation of density p and the fabric’s volumetric strain in X i
the vicinity of the Sun. Panels (b) and (c) compare the theoretical value for P ks S

\—
the gravitational acceleration due to the Sun with the simulated value that was \ 39
outpul from simulating the Sun’s gravity. The comparison is shown within two

radial ranges: in the vicinity of the Sun (b), and in the vicinity of the Earth (c). David lzabel GDR GDM 28 06 2024 e

The mesh used in this experiment had 58 x 58 x 58 = 195, 112 nodes.

Hypersurfaces

Straln [10°)



4) Numerical applications of
the different models
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4.1 Models in plane with spatial component of
strains (h special associated at h;; for Gravitational
wave GW or space part of gravity prob B experiment

hoi;;hjo)
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Case1: GW150914 - Coalescence of 2 black holes

Figure 105b above illustrates the paragraph above. ) .
Schwarzchild radius 100 km

Coalescence of the 2
black holes

1 v
! \ \
1
\ s
\ P -
Vsl %V
350km |\ - )
\ \_ -
\ s :
\ el

1
- 717‘.7._,-,,-— - o
1

Fi= 60% c
RN
y = 30%c

/~~ Singularity
Plane transverse of the radius 20 km
interferometer type

Ligo/Virgo

Wave direction ‘ T~ . T~
of propagation ‘ ~~—_ -
| ~—
Displacements longitudinal and \\\/
transverse (one of the interferometer
arm) evaluated by the truss model at a
node

Principle: we impose a
Torsion torque equivalent
at the black holes

. Data Value Unit
coalescence in the Mass black hole1 36/Solar mass
mlddle Of the sheet Mass black hole 2 29Solar mass

speed before coalescence 0,3|c
mOdeued by a truss and Speed at coalescence 0,6|c
lOOk fOI’ the YOU ng Duration of coalescence 0,2ls
. . Thikness sheet (Planck) 1,00E-35/m
modulus intensity that | youngmodutus v 1,00E+44/Pa
allow to refind the strains | |PlameterBlackhole 20km
. . Distance between force 10jkm
Of the Space time fabrlc Mesch of the truss 6000/km
measu red by the Area of the bar 6,00E-29 m?
. K . Solar Mass 1,99E+30|kg
interferometer Ligo/Virgo | lspeedc 299792458/m/s
David Izabel GDR GDM 28 06 2024 42




Case 1: GW150914 - Finite element model of
a truss (bars working in compressmn/tractmn)

The geometry of the model is given at the figure 106 below and the mesh at the figure 107 below (F =10000 MN).

W7
i A A . Torsion created by
r * g4 r 4 4 "~ black hole
o o o o o o o o coalescence
A ) 7 A modeled by 4
: | | forces to keep
© O O &) © © © symmetry of the
A ‘ T ‘ T A elastic model
A °© © © © © + a ) o A
g ‘ A © rLa P e -7 S S S 7y
=2 T J-I-( ‘ -\'\1F |
g o o i o
S AT T g e oA
N F, .~
A ° O T TG O Tv ‘L c A
- Fan L ) Py
‘. o L v o = WLr b ‘ r Y
L I r=6000Km
: P (
A °© i S ¢ iy & & ; o A
o A A A I A A A I A ”‘
s G000 Kﬂ]
P 60 000 Km _|

Figure 106: Lottice geamet:y and loading modeling the space sheet of thickness of the order of magnitude of Planck-

£
p A Blocking displacement x and y
;|§@ ]ﬂn O  Hinge
F, = —10000MN Ay = £, x T = 10735 x 6000000 = 6.0 x 1072°m?
F, = —10000MN Y =3.0x 10%¥MPa (3.0 x 10**Pa)

Mesh and loading

David Izabel GDR GDM 28 06 2024
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Case 1: GW150914 - Results obtained with

arbitrary loading of 4 loads of 10 000 MN

8

]
[=]

>

(5]
—

=

5000 MN

Ln
(5]

> p

5000 MN

~]
L
b

»E B PE

109 110 11 112 113 114 115 116 117

Reaction on the
SuUpports David Izabel GDR GDM 28 06 2024 In displacements 44




1) Calculus of the acceleration of the 2 masse

Case 1: GW150914 -Numerical application and
comparison with the strain measurements

Veoalescence — V3sokm

At

2) Calculus black hole mass

m = (M 1+ M2)/2 x solar mass

3) Calculus of the Force created by each black hole

Fplack hote =M X @

4) Calculus of the torsion Torque applied

T = 2Fpjack hote X =

5) Calculus of the number of planck sheets concerned

n

_ dbiack—hole

[

p

Ly
2

S

449688687 m/s’

6,46E+31 kg

2,91E+40 N

2,91E+44 N.m

2,00E+39 sheets

6) Calculus of the Torsion torque by sheet

T

TPIanck— sheet — H

1,45E+05 N.m/sheet

7) Calculus of the corresponding forces applied at the model

Tpianck—sheet 6,05E-03 N/sheet

Fp; -
anck—sheet
Ar
8) Calculus of the longitudinal strain with the fictive force applied
AL 2,77E-07
he—10000MN = - =

9) Calculus of the real longitudinal strain with the coalescence loading

h — ] FPlanck—sheet
Fplanck sheet — [WF(for F =10000MN) X F 1,67E-19

10) Calculus of the real transversal strain with the coalescence Loading

Frianci—sheer 672519

hFPEanck sheet node 47 = hF(fm‘ F=10000MN) F

David Izabel GDR GDM 28 06 2024 45
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Case 1: GW150914 - Comparison
Mass black holel 36|Solar mass
Mass black hole 2 29|Solar mass d l d M l d l f
speed before coalescence 0,3|c I I leasure Va ue an nL“ I |er|Ca I I |0 e Or
Speed at coalescence 0,6|c ~ P
Duration of coalescence 0,2(s Calculus ofth " dinal \t‘ﬂl\l 5@[%1’4

- 9) Calculus of the real longi i
Thikness sheet (Planck) 1,00E-35|m alculus of the real longitudinal strain Wtth e ¥oatestén i
Young modulus Y 1,00E+44|Pa
Diameter Black hole 20|km h _} Fpianck—sheet =
L1 Distance between the 2 forces 10|km Fplanckshest ' F(for F =10000MN) F 1,67E-19
Mesch of the truss 6000 [km o .
Area of the bar 6,00E-29 m2 10) Calculus of the real transversal strain with the coalescence Loadin
Solar Mass 1,99E+30|kg

— - F _ I 6,72E-19 I
Fictive force applied on the model 1,00E+04|MN h — ] Planck—sheet

. . . Fplanck sheet nodes7 lF(fGT F=10000MN) F
Displacement longitudinal of the model 1,66E+00|m — : —
Displacement transversal of the model 6,66E+00|m SW150914. Imphcatpns for the Stochastic Gravitational-Wave

ackground from Binary Black Holes
Speed c 299792458 m/S B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration)
VF‘hys‘ Rev. Lett. 116, 131102 — Published 31 March 2016

Inspiral Merger Ring-
down

e/)u/)gﬁ

Figure 105b above illustrates the paragraph above.

Schwarzchild radius 100 km

Coalescence of the 2
black holes

- 1 Order of
3. 05 ’ - 5
2 00 iww magnitude ok
e ‘ i .
.05 I ﬂJ with
< ; 0 . .
;ﬁﬁgl%zn -1.0 I— Numerical relativity "‘ eXpe rl m e nt |f
Recons ted ( |
BN Reco 1stvlt.|L ed (temp alxe) 1 | - Y =1 X1 044 Pa
S T T T T o
L06 44 &
Wave direction - > 0.5 = Black hole separation 43 S a n d P l.a n C k
of propagation \ T~ (= === Black hole relative velocity 42 % .
| 204 F g
Displacements longitudinal and \‘\/ Q -1 g th I C k n e S S
transverse (one of the interferometer > 03FE 1 1 | | 0 o
arm) evaluated by the truss model at a 0.30 0.35 0.40 0.45 )
node David Izabel GDR GDM 28 06 2024 Time (s) 46



Case 1: GW 150914 - Comparison

measured value and numerical model for

GW150914

With diameter of black hole = horizon

26m  2X6.67 X 1071 x 6.4 x 103*

Tblack hole — = 94993.6m — 100km

c? 2997924582

FPIanck—sheet

hFPIanckshee[‘ - hF(_fﬂ?"leoﬂﬂﬂMN:] 3,35E-20

F

10) Calculus of the real transversal strain with the coalescence Loading

Data Value Unit
Mass black holel 36|Solar mass
Mass black hole 2 29|Solar mass
speed before coalescence 0,3|c
Speed at coalescence 0,6|c
Duration of coalescence 0,2|s
Thikness sheet (Planck) 1,00E-35|m
Young modulus Y 00E+44|Pa
Diameter Black hole m
L1 Distance between the 2 forces 10(km
Mesch of the truss 6000|km
Area of the bar 6,00E-29|m’
Solar Mass 1,99E+30|kg
Fictive force applied on the model 1,00E+04|MN
Displacement longitudinal of the model 1,66E+00|m
Displacement transversal of the model 6,66E+00(m
Speedc 299792458 |m/s
Strain Measured value 1,00E-21

ConclusionY =104 Pais an

acceptable value for h; strains

Phys. Rev. Lett. 116, 131102 — Published 31 March 2016

GW150914: Implications for the Stochastic Gravitational-Wave
Background from Binary Black Holes

B.P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration)

FP!anck—sheet I 1,34E-19 I

hFPIancksheet node 47 - hF(fm‘ F=10000MN)

F
Inspi:al I I Merger Rin(;-
down
"/) “/) ¢o Order of
10 J I 1,0 x10-21 I magnitude ok
50 7 with
S 00 ¥ : .
.05 1 experiment if
=10 I Numerical re ativity =] — 44
-:econslvll.:cte'd (!emplalleb i | Y 1 X1 0 Pa
Susl : | | a8 and Planck
2> g - Black hole separation -3 5 o
E gi j—elack hole relative velocity 4 i g thICkneSS
g 03F I L 1 | ] 0 5)‘,‘
David Izabel GDR GDM 28 06 2024 ~ °*° %3 =~ 040 04 47

Time (s)



Case2 : GW170817 - Coalescence of 2 neutrons stars

Neutron star diameter 24 km h l]

Coalescence of the 2
neutrons stars

2 r}‘lz 38% ¢

"

6,.»1? =185%¢c yd

s utron star

Plane transverse of the /" diameter 24 km

interferometer type /
Ligo/Virgo /

Wave direction
of propagation

Displacements longitudinal and
transverse (one of the interferometer
arm ) evaluated by the truss model at a
node

David Izabel GDR GDM 28 06 2024

Data
Data Value Unit
Mass neutron star 1 1,17|Solar mass
Mass neutrojn star 2 1,17|Solar mass
speed before coalescence 0,38|c
Speed at coalescence 0,185|c
Duration of coalescence 0,0833|s
Thikness sheet (Planck) 1,00E-35/m
Young modulus'Y 1,00E+44|Pa
Diameter neutron star 24{km
L1 Distance between the 2 forces 12|km
Mesch of the truss 6000(km
Area of the bar 6,00E-29Im*
Solar Mass 1,99E+30|kg
Fictive force applied on the model 1,00E+04{MN
Displacement longitudinal of the model 1,66E+00|m
Displacement transversal of the model 6,66E+00|m
Speed ¢ 299792458/m/s
Strain Measured value 1,00E-21
48




Case 2: GW180817 Comparison

Data Value Unit
Mass neutron star 1 1,17|Solar mass m d l d m 1 l m d l f
Mass neutrojn star 2 1,17|Solar mass ea S u re Va u e a n n u e rl Ca O e O r
speed before coalescence 0,38|c GW1 70 8 1 7
Speed at coalescence 0,185|c
Duration of coalescence 0,0833(s
Thikness sheet (Planck) 1,00E-35|m With diametre of black hole = horizon
Young modulus Y 1,00E+44|Pa
Diameter neutron star 24|km Fpianck—sheet . 3418x107'° AL L
L1 Distance between the 2 forces 12|km ME prancicshoet = N (For F=10000MN) X F = 2766 X 107 X—— o =T 9.456 10
Mesch of the truss 6000|km
2
Area of the bar 6,00E-29|m Transversally nodes 47 49 69 71:
Solar Mass 1,99E+30|kg
Fictive force applied on the model 1,00E+04|MN o
Displacement longitudinal of the model 1,66E+00|m hp = hg(For F=10000MN) X Frianck—sneet — 6.66 % 3.418 X'10 — A_L :|3 =793 x 10~ 2° I
lanck sheet node or b= s
Displacementtransversal of the model 6,66E+00(m ? ‘ v F 6000000 10000 L
Speedc 299792458 |m/s -
Strain Measured value 1,00E-21 Order of magnltude
(0] ¢
e : .'-:I becw fonn Fonn R 18- MWN 4 '.‘ | Order Of
- < : l 5 b :'&Jvl;'n'”(.:';*'“_{'é‘ﬁ*;rrvﬁ”" "[ﬁ"ﬂ'l 8 X 10_20 .
o | | Strain data | B ‘ I ‘ magmtude
. _ 44 o [ | STTIOR A B s prea d1ihrenn (s v TN £8- 3% b | .
ConclusionY =10 Pais an o | |/ Glitch model = ‘ ] ok with
) - \ . o ‘;..,;l’ 1',..".5‘..,.1 Aa,r;.*,‘ll—.) -1:{4'%4'{_“‘ . .
acceptable value for h; strains % L ST 1 experiment if
'® Y =1x10% Pa
« : and Planck
T T T T ¥ | T T 0 : hick
GW170817: Observation of Gravitational Waves from a s1.28 = 0.7 -05 -0.25 0 : thickness
Binary Neutron Star Inspiral Ti ; ds 2 : :
B.P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration) me (Sccon S) el 49
Phys. Rev. Lett. 119, 161101 — Published 16 October 2017 David lzabel GDR GDM 28 06 2024




Case 3: Approach1 - Frame Dragging effect
around the earth measured by Gravity prob B

hoi Rjo

Equivalent cylinder of space put in
torsion by the Earth rotation

Block of space-time
considered by analogy as

Principle: we impose the
frame dragging rotation
angle 0,, measured
during the gravity prob B
experiment at a cylinder
of space in rotation
inside an elastic medium
(Torsion) and extract the
corresponding Young’s
modulus Y of the space
time fabric to be
corelated with gravity
prob B measurement

7).

