Rachel Azulay

Christelle Combescure

Prédiction des modes bifurqués périodiques des matériaux architecturés grâce à la théorie des groupes

Predicting the post-bifurcated patterns of architectured materials using group-theoretic tools R. Azulay, C. Combescure J. Mech. Phys. Solids 187 (2024) 105631

Introduction

Introduction

Lattice materials

• Mesoscopic arrangement

Quasiperiodic Aperiodic Periodic Welbeck St Car Park, London Transbay Transit Center, San Francisco MUCEM, Marseille

Lattice cell

Pattern Generation in Architectured Materials

[Shim 2012] Buckling-induced encapsulation of structured elastic shells under pressure.

Pattern Generation in Architectured Materials

Undeformed specimen

Adapted from [Shan 2014] Harnessing Multiple Folding Mechanisms in Soft Periodic Structures for Tunable Control of Elastic Waves.

Pattern Generation: Bifurcations

Architectured Material

Architectured material's energy:

 $\mathcal{E}: (\mathbb{R}^N \times \mathbb{R}) \longrightarrow \mathbb{R}$ $(\mathbf{u}, \lambda) \longmapsto \mathcal{E}(\mathbf{u}, \lambda)$

Equilibrium of a finite dof structure:

 $\mathcal{E}_{,\mathbf{u}}\,\delta\mathbf{u}=0,\quad\forall\,\delta\mathbf{u}\in\mathbb{R}^N$

Stability operator:

$$det(\mathcal{E},_{uu}(\overset{0}{\mathbf{u}}_{c},\lambda_{c})) = 0 \quad \textit{critical point}$$

$$Tangent$$

$$stiffness$$

$$matrix$$

Pattern Generation: Bifurcations

Bifurcation = loss of uniqueness

Equilibrium of a finite dof structure:

$$\mathcal{E}_{,\mathbf{u}}\,\delta\mathbf{u}=0,\quad\forall\,\delta\mathbf{u}\in\mathbb{R}^N$$

Architectured Material

Pattern Generation: Bifurcations

Architectured Material

Pattern Generation: Symmetry

(a) Undeformed hexagonal honeycomb

[Ohno 2002] Microscopic symmetric bifurcation condition of cellular solids based on a homogenization theory of finite deformation

Pattern Generation: Symmetry

(a) Undeformed hexagonal honeycomb, (b-d) Adapted from [Ohno 2002] Identified modes for a hexagonal honeycomb under compression. (b) Mode I - uniaxial compression, (c) Mode II - Biaxial compression, (d) Mode III - Equibiaxial compression.

[Ohno 2002] Microscopic symmetric bifurcation condition of cellular solids based on a homogenization theory of finite deformation

Objective

Objective

ANR Project: Max-Oasis

• Interest: Wave propagation properties

wave propagation

Directionality

[Rosi 2019] Continuum modelling of frequency-dependent acoustic beam focusing and steering in hexagonal lattices [Wang 2013] Effects of geometric and material nonlinearities on tunable band gaps and low-frequency directionality of phononic crystals.

M

Patterns: new properties

[Shan 2014] Harnessing Multiple Folding Mechanisms in Soft Periodic Structures for Tunable Control of Elastic Waves.

Existing Design Methodology

- Problems due to symmetry
- Issues for period multiplying bifurcations
- Limited to simple geometries
- May involve trial and error
- Lacks robustness

Objective

No tool or systematic approach for designing pattern generating architectured materials

Designing Pattern Generating Materials

Mechanical standpoint : analysis

Knowing the system's energy, we find its post-bifurcated behaviour

Mathematical standpoint : design

Knowing the system's symmetry, we find all its possible postbifurcated behaviours Objective

Objective

• Design methodology based on group theory for pattern generating architectured materials

Geometry

Architectured Material

Needs a description

Geometry

• Primitive cell: point group

Cyclic group **Cn**: all rotations about a fixed point by $2\pi/n$

Example of **C6** symmetry

Dihedral group **Dn**: rotations of Cn and axial symmetries

$$\int \longrightarrow \longrightarrow \longrightarrow$$

Example of **D4** symmetry

Geometry

• Unit cell: permutation group (periodicity)

Geometry

• Honeycomb symmetry group: D

Mesh

• Vector space of the problem: \mathbb{V}

Configuration space:

• Each node is given n degrees of freedom (DOF)

 $\mathbb V$ is then a N-dimensional vector space such that the dof vector of the problem $\mathbf u\in\mathbb V$,

with N the total number of dofs of the problem

Method

Symmetry Analysis

• Representations

A representation of a group G on $\mathbb V$ is a homomorphism $\tilde{T}:G\longrightarrow GL(\mathbb V)$

which satisfies:

$$\tilde{T}(gh) = \tilde{T}(g)\tilde{T}(h) \quad g,h \in G$$

Constructed in Python

Matrix Representations

 \mathbf{T}

Symmetry Analysis

• Matrix Representations

 \mathbf{u}

Symmetry Analysis

• Matrix Representations

 $\underline{\mathbf{T}}$ (c6) x

Symmetry Analysis

• Inputs

GAP Manual Input

$$D_6 \ltimes (Z_2 \times Z_2)$$

Subgroups, Elements, Generators, Irreducible representations

Difficulty: Getting GAP to work with Python

Method

Equivariant Bifurcation Theory

Isotypic decomposition

 $\mathbb {V}$ can be decomposed as a direct sum of $G\text{-}\mathrm{irreducible}$ subspaces

Some \mathbb{V}_{μ} may not appear in the decomposition.