Figure 7: Space twisted by the rotation of the Earth —

an elastic medium .
Considered effect

Section from Earth to
Ecuador

second by year (*) second by year (*)

Prediction of general | Measurements made by | Error %
relativity in miiliarc | Gravity probe B in milliarc

Geodetic drift rate

Gravity Prob B

-6606.1 -6601.8+/-18.3

0.28

Frame dragging

experiment

-39.2 -37.2+/-7.2

19

I 1 milliarc seconde = 4.848x10~ rad

David Izabel GDR GDM 28 06 2024

Frame Dragging
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Lense-thirring effect: Part of h =y, v concerned

2kM kM ly
1 Yor 12¢
-1 0 0 0 4kM ly 2kM
i—=o -
_ |0 -1 0 0 51 12 r
Iuw="%F 7010 o -1 ol|T| akMix .
0 0o o -1l |T'T5 2
0 0
2kM  4kM ly 4KkM Ix
-1+ ] =@ L — wl 0
r 51 r 5r r
4kM ly 2kM
i — ol -1 - 0 0
_ 5r r r
4kM lx 2kM
—i — ol 0 —1 - 0
51 r* r
2kM
0 0 0 -1 -—

—1

4kM Ix
5r r_zwl
0 0
2kM
— - 0
0 _ 2kM

1 ir'msindsing’
dt\?| i wsindsi |
T —p (_) ir' osindsinoe 0
A 0\dS/ |—ir'wsindcosd’ 0
0 0

156 Ense u. Thirring, EinfluB der Eigenrotation der Zentralkorper.

Physik. Zeitschr. XIX, 1918.

Ober den EinfluB der Eigenrotation der Zen-

tralkérper auf dic Bewegung der Planeten

und Monde nach der Einsteinschen Gravi-
tationstheorie,

Von J. Lense und H. Thirring.

David Izabel GDR GDM 28 06 2024
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X1

K LT

- —— A
Pre ~
7 ~
Vs N
/7 \
/ \

/ A\ =

/ \ =R

/ \
Ill \ That imply the two constants are:
|
\ _ h
i d=2R K

\ /)
v\ /
- \ / By asking:exl =0 we have:
O VA
' ~ / !

~ e
\“-. // |

= -7 .- .. . _ _ Andfinally:

_ Sgaz.space)

O ==

We have so the following expression for the 8,0,y = A + Bx

With the limit conditions described above and the frame defined in figure 120, we obtain

B(xl) = 6(0) = A+ BJCI =A

B(x2) = O1) = Oy + BL

B = Jenfey
L

A=0,
Baz) =6
e(x) =0y 4 ZJL O 5

__ Sgxzspace)

B(x) = —L X

By reporting the expression above of the torsion torque function of the 8 variable, we obtain the

expression function of x of this one:

nGd* Bxz,space

Ty =—7%02

We can therefore calculate the strain energy U of the equivalent torsional bar:

2 . 2
B C I U L(m ) dx

U=1 x ==
270 GI; 2GI: 70 3212

So finally:

m? Gdlae'surz,space2
 6144IL

In the case of a solid tube, with the equation of the torsional inertia I;, we obtain:

4 2
_ HGd Ia5»4:2,space

192L
With the definition of the shear modulus of the elastic medium associated:
Y
G=—_

2(1+v)

We obtain finally:

- 4 2
_ H—Yd E]':'cz,spéu:e

 384(1+ V)L

energy

Strain elastic

Case 3 : Approach
1 - Frame dragging
Gravity prob B

The kinetic energy of rotation of the Earth is equal to the energy of deformation by torsion of the
associated space-time cylinder driven by the Earth.

1
Ekinetic = 510)2

With angular velocity  inrad/s

In the case of a rotating ball the moment of kinetic inertia is:
2 2
7= gMTRT

We can define the angular velocity in rad/s by the expression above function of the time taken by the
Earth to do a complete tour in 24h:

1 tour 2nrad T
= rad/s

CI‘)T = - =
24x60%60  1tour 43200
We obtain the following expression of the Kinetic energy:

2
2

1 /4
EximeticT = z2% EM‘I‘RT X (m)

So, the final expression of the Kinetic energy by torsion of the Earth:

—
T

|y -
KineticT ™ 9331200000

Kinetic
energy

MrR?

David Izabel GDR GDIM 28 06 2024

n? Y (2R1) 62 space”

M;RE=U=2

P —
einetiel = '9331200000 384(1+ v)Ry

We extract an expression of Young's modulus Y of spacetime:

mw? % 384(1 +v)Ry
v = _MyR?
21 % 9331200000(2R7)*6 .

Or after some mathematics:

52

v = X 12(1 +v)
9331200000 X Ry X 6_




Cas 3 : Approach 1 - Numerical Applications and
comparison and conclusion about the necessary

young’s modulus

* Estimation of the spatial part and time part of the space-time
measurement angle of the gravity prob B frame dragging

If we place ourselves in the equatorial plane of the Earth, the interval becomes roughly speaking:
ds? = c*dt? — (df?)

Graviti prob B measured at r = 6642 km an angle variation of d6 = 6.04x10™ rad/s of space-time, so %
the associated variation in length is . t| >

ds =rdf = 6642000 X 6.04 X 107*°* =4.01 X 107®m

In parallel, we have an estimate of the distance variation related to the entrainment effect of the time: Figure 2. Two pulses of radiaton counter-propagating n a cicuit whete g # 0. § 2 o4~ fora gravitomag

netic field gy ~ %, and § 2 v - o for a circuit rotating with angular velocity Q

dyapy =¢ Xdt =299792458%1.0X1016 = 2.09792458x10- ¥ m
From these two values, we can therefore deduce the variation of length in strict spatial distance:

|d,| = Vds? — c2dt?

So, we postulate 50%

dy = /(4.01 x 1078)2 — (2.99792458 x 10-2)2 tlme 50% Space as for the

dé’(space) = 2.66x lﬁ_gm.

This corresponds to a spatial angle to be found in our elastic model of:

EPJ] Web of Conferences 58, 01005 (2013)
DOTL: 10.1051/epjconf/20135801005
© Owned by the authors, published by EDP Sciences, 2013

Time travel, Clock Puzzles and Their Experimental Tests

Ignazio Ciufolini'-®

' Dip. Ingegneria dell'Innovazione, Universita del Salento, Lecce, and Centro Fermi, Rome, Italy

Abstract. Is time travel possible? What is Einstein's theory of relativity mathemati-
cally predicting in that regard? Is time travel related to the so-called clock ‘paradoxes’
of relativity and if so how? Is there any accurate experimental evidence of the phenom-
ena regarding the different flow of time predicted by General Relativity and is there any
possible application of the temporal phenomena predicted by relativity to our everyday
life? Which temporal phenomena are predicted in the vicinities of a rotating body and of
a mass-energy current, and do we have any experimental test of the occurrence of these
phenomena near a rotating body? In this paper, we address and answer some of these
questions.

6 Frame Dragging

bea m llght aroun d th (S] In Fig. 3 is described a clock ‘puzzle’ owed to the spin of a central body. For this effect to occur,

dp 2.66351x108

— o _ -15
GxZ['space] = Qspare - 6642000 =4.0x10 radjs

For memory the “time” angle is so:

0 P cAt 2.99792458 x 10~8
xZ(At) = Sf(4t) T T 6642000

=4.51 x 10 Brad/s

% e clocks, or twins, would not need to move close to the speed of light (as in the case of the well-
sun (O, 84 fO r N ewton fO B own ‘twin-paradox’ of special relativity). For example, if two such twins meet again, having flown

9 bitrarily slowly around the whole Earth in opposite directions on the equatorial plane and exactly at

S p ace a lo ne an d 1 ’ 75 e same altitude, the difference in their ages owed to the Earth’s spin would be approximately 107'¢
. . . (for an altitude of about 6,000 km), which would in principle be detectable if not for the other, much

S p ace tl me E In Ste In ) rger, relativistic clock effects. These clock effects are striking around a rotating black hole, however.

53
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Case 3 : Approach 1 - Gravity prob B space
angle via cylinder of space in torsion

Data Value Unit
Mass of the Earth MT 5,97E+24kg
Poisson's ratio 1
Radius of the Earth RT 6371km
Gravity Prob B (space) 4,00E-15fad

torsion by the Earth rotation

Block of space-time
considered by analogy as
an elastic medium

Section from Earth to
Ecuador

Equivalent cylinder of space put in

39milliarc second/year for Prob B

4,85E-09rad
6,00E-15rad/s

Imilliarc second
1,23668E-06milliarc second /s

4,73E+38Pa
Ox2

TX 12X (1+v)

Y =
9331200000 X Ry X 6

X

David Izabel GDR GDM 28

5 M7
2,s5pace
Conclusion not to far of Y = 1044 Pa
obtained with the GW150914 and
GW170817
06 2024 54



Case 3: Approach 2 :Gravity prob B frame
dragging via fine elements model

Principle: we transform |”
the gravity prob B frame
dragging angle
0., imposed by the Earth
rotation in a torsion
torque equivalentthatwe |
putin the middle of the
sheet modelled byatruss |~ "'
(same that use for GW)
and look for the Young
modulus intensity that
allow to refind the strains
and rotation of the space
time fabric

x
Figure 7: Space twisted by the rotation of the Earth —

Figure 121: Elastic space sheet of Planck thickness subjected tg}wthe rotation of the Earth -

David Izabel GDR GDM 28 06 2024
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Case 3: Approach 2 - Gravity prob B frame
dragging via finite element (truss)
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Figure 126: Determination of the rotation 8. of the elastic lattice model modeling a space sheet of

Planck thickness -

Displacement and rotation with

a fictive load of 10000 MN 56
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Case 3: Approach 2 - Gravity

[ J
rob B frame draggin
p Thikness sheet (Planck) 1,62E-35|m
o . o Young modulus Y 3,00E+44 |Pa
approach 2 via finite element 1
p p Mesch of the trussr 6000 |km
Fictive force applied on the model 10000(MN
. . Area of the bar 6,00E-29|m?
— 44 D)
(t r u S S ) CO nc lUS 1on Y L O Pa IS Fictive force applied on the model 1,00E+04|MN
an acceptable value for Distance L (Radius of Earth) 6,37E+03|km
: = . Diameter d of the Earth 1,27E+04 | km
1) Calculus of the rotation angle of the model for F =10 000 MN ’
space strains Area of the bar 6,00E-29|m’
Displacement for F =10000 8,33E+00|m
displ del 8,33E+00 1,39E-06 rad - —
gxz,space = Isi;is?fi::en;oeseh éooogoo ra Gravity Prob B (space) 0y, 26,02 |milliarcsec/Y
GravityProb B (space) 0., 4,00E-15|rad/s

2) Calculus of the Shear modulus of the space
6) Calculus of the real load calibrated with gravity prob B

E 7,50E+43 Pa
T 2(14v)
3) Calculus of the equivalent torque at the imposed angle F — Fx:r'&ﬂ! 1,29E+01 N
x,real by {
P n 1,29E-05 MN
4
— 9 nGd sz-ﬁﬂace 2,44E+50 N.m/s
- + 9) Calculus of the angle associated with the finite element model and gravity prob B
32L 2,44E+44 MN.m/s
4) Calculus of the equivalent load on the finite elements models
B _ Fx,real by £y 1,79E-15 rad/s
T sz,space,‘reai - Qspace,‘rea! - 6x2Jspace X f
F | =— 1,02E+43 N X
vreat 4y 1,02E+37 MN
10) Conversion of the rad /sin milliarc second /year
5) Number of Planck sheets concerned 1 milliarc second 4,85E-09 rad
3,70E-07 milliarc second/s 1,79E-15 rad/s
n = d 7,87E+41 sheets 11,66 milliarc second /year —
= — 3 9/
£ 26,02 measured by gravity prob B (space part)

P David Izabel GDR GDM 28 06 2024



Casze of zeneral
relativity study
GW/ Lense thirring

Tvpe of parameter measured or
caleulated following zeneral
relativity

Thesretical
rezuliz of the
general relativity

Meazured resulis
GW == Ligo/Virgo
Lense Thirring == G

Mechanical model of
the Planck sheet

associated with an

Young's
maodulu: wsed
for the

effect prob B elaztic truss calculation
(Pa) (space
aspect)
GW1s0914 Elongation and shortening +10~%1 +1 x 101 Transverze b 3 = 10"
{coalescence of 2 transverse strain b B B +1.33 x 107 19(1)
black holesz) meazured on Earth Longitudinal h
(Weak Gravitational ———— +3.32 x 107" (1)
field ) e o et ffod Tramsverse h
+2.0 x 107% (1)
== Longitudinal h 2 x 1077
:1.: i ,'u_--'.-"'.:".:h-\.r'-_-.--.l-#- LT 5.0x10 ’ (1)
GW150717 Elongation and shortening +10720 +8 x 10740 Tramsverze h 3 x 10M
{coalescence of 2 transverse siraim h measured on +3.799 x 10"
neutron stars) +Earth (1)
{(Weak Gravitational B e Longitndinal b
field) | ke +9.47 = 10721 (1)
i of o +1.508 x 10723 (2)
w I Transverse h
125 3 075 88 4 6 +3.7 x 1079 (1) 2 x 107
i Psimibi] Longitudinal h
+9.28 x 107 (1)
Frame dragging Horizontal angle of dizstortion £ 39.2 milliarc 37.2 milliare - 3 x 10M
created by the Earth | meazured on Earth at r =6700 kan second/year second/year
on the space-time e (space time) 1 =11.25 milliarc
(Weak Gravitational * 25.8 milliarc second/ year (1)
field) ; second vear (space
estimation only)
Model (3)
4.73 x 1078

avid Izabel GDR GDN

128 06 2024
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4.2) Models perpendicular at the plane with
temporal components of the strains (
associated at hyg)

David Izabel GDR GDM 28 06 2024
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Strains of the space calculated from
COmpOnent hOO( Transformation of h,, in

time component) REL e Rt

variation

Calculations on space-time curvature within the Ry = 26M (16
5= =

Earth and Sun

The true circumference of a non-rotating black hole with a given mass is
Cyn = 21 Rg
Specific observed and derived data for the Sun and Earth are as follows:

Wm. Robert Johnston

last updated 3 November 2008 Sun Earth

GM  1.32712438 x 10%° m3/s?  3.98600441 x 10'* m3 /s2

Einstein Gravitational field equation o
In weak Field e R 695,990 km 6,371.0 km

Rg 2.95325003 km 8.87005606 mm
M 2 87y AR 492 m 1.48 mm
¢$=— Ahyg = — Ad = —— pc* ‘ , _ -
I Ez C4 The table lists GM rather than M, since GM for the Earth and Sun is
known with greater accuracy than the mass. The measured radii of the Sun

and Earth would correspond to R in our formulation, not s. For both bodies

; N u merical va lues Of the 115 << 1R111:%t;lﬁl}i1'11§ Il‘:;e‘.o[' 1&1& Ii.ual ex;;ressioln OF Lrhe relativistic correction to
General the radius as = M /3-assuming uniform density.

strains hy, Associated curvature of

Numerical application for the Earth, the value of the strain is:

relativity results

the space : eg Earth

6.67430 x 10711 x 5972 x 104

_ _ -9 1 GM  6.6726 X 10711 x 5.972 x 10%*
foo = 2 X 71000 x 209792458 x 299792458 _ 100222 X 10 AR=GRs =32~ 3 % 2997924587 - -ooraTTezm
FortheSun: , 667430 X 107 x 1.9891x10%° . o a-ix ~MooR?_ Mook _ 139222 10 2 X 6371000 _ g 001477 - 1.47792mm

00 =2 X 695990000 X 299792458 X 299792458
60
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Demonstration of the variation of radius of the
Earth or the Sun following the general relativity in

=

5% = gaoc?dt? weak field
_ M= EEREQ
As? = (1 + hgg)c?At? 3
s = 871G
'ﬂ d ) J = K‘:
ds? =c?(1——)dt? —————1%(d& + sin?6d¢’ 2G M3 4
( 'r) (1 —_—) ( ! ‘ ) - re? R3 ¢
2GM R ir too = pc?
a = g — ('2 g5 = j -
0 187G
o J1-32 )
S =
(1- ZGM) R i
rc2 5= ’
Jo J(l_m.‘m rz) .
. ’"R dr 3 Ahgo = —2&'(1".3,.3, 5 I}’OOT) = 2xpc% = 2Kty
-0 2Gm f
(r) Ah
/(1— 3 ) J 1_% .2 ;DZHGD
~ T
My = ’ 47 pdr GM _ 6.6726 x 10~ x 5.972 x 10%* .
Jo AR ——RS P S 2997924552 — 0.00147792m
4 M3 AR = %Rs = h”gic = h“‘fR _LomeEax 10: X 0371000 _  001477m - 1.47792mm AR Ry
mey E,TI‘E =23 R " &6
David Izabel GDR GDM 28 06 2024 61



Timoshenko

1 haoRc®*  hgoR
AR = Rs = 0w - =

R-r=AR=f

T 6

Curvature effect on space time
by the Earth imply increase of
Earth radius of R-r =f=1.47mm

Equivalence of the geodetics angle
 with the angle 3* of the parabola
(deformation of the space
equivalent membrane by the

v

y(x)=ax?+bx+c

dy - Z(I'Earmmzkm) B
o y

Corelation between 3 and
the membrane deflection f

- 2
TEarth impact

Equivalent elastic membrane

/ as model of elastic medium
s

od
2 /(1
g
gnear0 : a

Cas 4: Geodetic effect around the Earth in link with

gravity prob B

Principle: The variation of
Radius of the Earth AR due
to gravity, associated at the
space time curvature is
transformed in variation of
curvature (deflection f) of
an equivalent membrane of
span corresponding at the
quasi nul gravity at each
extremity. The angle B’ is
compared by reciprocity
with the geodetic angle [3
determined by the gravity
prob B experiment.
From the deflexion f of the
membrane it is possible to
come back at the tension of
the membrane and its
Young’s modulus of the

David Izabel GD_?.GDM 12_8 %6 2024
Space time rabric

Geodetic effect
(vertical anglef3)

7).

Space-time
Elastic

Figure 7: Space twisted by the rotation of the Earth —

Considered effect Prediction of general | Measurements made by | Error %
relativity in miiliarc | Gravity probe B in milliarc
second by year (¥} | second by year (*)
Geodetic drift rate -6606.1 -6601.8+/-18.3 0.28
rame dragging -39, 31241,

1 milliarc seconde = 4.848x10° rad
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mersaerjoase 4: Geodetic effect Numerical

the membrane

considered? appliCathn - lOOk fOr R impaCt _Earth

Determination of Re,, i impact Of gravity Geodetic effect Corelation between B and
to obtain the gravity prob B curvature (vertical angle3) the membrane deflection f
atx = 6371 + 642 km

f=AR obtained in GR

Data Value Unit
Thikness sheet (Planck) 1,62E-35|m
Mass of the Earth MT 5,97E+24 (kg 2) Calculus of the angle B' associated at this span
Poisson's ratio 1
Radiius of the Earth RT 6371/km dy _ (2Czartnreazem) _ g o
Diameter d of the Earth 12742 |km 717 dx TEarth impact”
GravityProb B (space) P 6606,10|milliarcsec/Y
Gravity Prob B (space) P 1,02E-12|rad/s - 3) Conversion of the gravity prob B angle in radiant
Gravitational contant G 6,67E-11|m°/kgs® Fows s by ot o 6606,10 milliarc second/y: for Prob B
Metric perturbation hgg 1,39E-09
N — 1 milliarc second 4,85E-09 rad
Deflection f of the membrane = AR 0’001477 m 0,000209478 milliarc second /s 1,02E-12 rad/s

1] LalCULUS OT TNe equIvalent Span or the memorane ook 1or gravitation of the Earth quasi nul

So we have the good R Earth impact radius
the curvature atthe R =6371+642 km is equalto 3 =f'

R(m) G m3/kgs” Earth mass (kg) |2 =GM/R*{m/s) R(m) 2=GM/R*[m/s%)
6371000 6,67E-11 5,07E:24| 9,819973426 6371000] 9,819973426 Variation of g in function of R
7013000 6,67E-11 5.97E+24| 8,104343588 7013000 8,104343588 12
8000000 6,67E-11 5,97E+24| 6,227956188 8000000| 6,227956188
9000000 6,67E-11 5,97E+24| 4,920854272 9000000| 4,920854272 10
10000000 6,67E-11 597E+24| 3,98589196 10000000] 3,98589196
12000000 6,67E-11 5,97E+24| 2,767980528 12000000| 2,767980528 £
14000000 6,67E-11 5,97E+24| 2,033618347 14000000| 2,033618347 ]
16000000 6,67E-11 5,97E+24| 1,556989047 16000000| 1,556989047 :
18000000 6,67E-11 5,97E+24| 1,230213568 18000000] 1,230213568 .
20000000 6,67E-11 597E+24| 0,99647299 20000000 0,99647299
50000000 6,67E-11 5,97E+24| 0,159435678 50000000| 0,159435678 2
100000000 6,67E-11 597E+24| 0,03985892 100000000 0,03985892
130000000 6,67E-11 597E+24| 0,02358516 130000000 0,02358516 0L —— — 63
r Earth impad 141483883.6 6,67E-11 5,97E+24| 0,019911848 141483883,6] 0,019911848 0 50000000 100000000 150060000

David Izabel GDR GDM 28 06 2024



corelationbetween | (Gase 4: Geodetic effect Numerical application —

the membrane

deflectionfandthe | StUAy Of the equivalent rectangular membrane in

Young’s modulus of

temembrane | t€NSION — repartition of the Earth mass on pi R,_,...2

4) Calculation of the number of Planck sheet concerned by the earth

Assimilating the Sphere at an equivalent cylinder of same volume

4
37

n—=>=—
'Pp

5,24E+41 Planck sheets

5) Calculus of the mass of the Earth associated at each sheet

Mass Earth 1,14E-17 kg/sheet
m=———
n

6) Calculus of the weight/m” applied

8,77E-31 N/m’/sheet

mg
p/sheet = 2

o

7) Calculus of the load by m of width of sheet (rectangular sheet of span R Earthimpact)

a =p X d 1,12E-23 N/m/sheet
sheet
8) Calculus of the vertical reaction of the support

We suppose (defavorable approach) that all the sheetis uniformly loded)

_ IRsarth—impact 7,91E-16 N

R
2

9) Calculus of the Horizontal reaction of the support (f=AR due to space time curvature)

qREarth—impactz f=AR obtained
N 8f in GR

H 1,89E-05 N

10) Calculus of the Tension in the membrane L

The model of membrane used is described at the figure 128 below:

r______
T=+R*+H? 1,89E-05 N

n sheets

11) Calculus of the stress inthe membrane

T
dx ¢,

12) Calculus of the tension strainin the membrane
R ° 6
13) Extraction of the associated Young's modulus in the membrane

T 9,17E+22 Pa

2,32E-10

3,95E+32 Pa

We obtain so a Young’s modulus of
4x103%2 Pa so <3x10% Pa obtained with
T v GW and frame dragging (same order
Ty that R Weiss proposal Nobel Price
David Izabel GDR GDM 28 06 2024 lecture 102°Y steel)
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Case 4: Geodetic effect Numerical application — study
of the equivalent rectangular membrane in tension —
repartition of the Earth mass on R¢_ 4, mpact x

4) Calculation of the number of Planck sheet concerned by the earth The model of membrane used is described at the figure 128 below: 10) Calculus of the Tension in the membrane