 $\mathbb{V} = \bigoplus \mathbb{V}_{\mu}$

Equivariant Bifurcation Theory

• Irreducible representations: Block diagonalisation

$$\mathbb{V} = \bigoplus_{\mu=1}^{m} \mathbb{V}_{\mu} \longrightarrow \mathcal{E}_{,\mathbf{u}\mathbf{u}}(\mathbf{u},\lambda) = (\underline{\mathbf{T}}^{\mu})^{-1}(g) \mathcal{E}_{,\mathbf{u}\mathbf{u}}(\mathbf{u},\lambda) \underline{\mathbf{T}}^{\mu}(g)$$
$$\begin{bmatrix} B_{1} & 0 & 0 & 0 \\ 0 & B_{2} & 0 & 0 \\ 0 & 0 & 0 & B_{2} \end{bmatrix}$$

Equivariant Bifurcation Theory

• Critical point occurs when $\det(\mathcal{E}_{,\mathbf{uu}}(\overset{0}{\mathbf{u}}_{c},\lambda_{c}))=0$

Generically, only blocks corresponding to one irreducible representation vanish

$$\mathbb{V} = \bigoplus_{\mu=1}^{m} \mathbb{V}_{\mu}$$

m

Bifurcation takes place in one of the G-irreducible subspaces \mathbb{V}_{μ}

Symmetry of

post-bifurcated solutions

Equivariant Branching Lemma [Vanderbauwhede, 1980]

Apply Equivariant Branching Lemma for each irreducible subspace \mathbb{V}^{μ}

For each symmetry subgroup H of $\mathbf{u} \in \mathbb{V}^{\mu}$: if dimFix_{\mathbb{V}^{\mu}}(H) = 1 a bifurcated solution with symmetry group H exists

Symmetry Group: $G_{\mathbf{u}} = \{g \in G \mid \mathbf{T}(h)\mathbf{u} = \mathbf{u}\}$

Fixed point subspace: $\operatorname{Fix}_{\mathbb{V}^{\mu}}(H) = \{\mathbf{u} \in \mathbb{V}^{\mu} | \mathbf{T}^{\mu}(h)\mathbf{u} = \mathbf{u}, \forall h \in H\}$

And its dimension: dimFix_V^µ(H) =
$$\frac{1}{|H|} \sum_{h \in H} tr(\mathbf{T}(h))$$

Symmetry of

post-bifurcated solutions

Equivariant Bifurcation Theory

• Symmetry of the solutions

Isotropy Subgroup = Symmetry Group

$$G_{\mathbf{u}} = \{g \in G, \ \underline{\mathbf{T}}(g)\mathbf{u} = \mathbf{u}\}$$

• Symmetry of the critical displacement eigenvector

$$G_{\ker(\mathcal{E},\mathbf{u}\mathbf{u}(\overset{0}{\mathbf{u}}_{c},\lambda_{c}))} = \{g \in G \mid \underline{\mathbf{T}}(g)\mathbf{u} = \mathbf{u}, \forall \mathbf{u} \in \ker(\mathcal{E},\mathbf{u}\mathbf{u}(\overset{0}{\mathbf{u}}_{c},\lambda_{c}))\}$$

Method

Reduction of DOFs

Generalised displacement vector

$$\mathbf{u} = (\mathbf{u}_1, ..., \mathbf{u}_n)^T, \quad \mathbf{u} \in \mathbb{R}^N$$

For each post-bifurcated symmetry group

Symmetry adapted decomposition of the generalised displacement vector

Reduction of DOFs

• Example: $C_6 \ltimes (Z_2 \times Z_2)$

Reduction of DOF

space

 $\Box x + \Box y = \Box$

 $\Box x + \Box y = \Box$

Method

Material Parameters

• Euler-Bernoulli beams

Elementary displacement vector:

$$\mathbf{u}_{e}^{T} = \begin{bmatrix} u_{i} & v_{i} & \theta_{i} & u_{j} & v_{j} & \theta_{j} \end{bmatrix}$$

Standard Hermitian cubic interpolation:

Displacements of beam: functions of node displacements

Material Parameters

• Euler-Bernoulli beams

Material parameters

Beam parameters:

L	Length
S	Surface of cross-section
I	Quadratic moment
E	Young's Modulus

Manual Input

Method

Elastic Energy Minimisation

• Aim: Obtain the post bifurcated patterns

Elastic Energy Minimisation

• Compute the energy of the unit cell

Elastic energy

minimisation

Previously Observed Patterns

Previously Predicted Patterns

From [Combescure 2016]