Assimilating the Sphere at an equivalent cylinder of same volume

.
T=+R*+H? 1,34E-06 N

n sheets

r&:‘ml-lh
~

5,24E+41 Planck sheets
p
11) Calculus of the stress in the membrane

3 T
d x4,

5) Calculus of the mass of the Earth associated at each sheet

= Mass Earth 1,14E-17 kg/sheet

g 6,49E+21 Pa

n

6) Calculus of the weight/m? applied

p/sheet = mg 6.20E-32 N/m?/sheet 12) Calculus of the tension strain in the membrane
Rimpact Earth xd ﬂR hl]'i}
7) Calculus of the load by m of width of sheet (rectangular sheet of span R Earthimpact) R = &= 5 2’32E-10
q 13) Extraction of the associated Young's modulus in the membrane
=p X d 7,90E-25 N/m/sheet
sheet
8) Calculus of the vertical reaction of the support Y . o ]
. £ L v- 2,80E+31 Pa |
We suppose (defavorable approach) that all the sheetis uniformly loded) "
R Y (RWeiss) = 2,1E+31 Pa
_ fi‘ Earth—impact 5,59E-17 N o )
R=—7—— We obtain so a Young’s modulus of

2,8x10%" Pa so <3x10%4Pa obtained with

9) Calculus of the Horizontal reaction of the support (f=AR due to space time curvature)

GW and frame dragging (same order

that R Weiss proposal Nobel Price
David Izabel GDR GDM 28 06 2024 lecture 1 020 \ steel)

2
_ qREarth—impact
- Bf 1,34E-06 N

R Earth impact |

|+

H




Case 5: Earth gravitation as curvature of the

space time

| nsheets

Equivalent
Membrane

Principle: The variation of

Radius of the Earth AR due to

gravity, associated at the
space time curvature is
transformed in variation of
curvature of an equivalent
membrane of span
corresponding at the quasi
nul gravity at each extremity.
From the deflexion f of the
membrane it is possible to
come back at the tension of
the membrane and its
Young’s modulus of the
space time fabric

Data Value Unit
Thikness sheet (Planck) 1,62E-35|m
Mass of the Earth MT 5,97E+24 (kg
Poisson's ratio 1
Radius of the Earth RT 6371|km
Diameter d of the Earth 12742 |km
Gravitational contant G 6,67E-11|m°/kgs®
Metric perturbation hyg 1,39E-09
Deflection f of the membrane = AR 0,001477|m

David Izabel GDR GDM 28 06 2024
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Case 5: Earth gravitation as curvature of the

1) Calculus of the gravity g

12742000 6,67E-11 5,97E+24 9,82E+00 m/s’

1) Calculation of the number of Planck sheet concerned by the earth

Assimilating the Sphere at an equivalent cylinder of same volume

4
r

3
:‘9_ 5,24E+41 Planck sheets

2) Calculus of the mass of the Earth associated at each sheet

Mass Earth
n

1,14E-17 kg/sheet
m =

3) Calculus of the weight/m® applied

mg
p/sheet = s

8,77E-31 N/m*/sheet

4) Calculus of the load by m of width of sheet (rectangular sheet of span R Earthimpact)

q
sheet

1,12E-23 N/m/sheet

We obtain so a Young’s modulus of
3,28x103%% Pa so <3x10%4* Pa obtained
with GW and frame dragging (same

=p X d

order that R Weiss proposal Nobel
Price lecture 1020 Y steel)

David Izabel GDR GDM 28 06 2024

space time in weak field

5) Calculus of the vertical reaction of the su

We suppose (defavorable approach) that all the sheet is uniformly loded)

d 7,12E-17 N
Rl
2

6) Calculus ot the Horizontal reaction of the support (f=AR due to space time curvature

qd”
H=—— 1,54E-07 N

8f

7) Calculus of the Tension in the membrane

T=~..-"R2+H2

1,54E-07 N
8) Calculus of the stress in the membrane
T
o= — 7,44E+20 Pa
dx{t,
9) Calculus of the tension strain in the membrane
AR = 5= hoo 2,32E-10
R 6

10) Extraction of the associated Young's modulus in the membrane

o
Y = — : Y_
Y (RWeiss) =

3,21E+30 Pa
2,1E+31 Pa

»



Case 6: Sun gravitation as curvature of the

space time

| nsheets

Equivalent
Membrane

Principle: The variation of
Radius of the Sun AR due to
gravity, associated at the
space time curvature is
transformed in variation of
curvature of an equivalent
membrane of span
corresponding at the quasi

nul gravity at each extremity.

From the deflexion f of the
membrane it is possible to
come back at the tension of
the membrane and its
Young’s modulus of the
space time fabric

Data Value Unit
Thikness sheet (Planck) 1,62E-35|m
Mass of the Sun MS 1,98E+30|kg
Poisson's ratio 1
Radius of the Sun RS 696342 km
Diameter d of the Sun 1392684 |km
Gravitational contant G 6,67E-11|m°/kgs’
Metric perturbation hgg 4,24E-06
Deflection f of the membrane = AR 492|m

David Izabel GDR GDM 28 06 2024
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Case 6: Sun gravitation as curvature of the
space time in weak field

| 1392684 6,67E-11 1,98E+30 2,73E+08 m/s?

1) Calculus of the gravity g

5) Calculus of the vertical reaction of the support

1) Calculation of the number of Planck sheet concerned by the earth

Wae eninnnee Idefayorable approach) that all the sheetis uniformly loded)

Assimilating the Sphere atan equivalent cylinder of same volume R = qd 5,99E-09 N
4 2
_ § T 6) Calculus of the Horizontal reaction of the support (f=AR due to space time curvature)
n = P— 5,73E+43 Planck sheets
tp qu
H — 4,24E-06 N
2) Calculus of the mass of the Earth associated at each sheet 8f
Mass Sun 7) Calculus of the Tension in the membrane
m=—-———- 3,45E-14 kg/sheet
n
T =+R*+H? 4,24E-06 N
3) Calculus of the weight/m? applied
mg ;
p/sheet = — 6,18E-24 N/m*/sheet 8) Calculus of the stress inthe membrane
r
T
4) Calculus of the load by m of width of sheet (rectangular sheet of span R Earth impact) o= —— 1,88E+20 Pa
dx¥,
hq =p X d 8,61E-15 N/m/sheet 9) Calculus of the tension strain in the membrane
sneet : ’
We obtain so a Young’s modulus of AR hyo ) 07607

26 44 i R 6
2’66)(1 O Pa SO <3X1 O Pa Obtalned 10) Extraction of the associated Young's modulus in the membrane
with GW and frame dragging (same "
: Y=—: Y= 2,66E+26 P
order that R Weiss proposal Nobel E  Awerse T
Price lecture 1020 Y steel)
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Case 7 : Gravitation for the Earth with a
circular membrane

Uber den Spannungszustand in kreisrunden Platten mit
verschwindender Biegungssteifigkeit.

Von Dr. Ing. H. Hexcky in Darmstadt.

f=0662a)/ 2.

Principle: The variation of
Radius of the Earth AR due
to gravity, associated at the

space time curvature is
transformed in variation of
curvature of an equivalent

membrane of span
corresponding at the quasi

nul gravity at each extremity.

From the deflexion f of the
membrane it is possible to
come back at the tension of
the membrane and its
Young’s modulus of the
space time fabric

Hypothesis 1: R=6371 km

Data Value Unit
Thikness sheet (Planck) 1,62E-35/m
Mass of the Earth MT 5,97E+24|kg
Poisson's ratio 1
Radius of the Earth RT 6371km
Diameter d of the Earth 12742|km

Gravitational contant G

6,67E-11/m3/kgs”

Metric perturbation h,,

1,39E-09

Deflection f of the membrane = AR=3

0,001477/m

Hypothesis 2 : R =25000 km

Data Value Unit
Thikness sheet (Planck) 1,62E-35|m
Mass of the Earth MT 5,97E+24 (kg
Poisson's ratio 1
Radius of impact of the Earth 25000 (km
Diameter d of the Earth 12742 |km

Gravitational contant G

6,67E-11|m°/kgs®

Metric perturbation hyg

1,39E-09

Deflection f of the membrane = AR=0¢

0,001477|m

(Durchbiegung in Plattenmitte).
David Izabel GDR GDM 28 06 2024
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Case 7 : Gravitation for the Earth with a

circular membrane g

pOtheSiS 1 12742000 6,67E-11 5,97E+24 9,82E+00 m/s HypOtheSiS 2

1) Calculation of the number of Planck sheet concerned by the earth

Assimilating the Sphere at an equivalent cylinder of same volume

4

2) Calculus of the mass of the Earth associated at each sheet

B Mass Earth 1,14E-17 kg/sheet

m =
mn

3) Calculus of the weight/m2 applied

mg 8,77E-31 N/m?/sheet

p/sheet = p

4) Calculus of the Young Modulus

3"
n=—-— 5,24E+41 Planck sheets
.{?p

1) Calculus of the gravit

1) Calculation of the number of Planck sheet concerned by the earth

Assimilating the Sphere atan equivalent cylinder of same volume

4,
3

n=—
.{_?p

2,06E+42 Planck sheets

2) Calculus of the mass of the Earth associated at each sheet

_ Mass Earth 2,90E-18 kg/sheet

m
mn

3) Calculus of the weight/m? applied

mg 2
_ 1,45E-32 N/m“/sheet
p/sheet = —

We obtain so a Young’s modulus of 8,039x103° Pa <Y<3,15x1040

5 =0 662{’@ so <3x10% Pa obtained with GW and frame dragging (same
° Yt i :
. order that R Weiss proposal Nobel Price lecture 102°Y steel)
_ PR
Y =0.29011753 AL
1.45 x 10~3%(25000000)* 2
8.77 x 107*1(6371000)* I 8,03E+39 N/m? I 0.29011753 ———— 10_35{:{0.0014?7))3 I 3,15E+40 N/m I L,

¥ =0.29011753

1.62 x 10732(0.00177)%
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Case 8 : Gravitation for the Sun with a circular
membrane

. . L Data Value Unit
Principle: The variation of Thikness sheet (Planck) 1,62E-35|m
Radius of the Sun AR due to Mass of the Sun MS 1,98E+30| kg
gravity, associated at the Poisson's ratio L
, , Radius of the Sun RS 696342 km
space time curvature 1Is Diameter d of the Sun 1392684/ km
transformed in variation of Gravitational contant G 6,67E-11|m?/kgs>
curvature of an equivalent Metric perturbation hoo 4,24E-06
membrane of span Deflection f of the membrane = A 492|m
§ | . corresponding at the quasi
— —%F i nul gravity at each extremity. Hypothesis 2 : R=10000 000 km
From the deflexion f of the

membrane it is possible to —— [t’a;"l”' - Vlag‘zeE — Unit
. . . ikn n ,62E-35|m
e e come back at the tension of tassof e Sun 15— Lot i
¥on e 1og. H. Frrcer n Dermetudt the membrane and its Poisson's ratio 1
Young’s modulus of the Radius of impact of the sun 10000000 (km
. . Diameter d of the Sun 1392684 | km
space time fabric — T
Gravitationalcontant G 6,67E-11|m/kgs
— ‘ Metric perturbation hy, 4,24E-06
f=0662a)/ 2. (Durchbiegung in Plattenmitte). Deflection f of the membrane = A 492|m
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Case 8 : Gravitation for the Sun with a circular

] | 1392684]  6,67E-11  1,98E+30  2,73E+08 m/s? Hypothesis 2
membrane E—

1) Calculation of the number of Planck sheet concerned by the earth 1) Calculation of the number of Planck sheet concerned by the earth

Assimilating the Sphere at an equivalent cylinder of same volume
Assimilating the Sphere atan equivalent cylinder of same volume g P q y

4
4 r g?
3 n=-=— .\
n= P_ 5,73E+43 Planck sheets _{?p 8,23E+44 Planck sheets
£,

2) Calculus of the mass of the Earth associated at each sheet
2) Calculus of the mass of the Earth associated at each sheet i

Mass Sun

Mass Sun m —
m = 3,45E-14 kg/sheet n

n

2,41E-15 kg/sheet

) Calenlne nfthe wpiuhi'/m2 ann[ied

3) Calculus of the weight/m?* applied

mg
»/sheet = mg 6.18-24 N/m?/sheet p/sheet = p) 2,09E-27 N/m%sheet
m.E
4] Calculus ofthe Young Modulus We obtain so a Young’s modulus of 2,9x10%8 Pa Y < 3,14x103°
[or so <3x10% Pa obtained with GW and frame dragging (same
g. = 0.662R |— o .
¢ Yt order that R Weiss proposal Nobel Price lecture 102°Y steel)
pR*
V= E'J.Z'Qi?lll?'SSf3
t(a,) v — 099011753 209 X 1077(10000000000)*
6.18 x 10724(696342000)* , - 1.62 x 10-35(492)3 3.14E+39 N/m? 73
Y =0.29011753 — = —— 557297y 2,19E+38 N/m David Izabel GDR GDM 28 06 2024 ’




4.3) Spatial models

David Izabel GDR GDM 28 06 2024
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Case 9: Deflection of light rays/ gravitation of
the sun from the curvature of space-time

Variation angle for a light beam passing near the earth following the general relativity (see figure 127 below)

4GM

4g, i T 2hgo = 2.784 X 10 %rad

exact beam light =

We obtain from the Schwarzschild approach:

h,
= % =232 % 10" Yrad

A(papp?'uarh scharwchild —

As=tAp = % = 2hg,

Ap

. . . . L. . Data Value Unit
Principle: The variation of Radius of the | m———-""r—0 e
Sun AR due to gravity, associated at the | |Massofthe Sun Ms 1,98E+30 kg

. . . Poisson's ratio 1
spa.ce.tlme curvature is transformedin | ——="————0 co53a2 |k
variation of length of a sphere of space | |piameterdof the Sun 1392684 km

time fabric with an internal pression Gravitational contant G 6,67E-11m/kgs”
) . ) Metric perturbation hy 4,24E-06
From the deflexion displacement u, of Internal pression gravitation 6,00E+14|Pa
the sphere itis possible to come back | [Displacementu, 02E8Im
Deflection f of the membrane = AR 492m

at Young’s modulus of the space time
fabric

GM
¢p=—
T
29
900 = T+ hoo = 1+ General
relativity
GM _2¢ resultin
P2 2=

weak field for
the sun

g 6.67430 x 1071 x 1.9891 x 103°
695990000 X 299792458 x 299792458

L hooRc?  hgoR  4.244 x 1076 X 695990000

=4.244x107°

hoo =2

AR = S = ez 6 e = 492m
AR hoo 4.244x 1076
o= =7.0733 x 1077
R 6 6
h h
u, = AL = ZxR% =7z ;0 R =3093.19m

Calculations on space-time curvature within the

Earth and Sun

‘Wm. Robert Johnston

last updated 3 November 2008

David Izabel GDR GDM 28 06 2024
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Case 9: Deflection of light rays by the gravitation of
the sun from the curvature of space-time

1) Postulate

3)Extension of
the space time
m tension
around the sun

4) Curvature of A
the space time
around the sun
that bend the
light

Space ___——

medium 2)The sun by 1ts mass,

with inclusion inside the space

Youneg's ~ time imply and expansion
5)Gravitation = against under the nuclear
pression applied by the reaction create pression
elastic medium on the and a curvature

pression produce by the

star (Newton force
view)+strain and curv

around the sun in the space
time itself (Einstein View)

{mechanical and thermal)
of the space-time, and
thus generate tension in
the space medium around
that 1s stramned

David Izabel GDR GDM 28 06 2024

VIIIL.5.7.2 Approach by the elastic sphere theory

The data about the sphere with an internal pression is given at the figure 129.

Figure 129: Notation for a sphere loading by an internal pression
In elasticity, we have the differential equation [308]:

Pu, | 2du; 2

[ = —1
dr:  rdr 1"
So, the beginning of the equation follow the form of:
&,_62¢+2xﬂ¢+1x6‘2¢+ 1 xﬂgé-l_ 1 xazgé
=z Ty ar T 3F T tTtane’ 86 risinie

2

.ﬂ.u‘_= ;ur

So, it's a development of the Poisson’s equation that is this modified by a distribution f that is not
constant. The solution is on the form:

C,
u, = Gyr +?‘_;

With for the 2 constants:

C. = 1+v bic
27214200
(1-2v) a?

G="F p_a?

We know the displacement w,. So we can extract the Young’s modulus E=Y:

ap | N
1-2vir+(1+ V)F 76

E=Y=a0—a|




Case 9: Deflection of light rays by the gravitation of
the sun from the curvature of space-time

1) Research of the gravity influence of the sun on the space time (Equivalent thickness of the sphere) 2) Pression exerced by the gravitation
R(m) G Ms g

696342000 6,67E-11 1,98E+30 272,54 P — gM 8,86E+13 Pa
1000000000 6,67E-11 1,98E+30 132,15 42

2000000000 6,67E-11 1,98E+30 33,04

3000000000 6,67E-11 1,98E+30 14,68 pression data 6,00E+14 Pa
4000000000 6,67E-11 1,98E+30 8,26 max 6,00E+14 Pa
5000000000 6,67E-11 1,98E+30 5,29

6000000000 6,67E-11 1,98E+30 3,67 2) Calculus of the Young's modulus

7000000000 6,67E-11 1,98E+30 2,70

8000000000 6,67E-11 1,98E+30 2,06 O3P b3
9000000000 6,67E-11 1,98E+30 1,63 E=Y= m (1-2vr+(1+ V)F
10000000000 6,67E-11 1,98E+30 1,32

Y= 1,35073E+20 Pa

We obtain so a Young’s modulus of
1,35x10%° Pa so <<<3x10%*Pa obtained

with GW and frame dragging (same
order that R Weiss proposal Nobel

Price lecture 10%°Y steel)

David Izabel GDR GDM 28 06 2024
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Case 10 : Gravitation of the Earth from the

3)Extension of
A®  the space time
in tension

4) Curvature of
the space time
aromnd the sun
that bend the
light

1) Postulate ~
Space __—
medium
with
Young's

5)Gravitation = against
pression applied by the
elastic medium on the

pression produce by the
star (Newton force
view)+strain and curval

around the sun m the space
time itself (Einstein View)

—__ inclusion mside the space

curvature of space-time

4GM
As=rAp = et 2hgg

2)The sun by its mass,

time imply and expansion
under the nuclear
reaction create pression
and a curvature
(mechanical and thermal)
of the space-time, and
thus generate tension in
the space medium around
that is strained

Principle: The variation of Radius of the
Earth AR due to gravity, associated at
the space time curvature is
transformed in variation of length of a
sphere of space time fabric with an
internal pression. From the deflexion
displacement u, of the sphere itis
possible to come back at Young’s
modulus of the space time fabric

_ (27aR+274R) —272R  (AR) _ hgo
£= 27R “"R "6
AR hoo 1.39222x107°
o T E=— = =2.320x 10710
R _°" 6 6

hgo

o hoo _ .
U . =AL=2z2R— = 7—R = 0.00928m
" 6 3

David Izabel GDR GDM 28 06 2024

Data Value Unit

Thikness sheet (Planck) 1,62E-35|m
Mass of the Earth MS 5,97E+24 | kg
Poisson's ratio 1
Radius of the Eartha=r 6371(km
Diameter d of the Earth 12742 |km
Gravitationalcontant G 6,67E-11|m°/kgs”
Metric perturbation hyg 1,39E-09
Internal pression gravitation 3,60E+11(Pa
Displacement ur 9,28E-03|m
Deflection f of the membrane = AR 0,00147792|m
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Case 10 : Gravitation of the Earth from the

curvature of space-time

1) Research of the gravity influence of the sun on the space time (Equivalent thickness of the sphere 2) Pression exerced by the gravitation
R (m) G Ms g

6371000 6,67E-11 5,97E+24 9,82 P — -gM 1,15E+11 Pa
7000000 6,67E-11 5,97E+24 8,13 42
8000000 6,67E-11 5,97E+24 6,23
9000000 6,67E-11 5,97E+24 4,92 pression data 3,60E+11 Pa
10000000 6,67E-11 5,97E+24 3,99 max 3,60E+11 Pa
12000000 6,67E-11 5,97E+24 2,77
14000000 6,67E-11 5,97E+24 2,03 2) Calculus of the Young's modulus
16000000 6,67E-11 5,97E+24 1,56
18000000 6,67E-11 5,97E+24 1,23 2P b3
20000000 6,67E-11 5,97E+24 1,00 E=Y= v =) A-2Vr+(1+v53
25000000 6,67E-11 5,97E+24 0,64

Y

2,47151E+20 Pa

We obtain so a Young’s modulus of
2,47x102% Pa so <<<3x10%*Pa obtained

with GW and frame dragging (same
order that R Weiss proposal Nobel

Price lecture 10%°Y steel)

David Izabel GDR GDM 28 06 2024
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Caze of Type of parameter Theoretical results of the general relativity | Measured Mechanical model of | Young's
zeneral measured or calenlated results the Planck sheet modulus
relativity following gemeral associated with an uzed for
relativity elastic truss the
caleulatio
o {Pa)
(time
aspect)
Calculation | Angmentation of the 1 -’IDDR aM Not Membrane loaded 321 = 104
on space- Earth radius due to AR = ERS = T = 32 relevant perpendicularly at
curvature it's plane
time AR = 1.477mm
curvature
within the
Earth(Weak
Cravitational
field)
Calculation | Auzmentation of the Sun 1 hooR GM Dreviation Membrane loaded 2,658 = 107
on space- radiuz due to curvature AR = ERS = 3 = 32 of the sun perpendicularly at
t AR =492 m 1GM c beam Light it's plane
ime — —
clurvatire ‘d@hemn light measured Am‘exnez beam light — rel - Zh":lﬂ'
— 10—
within the E 2.784 % 10" "rad Ap o hgo
SUn (Weak ';as':'ku'n:'r'hiiu’ L0 approach scharwchild G
Cravitational =2.32x10""rad
field)
Calculation | Calculation on _ g Not Sphere with inzide | 2471107
onspace- | space-time B relevant pression
i lii'gﬂ }log
time curvature within the Up = AL = 2R =g R
curvature Earth [ 3
withinthe | £=2.320 x 107°
Earth (Weak u, =0.00928m
Cravitational
field)
Calculation | Calculation on _ g Not Sphere with inzide | L35 107
onspace- | space-time 6 relevant pression
i liigg hgg
time curvature within the u, = AL = 27R o R
curvature Sun [ 3
within the £="7.073 x 1077
Sun u, =3093.19m
Geodetic Geodetic angle a= 3GM (R % v+ GI [ﬁ R — Ga0 G&00 3,96« 104
effect measured on Earth at r 2¢2RY xv) c2R3[R? (@-R) =4 milliare milliarcsecond year
=6700 km by gravity second/year
created by prob B calculated with an equivaleny (zpace
the Earth on membrane of deflection f and span| estimation)
the space- I .
p of gravity Earth influence: Model memhbrane
tlme ) . loaded
(Weak _ _ 1 _ liiguRl:'_ _ IITDDR perpendicularly at
Crarvitational f=4R = ERS =6 6 itz plane
field) _ . Influence
_ = 0.001477m areal41000 ki
David Izabel GDR GDM 28 06 p024 (0.02g)
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Can we find an explanation at the different
values of the Young’s modulus?

* We have two families of values for the Young’s modulus of the space
time

* Inthe plane: associated at h; (space) component of the metric
perturbation

1038<Y<10%4 Pa
10-2%<g compression/traction < 102"

* Out of the plane: associated at h,, (time) component of the metric
perturbation

10%9<Y<104°Pa
10-/<g compression/traction <1010

David Izabel GDR GDM 28 06 2024
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The range of the Young’s modulus is clearly out of the

Synthesis of the model's data and results 10" Pa!
Our values are near R Weiss proposal 103" Pa
General Relativity event| Gravitation Case studied Strain | Type | Strainvalues Unit Mechanical model Type of loading Y (Pa) Direction
GW150914 Weak Black hole coalescence 1 hij (xy) |e 1,00E-21 - Truss intorsion in plane 1,00E+44 |xory
GW150914 Weak Black hole coalescence 2 hij (x,y) |e 1,00E-21 - Truss in torsion inplane 1,00E+44(xory
GW170817 Weak Neutron star coalescence hij (x,y) |e 1,00E-20 - Truss intorsion in plane 1,00E+44 (xory
NASA example Strong Frame dragging Neutron star [h0i;hjo |0 6,37E-10| rad/s |Cylinderintorsion in plane 7,70E+44|t,xory orz
Gravity prob B Weak Frame dragging Earth hOi;hjo |0 4,00E-15| rad/s |Cylinderintorsion inplane 4,73E+38|t,x0ry orz
Gravity prob B Weak Frame dragging Earth h0i;hjo |0 4,00E-15| rad/s |Trussintorsion in plane 3,00E+44|t,xory orz
Gravity prob B Weak Geodetic Earth h0i,hj0 |B 1,00E-12| rad/s |Rectangular membrane uniformly loaded (max) Perpendicular at the plane 3,95E+32|t,oryorz
Gravity prob B Weak Geodetic Earth h0i,hj0 |B 1,00E-12| rad/s |Rectangular membrane uniformly loaded (repartition load on allthe membrane) |Perpendicular atthe plane 2,80E+31|t,oryor z
Newton/GR Weak Earth Gravitation h00 € 2,32E-10 - Rectangular membrane uniformly loaded (max) Perpendicular at the plane 3,21E+30|tt
Eddington eclipse Weak Sun Gravitation h00 € 7,07E-07 - Rectangular membrane uniformly loaded (max) Perpendicular at the plane 2,66E+26 |t
Newton/GR Weak Earth Gravitation h00 € 2,32E-10 = Sphere with internal pression Perpendicular at the plane 2,47E+20|tt
Eddington eclipse Weak Sun Gravitation h00 € 7,07E-07 - Sphere with internal pression Perpendicular at the plane 1,35E+20(tt
Newton/GR Weak Earth Gravitation h00 € 2,32E-10 - Circular membrane (R=R Earth) Perpendicular at the plane 8,03E+39|tt
Eddington eclipse Weak Sun Gravitation h00 € 7,07E-07 - Circular membrane (R=R Sun) Perpendicular atthe plane 2,19E+38|tt
Newton/GR Weak Earth Gravitation h00 € 2,32E-10 - Circular membrane (R=R Earth impact) Perpendicular atthe plane 3,15E+40|tt
Eddington eclipse Weak Sun Gravitation h00 € 7,07E-07 - Circular membrane (R=R Sun impact) Perpendicular at the plane 3,14E+39|tt
X T i AIA i lAA i 2 7,,' Yy z