This study

Summary

- Results aligned with the literature
- Validation on other architectures
 - Results
 - Automation process
- Other works:
 - First bifurcation point computation

Conclusion

- Group Theoretic approach
- Set size of unit cell
- Any group, elements can be implemented
- Decorrelated trial and error
- Improved robustness: design based

Further work

- Equivariant Branching Lemma is not exhaustive
 - We only obtain generic bifurcation points
- Secondary bifurcation points could be computed
 - Iteratively using the existing method
 - By digging deeper into the underlying concepts in group theory
- Stability analyses for each pattern

Further work

Finding the appropriate mechanical load to obtain the desired patterns

Additional Slides

Comparison

Mode I, higher order From Combescure 2016

Mode II, higher order From Combescure 2016

Mode III, higher order From Combescure 2016

Semi-direct product

Definition 21. If $\alpha : G \longrightarrow Aut(\Gamma)$ is a group homomorphism, then the group operation of the semidirect product of G and Γ with respect to α is:

$$(g_1, \gamma_1)(g_2, \gamma_2) = (g_1g_2, \gamma_1\alpha_{g_1}(\gamma_2)), \ \forall g_1, g_2 \in G, \forall \gamma_1, \gamma_2 \in \Gamma$$
(3.6)

The product is not unique as it depends on the choice of homomorphism

Semi-direct product $(g_1, \gamma_1)(g_2, \gamma_2) = (g_1g_2, \gamma_1 \alpha_{g_1}(\gamma_2)), \forall g_1, g_2 \in G, \forall \gamma_1, \gamma_2 \in \Gamma$

Linear Buckling Analysis

Stability operator: $det(\mathcal{E},_{\mathbf{uu}}(\overset{0}{\mathbf{u}}_{c},\lambda_{c})) = 0$

In mechanics:
$$det(\underline{\mathcal{K}}_T) = 0$$

The tangent stiffness matrix can be separated into two parts:

$$\underline{\mathcal{K}}_T = \underline{\mathcal{K}}_e + \lambda \underline{\mathcal{K}}_g, \quad \lambda \in \mathbb{R}$$

Stability: $det(\underline{\mathcal{K}}_e + \lambda \underline{\mathcal{K}}_g) = 0$

Equivalent to the generalised eigenvalue problem: $(\mathcal{K} + \lambda \mathcal{K}) = -$

$$(\underline{\mathcal{K}}_e + \lambda \underline{\mathcal{K}}_g)\mathbf{u} = 0$$

Linear Buckling Analysis

• Elementary stiffness matrices in Euler-Bernoulli beams:

$$\mathbf{\underline{K}}_{e} = \begin{bmatrix} \frac{ES}{L} & 0 & 0 & \frac{-ES}{L} & 0 & 0 \\ 0 & \frac{12EI}{L^{3}} & \frac{6EI}{L^{2}} & 0 & \frac{-12EI}{L^{3}} & \frac{6EI}{L^{2}} \\ 0 & \frac{6EI}{L^{2}} & \frac{4EI}{L} & 0 & \frac{-6EI}{L^{2}} & \frac{2EI}{L} \\ \frac{-ES}{L} & 0 & 0 & \frac{ES}{L} & 0 & 0 \\ 0 & \frac{-12EI}{L^{3}} & \frac{-6EI}{L^{2}} & 0 & \frac{12EI}{L^{3}} & \frac{-6EI}{L^{2}} \\ 0 & \frac{6EI}{L^{2}} & \frac{2EI}{L} & 0 & \frac{-6EI}{L^{2}} & \frac{4EI}{L} \end{bmatrix} \quad \mathbf{\underline{K}}_{g} = \frac{\mathcal{N}}{60L} \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 36 & 3L & 0 & -36 & 3L \\ 0 & 3L & 4L^{2} & 0 & -3L & -L^{2} \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & -36 & -3L & 0 & 36 & -3L \\ 0 & 3L & L^{2} & 0 & -3L & L^{2} \end{bmatrix}$$

$$\mathcal{E}_{nl} = \frac{1}{2} \int_0^L \left(ES \frac{du^2}{dx} + EI_z \frac{d^2v^2}{dx^2} + EI_y \frac{d^2w^2}{dx^2} + GJ_0 \frac{d\theta_x}{dx}^2 + N_0 \frac{dv^2}{dx} + N_0 \frac{dw^2}{dx} \right) dx$$
$$\mathcal{E}_{nl} = \frac{1}{2} \int_0^L \left(ES \frac{du^2}{dx} + EI_z \frac{d^2v^2}{dx^2} + EI_y \frac{d^2w^2}{dx^2} + GJ_0 \frac{d\theta_x}{dx}^2 \right) dx + \frac{1}{2} \int_0^L \left(N_0 \frac{dv^2}{dx} + N_0 \frac{dw^2}{dx} \right) dx$$

[Yang 1986] Stiffness matrix for geometric nonlinear analysis.