. .
3!*%309.‘9I33r3~ 2
A

A

AAAAALAA
3

’ T 7 =30% /
Tk ; g
. [@ ‘ ’ /
~ vt o 7~ singularity
3 / e Plane transverse of VR vovs
y 4 ane transverse of the radius 20 ki
~— / | interferometer type /

> around the sun P
that bead the m generate %,
Jight curvature of
o s U space time
v
~. .
~ -
-
~ >~ e
N B Asrap =2 2 2 }(“
N =
~
~ 1) Postulate b -
~. Space ~
P medium 2)The sun by its mass,
L with inclusion inside the space
- - Youne’s time imply and expansion
- S)Gravitation = against under the nuclear =
. e
., 1a
"

1 1 s 115 116 u7 -
5000 MN 0000 o
P ssion applied by the reaction create pression
Ligo/Virgo _ Equivalent cylinder of space put in - ¥ nedium on the and a curvature
0 gy, - / A " torsion by the Earth rotation produce by the (mechanical and thermal) | ¢ {
Dk, | / - - — | wion force of the space-time, and =
| / P - £ b around the sun in the spa the space medium around
~ - y . d - time itself (Einstein View) that is strained
P . <
P _]—> /
Displacements longitudinal and - —‘ s ~
transverse (one of the interferometer ’ - . . Equivalent
arm) evaluated by the truss model at a que
¥ el TN Menmbrane
node

. Block of space-time
considered by analogy as

an elastic medium

and out of the plane [

=R-r
T|

e

Perpendicularly
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5) Possible unification of all the
models in the plane and
perpendicular at the plane via
the interval dsin quasi flat
metric

David Izabel GDR GDM 28 06 2024




5.1 Interval of special relativity

Considering that:

* We are un weak gravitational field

* The perturbation of the metric hMV Is verry small

* The gravitational wave speed is exactly the speed of light (see GW180817)

. Trlwe b?haviour of space can be disconnected in xy and z (plane and out of
plane

Postulate:
We can consider the interval of Minkowski in first approach (quasi flat metric)

The type is light ds®=0 = c’dt’= dx*+dy’+dz’

Same type of hypothesis that :

Gravitation in the surface tension model of spacetime

H A Perko'
'Office 14. 140 E. 4th Street, Loveland, CO. USA 80537

E-mail: |I|]L’]'l{£!'{:.fkl:!]][‘.':IIU.'\'I_‘EH'EEI..L.‘{'IIIL

David lzabel GDR GDM 28 06 2024

84



5.2 Mechanic transposition

4. Hypersurface Continuum Mechanics

It would be useful to apply traditional continuum mechanics to describe hypersurface geometry with
surface tension. Continuum mechanics offers tools based in Riemannian geomefry for relating stress
energy to reconfiguration and surface evolution that satisfy conditions of covariance and uniqueness [8].
However, one cannot apply these tools without a change of coordinates. Spacetime geometry 1s pseudo-
Riemannian and. in fact, hyperbolic. According to special relativity,

—c2d12 = —c2dt? + dx? + dx2® + dx3?

where dx/are spatial coordinates with index, 7, running from 1 to 3, and # is the coordinate of time. This
pseudo-Riemannian geometry can be transformed to a Riemannian geometry by rewriting the equation
above in complex coordinates, as given by

2
12 _ 02 1 22 32 - . - . -
drs=dx™ +dx" +dx* +dx Gravitation in the surface tension model of spacetime
where
H A Perko'
x® =ict 'Office 14, 140 E. 4th Street, Loveland, CO, USA 80537
' =ict E-mail; hperko@kopparesearch.com

David Izabel GDR GDM 28 06 2024
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Mechanical transposition of the interval

Flat metric

ds® = —c*dt” + dx* + dy” + dz°

Principle n°5

¥ = oc?
Y

f— f— 2
21+ *F

I Mechanical transposition of the interval

Y,
ds® = (;) dt- + dx* + dy* + dz-

I7

As these quantities should be equivalent, it should be possible to transpose in terms of Y, /p these terms

David Izabel GDR GDM 28 06 2024



Mechanical transposition of the interval

_u(x +dx) —u(x) _ﬁ

E.
- dx dx
The interval then becomes:

Y, dun® fdu\c pdugy’
ds® = — (—’) dt® + (—x) + (—’) + (—’)
lo 'gxx E_}-'}' EZS
Considering Hooke's law:
G_l'l‘ = EA‘XYI

By replacing the strains with their expressions as a function of the stresses, the interval becomes:
R ¥; du, 2 fdu, O\ pdug yC
ds? = — (_‘) dt? + (_” };) + (—* 13,) +( ZYZ)
fel a, la

xx Oyy ¢-+1

We have shown in [26] and [94] that the stress tensor and thus the normal stresses can be
expressed as a function of velocities v; and v; as follows:

Gij = PV

By substituting the normal stresses for their density and velocity expressions in the interval p, we
obtain:

¥ du, : du,, : du. 2
ds® = —(—*‘) dt* +( ;“Yx) - (—Ji}) + (—BY)
e Ay Ay vz
Substituting one of the velocities in each term % for the interval, we obtain for the interval:

Y, d 2 du : d
ds? = —(—’) de® + ( ac det) + L vdt] + ( Y= det)
e XV, pdyv, pdzy;

2

To have an expression similar to the one we have for the time component, we factor the ratio
%dtz and replace% by £;; inthe interval:

Y, 2 Y, g2, \ (Y, 2 Y.
ds’*:—(—r)dtz+ Sy (i)dr2+ Yy, (—’)dt3+ =y, (—’)dzz
P g o LAY ov o

x ¥

Using Hooke's law again:

We obtain so:

Y, o Y, oy \ (Y, a Y,
2 (Mg (e V(%Y gz o (P2 e V() ez 4 (%= e V(Y2 e
ds? — [P)dt +(va .sﬂ)(p)dr +(w:sn)(p)dr +(W:sxz){p)dt

Again using the relationship between Young's modulus and density and velocities.
. [ ¥, o, ¥, &, Y.
as? = = (L) de7 + (e ) (S at> + (22 ey ) (2) e + (S ) () at
o Ve fo ¥y o Yz o

Using Hooke's law again £; = %:
i

ds? = — [%} df? + g2, {Y—;) dt? + 2, (%) dt® + g2, {%} dt?

The equation to the dimensions is also checked:

kgm

™

kg 55 =m-
m?
Or:

2

rds _
P[E) =p(v): =-Y, +£L.¥, + E.%‘J'Y.‘-" + %Y,

Taking into account the approach of T Tenev [47] recalled at the beginning of the chapter on the
one hand, and to be consistent with spatial terms, there is no reason why there should not be
time-related distortions.

We therefore postulg

Law in strain®

We obtain so a law that link the several

strains issued of space and time with the
several Young’s modulus Y, and Y,

87
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Mechanical transposition of the interval

TR g B © i Academy of Seences This expression is therefore in a way the law of elasticity of special relativity for a flat (or near-flat)
® space.
Mechanical conversion of the gravitational Einstein’s constant « Mote 1
IZABEL DAVID This expression is in squared deformations as in the case of the linearized version of the Einstein
field that we obtained from the analysis of the interferometers or the torsional cylinder [26]
Pramana — J. Phys. (2020) 94:119 ras pEC‘ti"JEl‘_I,F:
1 0 i}
= (£2e)” O 871G [rer u]
2| =—— . .2
o LIl o (g0 L Law in strain
LZ
1 ., 164G
—_— = T
L= c*

Mote 2
S0, we have a relationship between Young's time-related modules and space-related modules.

ds\* 2 2 2 2 2
Plgz) = Yopace—time = P(€)? = &Y, + LY, +eh ¥, + LY,

We recall the expression of an energy in the mechanics of continuous media:

1 . 1. : : : :
U=3dle; =§C‘f“£:-,,-sm This law is a generalized strain
energy of the space fabric

S0, we have in a plane system with low deformation.

1 1 1 1 1
= Elﬂif]z = _EEEEFL‘ + EEE'TYX + EF}E.}.F}- + EEEBFB

S0, Young's modulus equation above is really just a kind of energy equation of a space-timevirtual gg
lattice.  David Izabel GDR GDM 28 06 2024



5.3 Case of the light type interval and associated equation

For the space, If we are in flat (or quasi flat) space h,,, is very small. In the case of gravitational
wave h=1073*,
Hfj = 'I?[']' +h1J‘ -] 1 + .h-

with ¢ = = , . ,

) R 24 Let be the following relationship between the time-related Young's modulus and the space-
So, around the sun hy,g is proportional at— = 10~* or around the Earth 10~°. So, we have related Young's modulus:

G = 'r:'r_ul.-
S0, Pythagoras applied, and we have:
dsingee = dx® +dy* + dz®

In addition, we know with [44] that the gravitational wave travels at the speed of light. Indeed in

[44] the gravitational wave and the electromagnetic wave travels through space at c. They arrive
at the same time on the Earth.
50, we have:

c?dt® = dsiyqe. = dx* +dy* +dz°

So, ifwe consider a particular light-like space-time (gravitational waves move at the speed of light
and deformations materialize in space are very small (sun, Earth). The Pythagoras length is so
equal at the time traveled by the light in this space quasi flat

If we consider that we are in a plane receiving distortions and, in a direction x ,we have interval:
ds* =10

S0, we have in the direction x (it would be the same in the direction y : We obtain so what we want: a law that
0 = —c?dt? + dx? allows to connect the space and time
So: c*dt? = dx® g
Young’s modulus

In [205] the author does the same approach to study the membrane. He confirms that is possible
inweak field and quasi flat metric.

And therefore, the content of the expression in interval mechanics:
0= _Efrrr + E.Ex"';x

, , , , , David Izabel GDR GDM 28 06 2024 89
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Test of the law about Young’s modulus following
space and time - Application of the Young’s

modulus connection formula

_ £4Y;
x

Sun Data Exx
Eddington eclipse Weak Sun Gravitation h00 € 7,07E-07 - Rectangular membrane uniformly loaded (max) Perpendicular atthe plane 2,66E+26 1,33E+56
Eddington eclipse Weak Sun Gravitation h00 € 7,07E-07 - Sphere with internal pression Perpendicular atthe plane 1,35E+20 6,75E+49
Eddington eclipse Weak Sun Gravitation h00 € 7,07E-07 - Circular membrane (R=R Sun) Perpendicular atthe plane 2,19E+38 1,09E+68
Eddington eclipse| Weak Sun Gravitation h0o0 € 7,07E-07 - Circular membrane (R=R Sun impact) Perpendicular at the plane 3,14E+39 1,57E+69

v = &Y,
Earth Data ¥,
Newton/GR Weak Earth Gravitation h0o0 € 2,32E-10 - Rectangular membrane uniformly loaded (max) Perpendicular at the plane 3,21E+30 1,73E+53
Newton/GR Weak Earth Gravitation h00 € 2,32E-10 - Sphere with internal pression Perpendicular at the plane 2,47E+20 1,33E+43|
Newton/GR Weak Earth Gravitation h0o0 € 2,32E-10 = Circular membrane (R=R Earth) Perpendicular at the plane 8,03E+39 4,32E+62
Newton/GR Weak Earth Gravitation h00 € 2,32E-10 - Circular membrane (R=R Earth impact) Perpendicular at the plane 3,15E+40 1,70E+63

Only the sphere model (spatial approach) respect the

/ h
-E' F 00 . ) : ‘52
}r/ I precedent equation even if the other models gives an Y ttyt

;_:"{1 order of magnitude in the range of 1020 104° Pa y e

o o yy
GR event Grawtation Case studied Strain | Type | Strainvalues it Mechanical model Type of loading ¥ (Pa) Direction

GW150914 Weak Black hole coalescence 1 hij g 1,00E-21 - Truss intorsion inplane 1,00E+44 [ ory
GW150914 Weak Black hole coalescence 2 hij g 1,00E-21 - Truss intorsion inplane 1,00E+44 [ ory
GW170817 Weak Meutron star coale scence hij £ 1,00E-20 - Truss intorsion inplane 1,00E+44 |[x ory
MASA example Strong Frame dragging Meutron star |hi) g 6,37E-10( rad/s |Clinderintorsion inplane 7, 70E+44 [xory
Gravity prob B Weak Frame draggingEarth hij 2] 4, 00E-15( radis |CWinderintorsion inplane 4, 73E+3B |xory
Gravity prob B Weak Frame draggingEarth hij ;) 4,00E-15 radfs |Truss intorsion inplane 3,00E+44 [xory

David Izabel GDR GDM 28 06 2024
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We therefore use the formulation demonstrated in the previous chapter:

_ =Y, 5.4 Test of the equation basing on
s the previous model unifying the

Sowith g.and Y;issued of table 23 and £, issued of table 22 we obtain:

With data from the Earth and gravitational waves via our Chapter VIl elastic models, we get: different You ngS modulus

(232 % 10719)2 % 2.471 = 10*° .
Fr.s'pm:'e = 133 = 1{]_1,;}2 = 7.51 x 10%*%Pa

(232 x 10719)% % 2.471 = 10%° 10
Fr.s'pm:'e = 332 x 1‘]_20;]2 = 1.20 x 10*°Pa

With the data from the Earth and the gravitational waves measured, we get:
(232 % 1071%)2 x 2.471 = 10%°

Fr.s'pm:'e - (3.32 x 1ﬂ_21j2 = 1.20 x 10**Pa
With the data of the sun and gravitational waves from the elastic models of Chapter VIl we obtain;
¥ B (7.073 % 1077)2 >{ 1.35 = 10°° 381 x 10%5Pg —
n.apace (1.33 x 10-19)2 o
¥ B (7.073 % 1077)% x 1.35 x 10*° 612 % 10%6P
wepace = (3.32 x 10-29)2 - “

With the data from the sun and the gravitational waves measured, we get:
(7.073 = 10~7)* = 1.35 x 10°

Y, epace = X 1072 = 6.75 x 10*°Pa

And we obtained empirically in Chapter VIl for Young's modulus of space:
Eﬁ'.ipaes = lyspace = 3 x 10** Pa

We have therefore found a mechanical expression that allows us to connect the different
Young's moduli characteristic of the transverse anisotropy of the elastic spatio-temporal
medium. David Izabel GDR GDM 28 06 2024

—obtained

The sphere spatial modelis
the most adapted to satisfy
these equations

* Inthe Blane; associated at h; (space) component of the metric
perturbation

10%8<Y<10% Pa
10-2°<g compression/traction < 1021

= Out of the plane: associated at hy, (time) component of the metric
perturbation

1020<Y<10%° Pa
107<g compression/traction < 1010

2
v — 3 v — &Y
gL Yy g
XX Yy
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6) Come back of the analogy In
direction of physics — potential
consequences

David Izabel GDR GDM 28 06 2024




y the elastic

6.1 Didactic explanation proposed b
weakfield

analogy of general relativit

- The gravitation is well a space and time deformati

ANO ¢

ppr eory
bout t! sion is give
b
ere
ticity, we [308]
d*u,  2du
dr? rd r3
St ing of the e n foll m
*¢ 2 99 1 03*¢ 1 a¢ a%¢
A=t T X5 T 7 X 97 F tan0 < 36T smIo "\ og
2
up = 73 Ur
S a developm: ation that is thi
tant. The soluf m:
C:
=Cyr +F
With for the 2 constants:
4 | 2 1+v
0 - 3
T‘”/k—r t t C=3awm’ G
1-21) a?
— c ( )
—_— BE bW-a?
8 We know the displacement u,. o we can extract the Young’s modulus E=Y:
yy RS 10 ORI A
T T u (b —ad) ( Lo V)Zf
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6.1 Didactic explanations proposed by the elastic
analogy of general relativity in weak field

- Number of polarisations of the gravitational waves
2 GW polarisations compatible with 2 expressions of the
strain tensor in case of pure torsion

Me

ch

Pramana — J. Phys. (2020) 94:119 © Indian Academy of Sciences E- {] { :I
https://doi.org/10.1007/s12043-020-01954-5 :.l 1 { } .
Exy 0
® XY
wel| £y viAd_L) — {l.. — &y “ . .
o 4 e E.'I."L'(Ax] = Evy 0 0
anical conversion of the gravitational Einstein’s constant « ” U “ {] {] ”
IZABEL DAVID!

“Whyc?

By the Principe 5, c becomes effectively a fundamental characteristic of the
space fabric as a ratio between the Young’s modulus Y and the density p of the
medium constituting the space fabric

- Effect of the time on the mechanic relativist

Allis always in dynamic in the space fabric. When we measure a strain a part of
strain is not yet arrived, all the measurement are as blurred

David Izabel GDR GDM 28 06 2024 94



6.2 Didactic explanations proposed by the elastic
analogy of general relativity in weak field

The Einstein’s Constant and the gravitational constant can be
developed basing on mechanical parameter of the space fabric

Foundations of Physics manuscript No.
(will be inserted by the editor)

The Mechanics of Spacetime — A Solid Mechanics

Perspective on the Theory of General Relativity

Pramana — J. Phys. (2020) 94:119

© Indian Academy of Sciences
https://doi.org/10.1007/512043-020-01954-5

T G Tenev - M F Horstemeyer

The Mechanics of Spacetime

Chack for

Updates.
Table 1 Comparison between the General Belativity and Solid Mechanics Perspectices.
Mechanical conversion of the gravitational Einstein’s constant «

General Relativity Perspectine Salid Mechanics Pemspective

IZABEL DAVID

Phy=sical space Blid-hypen

e of a hyperplate called

“posmic fabric”.

Spacetime The world volume of the cosmic fabric's
mid- hypersarface
Intrinsic curvature of physical space Intrinsic curvature of the fbrc's mid-
hypersurface
Iotrinsic curvasture of spacetime Intrinsic curvature of the Gbric's world
vilume
Gravitational potential & Volumetric strain ©°°, such that ¢oo
&t
Shear wannes traveling at the speed of light
Matter induces prescribed strain causing
the Eabric to bend
Action integral in free spooe, Action integral outside of inclusions,
L J,f = L¥ —
S=— | Ry Taldz g_ & RufTal db
Zn T vie

Constants of Nature: Elastic constants:
David Izabel GDR GDM 28 06 2024 95
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6.2 Predictive conseguences of the elastic analogy
of the general relativity in weak field

a) About vacuum energy density / Value of the Young’s modulus

If we read principle 5 in the other direction, the Young moduli are to be
considered as energy densities of the vacuum. Consequently, as we
have two families of Young’s moduli, there will not be one but 2
vacuum energy values. One associated with space distortions and one
associated with time distortion!

We have so 3 possibles sources for the vacuum energy:
- Quantum Field Theory: g — 1x10'"* kg m?/s®/m’ o
- Cosmological constant A Tueum = 8.987551787 x 10-10 kg m*/s*/m’

- Stain energy of the cosmizc fabric as an elastic medium in weak Field :
Compatible with R Viongitudial = PC ) {

(time)102° (spheric) at10%0 (membrane) i e memrane
(space)1038 at 1040 (truss and cylinder) = oo

96
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Weiss approach 102°Y
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6.2 Predictive conseguences of the elastic analogy
of the general relativity in weak field

b) About the structure of the fabric

We found the strain deformation of the space medium only if we
consider Planck sheet ! As it is the case in quantum gravity or string

theory.
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/) How to check all that ?

David Izabel GDR GDM 28 06 2024




/.1) Measure complementary polarisations and
study of their shapes

* To have a medium In 3 dimensions, the geometric Torsion is
necessary in general relativity. The consequences is 4
complementary polarisations. Their measurement could validate
so this approach.

£ 00 0 £y 0
{-i'l-(.rl_'_] — “ _'E-:I'I- ” . {-:_1-..'_-(51 ) = E_'I-'.l' U ”
0 0 0 0 00

2
0 0 Y ine

PA

RO | V2]

Dy =Z _=

& > 0 Y cos®@
2
\:O—Aj!sm@ —p—jcos@ H/,
]_.l.."iﬂgit'l.'ldillﬂl David |zabel GDR GDM 28 06 2024 99




/.2) Measure lateral motions of
the interferometer in 3D

Actually, measured by Ligo/Virgo

Direction of the
¥ Vo TAmee gravitational wave
Figure C.2: Positioning LISA in space relative to the'sGn and Earth -

That could be measured by the
interaction between the Earth
interferometer Lisa, Einstein telescope or
Pulsar telescope

0 0 0 0 0 ¢

@ 0 0 +1 0 1 w g

hy, = Ax cos (; (et = Z)) 0 +1 0 ol fxra,) =34xcos (; (ct — z)) e 0
0 0 0 0 (U

So, if we measure additional strains of compression and
shear, by the equivalence principle 1 there are additional
perturbations and thus polarisations. The geometrical
torsion become mandatory in general relativity

S
S
T “\\\‘\“‘\‘
i pasatsan CLECTE S
~ : ‘\““‘?"\—\“‘ =

SN

R AN R
Sataanesy E‘;‘;‘““‘““‘“‘:\““““:‘-‘-‘-‘} 100
-‘%““ W W, v
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7.3) Measure of the Casimir strains and forces to
have a realistic value of the space Young’s

modulus and strain elastic energy

* Apossible direct measure of the Young’s modulus of the vacuum
can be done via the Casimir effect considered as an equivalent
compression test of the medium.

* Actually, the force is measured, and the displacement calculated,

If the forces and the displacement was measured it will be
possible to have a direct value of

Force de Casimir (énergie du vide)

) [ = grad (U) o)

the vacuum energy

Casimir effect from a scattering approach

Gert-Ludwig Ingold*
Institut fiir Physik, Universitit Augsbury, Universititsstrafle 1, D-86135 Augsburg, Cermany

Astrid Lambrecht!
Laboratoire Kastler Brossel, CNRS, ENS, [
Campus Jussiew Case 74, F-T. Paris Cedex
(Dated: April 29, 2014)

IPMC,
5, France

The Casimir force is a spectacular consequence of the existence of vacuum fluctuations and thus
deserves a place in courses on quantum theory. We argue that the scattering approach within a one-
dimensional field theory is well suited to discuss the Casimir effect. It avoids in a transparent way
divergences appearing in the evaluation of the vacuum energy. Furthermore, the scattering approach
connects in a natural manner to the standard discussion of one-dimensional scattering problems in
a quantum theory course. Finally, it allows to introduce students to the methods employed in the
current research literature to determine the Casimir force in real-world systems.

Noting that the exponential in the numerator of (30)
cuts off the integrand, we may obtain the limit of perfect
reflectors 7o = —1. The integral can be evaluated
by first expressing the integrand in terms of a geometrie
series and performing a resummation after having inte-
grated each term. We thus arrive at the Casimir force
for perfect reflectors in one dimension

hem

Fip =

-3+ David l38bel GDR GDM 28 06 2024
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DelLight experiment : vacuum behaviour as a
material that diffract light under huge magnetic

The Young's modulus and the Poisson's ratio of the equivalent material medium are then obtained

[ )
fl e ld from the following formulas, which depend on the longitudinal and transverse velocities
measured by varying the angle of incidence 8 of the emitted wave on the front face of the sample

Snell-Descartes law, undertest
Quantum mechanics results :Under vy - g Per(3CE — 4CF)
siné, n, s : . . : Cf —Cf
o~ M= == intensive magnetic field, vacuum diffract (2 208
SN n ” . . . _ ML et
2 1 1 light as an elastic medium T

nonlinear optics

Cu acuum sin®
n(l) =ng +n,l n(l) =ng+ny,(I) = v = —
Vacuum+Strong Magnetic Field sminr

Euler-Heisenberg model derived from QED

56 h® Cas s
M2.max = N2,0ED = & —5—==155x10"3cm?/W
Mec => diffraction => equivalent

elastic medium

Variation of the speed of light

nz is a nonlinear index related to the variable part of the refractive index n. This variable part
depends on the light intensity. It is not the same as the n; of the Snell-Descartes law, For a low
luminous intensity | n(l) can then be equal to n, or n; of the Snell-Descartes law.

Ny is the linear refraction index under low light intensity (that of Snell Descartes).

[33::;;] Scott Robertson (2019) -:(_Optical Kerr effect in vacuum »

[336] Scott Robertson. Aurélie Mailliet.Xavier Sarazin. Francois Couchot, Elsa Baynard.Julien
_ Demailly. Moana Pittman. Arache Djannati-Ata. Sophie Kazamias. and Marcel Urban (2021) «The 102
David Izabel GDR GDM 28 06 2024 DeLLight experiment to observe an optically-induced change of the vacuum index»



8) Beyond the analogy — some
speculations
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8.1) In Strong field”? Example of theoretical
frame dragging for a neutron star (1/2)

Theoretical value of the frame dragging for a

neutron star (source NASA)

Problem 2 - A neutron star is the compressed nuclear core of a massive star after it has become a
supernova. Suppose the mass of a neutron star is equal to our sun, its radius is 12 kilometers, a
gyroscope orbits the neutron star at a distance from its center of r = 6,000 kilometers, and its orbit
period is T = 8 seconds. To two significant figures, what is Q for such a dense, compact system

in degrees/year?

2(6.67x107'")(2.0x10%° 2(12.000)* ([ 2(3.141
R= ( ! X \, ) = 2,964 meters = ( ) ( (3 )] = 0.15 meters
(300.000.000)> 5(300.000,000)! 8.0
then i i
. (2964)(0.15)(3x10%) [ 360 J Angle distortion Q of
(6.0x10°)" +(0.15)° (6.0x10° ) + (4150 (0.15)" | 2(3.141) space in a Neutron
star field

3

(1.33x10') [ 3
(2.16x10%)+(1.35x10° )+ (93.4) | (6.242) J

=365x10° degrees/sec

Q=365 x10'8 deg/sec x (365d/1yr) x (24h /1day) x (3600 s/ 1 hr) = 1.1 degl/yr

Note this is nearly 100,000 times the corresponding Lens-Thirring rate near Earth.

So, we are well in strong Field 104
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8.1) In Strong field? Example of theoretical frame
dragging for a neutron star (2/2

Let's equalize the kinetic and strain energies for the total cylinder encompassing the whole
This example used the results and calculation of [306].

Neutron star (2 half cylinders) (as done in the case of the Earth with prob B experiment):

We consider a neutron star of diameter 12 km, mass 1.9891x1E* kg, orbital period 8s. . ot MR — 1 =2 MY (2Rys)*012 space”
. . — inetic,T ~ on INsfins — U — -
The calculus of the frame dragging angle at r = 6 km following [306] p65 66 Q2 =3.6510 ° deg/s. cneret 8o 384(1 + V)Rus
The kinetic energy of the Neutron star in rotation is :
Exineticr = l X ] % ((-‘)N.s‘)z We extract an expression of Young's modulus Y of spacetime:
’ 2 _ m?x384(1+ V)Rys 5
In the case of a rotating ball the moment of kinetic inertia is: T orx SU(ZRmyeﬂlspmzMNSRNS
o 2 e check the dimensional equation that is correct:
= 2 VR We check the dimensional equation that i
NSTNS rad* xmxkgxm* kg N
We can define the angular velocity in rad/s by the expression above function of the time taken s2xmtxrad®  s2xm  m?
by the neutron star to do a complete tour in 8s: i
ltour 2mrad W g Or after some mathematics:
Ons =5 X Tomr 2@ /s :L_FV)Z s
We obtain the following expression of the Kinetic energy: 20 X Rys X 8,5 cpace
2 ) ) We can now, carry out the numerical application to have an estimation of the Young’s modulus
Kinetie, T — 5 ™ Z NSNS Uns of the associated elastic medium corresponding to the space:
E =5 Xz MusR X (@s) Y of th iated elastic medi di h

v =1
Mass of the Neutron star:
Mys =1.9891x10°% kg

fra me d ra ggi ng aroun d a Radius of the Neutron star:

Rys =6000 m

n e UtI’O n Sta r We O bta | n aga i n Y .zngular diitortion (Lense-Thirring effect) via NASA calculation [306]:

c2space = 2 = 3.65 X 1078 — degree/s

Extnertor =3 % = Muss x (5) On a theoretical value of the

So, the final expression of the Kinetic energy by torsion of the Earth:
2

Ewinori o = — MueR2 .
Kinetic,T 20 NSNS
Dimension is well an energy:

— — -10
ad? 44 Ox2 space = 2 = 637045 X 107" — rad/s
”12 kg x m2 1 O Pa .
s And we obtain:
T x3x(1+4v) _ 3.14x3x2x1.9891 x 10%°
20 X Rys X szzspacezMM 20 X 6000 X (63740 x 10-10)2
Data Value Unit v

Mass of the Neutron star 1,99E+30 |kg 39 milliarc second/year for Prob B Espace-rime(v=1) = 7-68 E** —

Poisson's ratio 1 Espace-time(v—1) = 768 E** MPa

Radius of the Neutron star 6[km 1 milliarc second 4,85E-09 rad

Frame dragging angle (space) Oy, 6,37E-10|rad 1,31E-01 milliarc second /s 6,37E-10 rad/s .

4,14E+06 Milliarc second /year Neutron star SO’ we Obta In the
T X 3(1 + v) 39 Milliarc second /year Earth same magmtude of
= M m x Earth Frame dragging g .
20X Roe X O 7 MNs I space only Y that in weak field | 105
NS x2,space
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8.2) Analyse of the CMB
power spectrum as a
diffractogram X (eg clay in

sheets)

I(I+1) 4
2n !

Variation of h;j=> variation
gravitation => variation
Density of plasma=>
variation frequency 107" Hz

The power spectrum of the cosmic microwave background can be seen by
analogy as the equivalent of an X-ray diffractogram of a medium. The regular
series of peaks on the one hand and the great width of the peaks on the other

hand could be representative of a certain structure of the dark matter of the

plasma and of the extreme smallness of the density variation grains on the
other hand

Microwave measured 13.7
billion years later from Earth

radius

Surface area of the equivalent cosmological crystal 380,000 years
after the big bang at the time the photons came out of the origina
plasma sufficiently cooled according to the variations in plasma
density that plays the role of equivalent atom in this equivalent

cosmological crystal analogy

Incident X-rays
( LR
d{hkl)I o0

e -e-0 0 @

The case of lamellar HDL clays under X-diffractogram

Case of the Cosmic Microwave Background
Temperature Power Spectrum

planes.
Gy * 28 Y
Lys = 45,3 nm
@ [ ) EEPSEY TN
Lu*60m
ot a2 W ~8 imeriveiten
o Jumiuuw\k,w oo #7508 |
. v Courtesy of Mathew. S S .,‘ L/,,,,,,,,_,,,,,,.,,,, .
. . : — =
Acoustic =
[ R
e O = 13 %0

peaks of
the
plasma of
baryon

>
1807
[ =

A

(e = 7838 A)

L= 44S5nm
ED st
3

[ o5 5t R

Rt (Polynge 3R 9
2= 1101644
b= 250 782,

Des Diffractogrammes rayons-X

UVX 2012, 01016 (2013)
DOL: 10.1051 /uvx/201301016
© Owned by the authors, published by EDP Sciences, 2013

« Trés caractéristiques »
Direction latérale (110)

Etude du mécanisme d’échange et de la structure des
matériaux hydroxydes doubles lamellaires (HDL) par
diffraction et diffusion des rayons X

C. Taviot-Guého, F. Leroux, F. Goujon, P Malfreyt et R. Mahiou

Diffracted

iffracted X-rays
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Local Density
Variation

Harmonics associated with the stacking direction of atom

Harmonics associated with density variations in
original plasma.

Small initial overdensites generate wund waves In - Smald initial ovendensities penerise wound waves in
photon-taryon fusd. propagating for ~400.000 years  photon-baryon fuid, propagating for ~400 £00 years

& o

(uK)?

o | I K

=1 ,'.', Tcmpcrulumi L A Temperuture:
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o | [ = A

. { AVa - T
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“ LI T T i "

Intensity of the thermal variation visualized with
light spot

Superposition of many incoherent sound waves,
oscillating for ~400,000 years

- -

I

-
-

Last " snapshot” is imprinted on the last scattering surface
Mechanism in the original plasma (velocity variation
in the plasma generates polarizations and
temperature variations

The Origin of Mass and the Nature of Gravity

Nassim Haramein!, Cyprien Guermonprez!. Olivier Alirolf
158 he it &2 =

Medium of
Planck grain size?

Energy density of a volume filled of PSUs : 106




8.3) Geometrical Torsion in CMB logical to
take into account in Einstein-Cartan

* In this paper the author show that the geometric torsion is included in the
polarisation B of the cosmic microwave

Lamellar structure of HDL | Polarization of the microwave background
clay powders
Constraints on background torsion from birefringence of CMB £1

polarization

Moumita Das,*** Subhendra Mohanty," T and A.R.Prasanna'?*

!Physical Research Laboratory, Ahmedabad 380009, India

2L. JLInstitute of Computer Application, Ahmedabad, India

Abstract

We show that a non-minimal coupling of electromagnetism with background torsion can produce
Modes E and B generate polarizations of the following spiral shape (torsion of the medium/rotational
birefringence of the electromagnetic waves. This birefringence gives rise to a B-mode polarization of the medium) see Figure 78 below.

E-type fashion Fashion Pattern Type

of the CMB. From the bounds on B-mode from WMAP and BOOMERanG data, one can put
Q>0U=0 Q<0U=0 Q=0U<0 Q=0U>0

limits on the background torsion at &7} = (=3.35 + 2.65) x 10722 GeV'~L, B \ | / S~ ' /-__ _\ |
=) NN L

ZIN SN=" N
<

0 E>0 B<0 B>0

So as the universe is growing since 13,7 billions Years it should be normal to

find again the geometric torsion in space and so in general relativity. An
associated sheet structure or lamella structure become possible
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8.4) Self-repair/self-clogging of space after the
passage of a rotating black hole, a sign of its great
plasticity — Soil liguefaction

* During the coalescence of the black hole, they turn each other.
But space doesn't tear itself apart => huge plasticity of space

UIB Binary Black Hole Merger, GW150914-like: lapse + orbital + strain evolution

@ ?;iigl:nsé; Relativity and Gravitatic 75 12 GJ £~ Partager =+ Enregistrer

David Izabel GDR GDM 28 06 2024
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9) Conclusions




Conclusion about the analogy approach of the

general relativity in weak Field

* On a didactic point of view the analogy propose some possible explanations:

Why gravitation is a space and time deformation (mechanistic relation between Space Young'’s
modulus and Time Young’s modulus),

Why there are two polarisations (two facets of the strain tensor in pure torsion),

why c=> (Y/p)°®* is fundamental, because connected with the mechanical characteristic of the
elastic medium,

Why it’s well space time and not space that must be taken into account.(space time is a
dynamic object, impossible to measure static strains, always strains arrive with a delay at the
measure point),

* On a predictive point of view:

Complementary polarisations should exist Withgravitational wave, thus all the components of
the metric perturbation tensor hy,ywill be defined,

Lateral motions of the interferometer arms should be measured in the future LISA/Einstein
telescope,

2 energy densities of vacuum should exist one for space different for one for time in weak field
regime,

A microstructure of the Planck size made of thin sheets should constitute space time at
minimum for gravitational wave or frame dragging/geodetic effects

Space-time should have a huge plasticity capacity compatible with plastic crystallography

David Izabel GDR GDM 28 06 2024 110



Gravitation in weak Field

summarize (Overview of

the metric perturbation
tensor hy,y)

Lense-Thirring

sssssss
Elasi

Curvature =

1
G,uv = R,m«' -

E Gu yR = KT,HV

Angle 87G Energy
= X

Surface  c*

Volume

Newton Gravitation
Ap=4nGp
Einstein in weak Field

816,
Ahgg = ZAp=—Fpc
[ C

Lense Thirringframe dragging and geodetic effect

x GMol'[4x" +y* —27°8y 12yz0z] GMx

o 1 r|s r?

atz 12 r

a’y GM ol? [4 ¥ +y*—2228x 12xzdz] GMy

5 r?

| %z GMowl*|12z

a s at| rir

ot srzot| 2r |

ay ax
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a2 r|sr

r

«Tensor calculus knows physics better than the physicist himself »
(Paul Langevin) David Izabel GDR GDM 28 06 2024
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hya Gravitational wave
has polarisation A%

Gravitational wave with possible new
polarisations (Einstein-Cartan theory etc)
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polarisation with

Einstein-Cartan theory

(geometrical torsion)
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Gravitation g

Angle QQ=¢n; Frame dragging and geodetic effect
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