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• Mesoscopic arrangement

Periodic Quasiperiodic Aperiodic

Lattice materials

MUCEM, MarseilleWelbeck St Car Park, London Transbay Transit Center, San Francisco
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Pattern Generation in Architectured Materials

[Shim 2012] Buckling-induced encapsulation of structured elastic shells under pressure.
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Pa3ern Genera4on in Architectured Materials

Undeformed specimen

Adapted from [Shan 2014] Harnessing Multiple Folding Mechanisms in Soft Periodic Structures for Tunable Control of Elastic Waves.
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Pattern Generation: Bifurcations

Architectured Material

Architectured material’s energy: 

Equilibrium of a finite dof structure: 

6Introduction

Stability operator: 

critical point

Tangent 
stiffness
matrix



Pattern Generation: Bifurcations

Architectured Material

BifurcaPon = loss of uniqueness

Equilibrium of a finite dof structure: 
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Bifurcation = loss of uniqueness

Pattern Generation: Bifurcations

Architectured Material

PATTERN CHANGE
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Pattern Generation: Symmetry

(a) Undeformed hexagonal honeycomb
(a)

G - symmetry

[Okumura 2002] Post-buckling analysis of elastic honeycombs subject to in-plane biaxial compression.
[Ohno 2002] Microscopic symmetric bifurcation condition of cellular solids based on a homogenization theory of finite deformation
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-symmetry (            ) 

(a) (b) (c) (d)

[Okumura 2002] Post-buckling analysis of elastic honeycombs subject to in-plane biaxial compression.
[Ohno 2002] Microscopic symmetric bifurcation condition of cellular solids based on a homogenization theory of finite deformation

(a) Undeformed hexagonal honeycomb, (b-d) Adapted from [Ohno 2002] Identified modes for a hexagonal honeycomb under compression. (b) Mode I - uniaxial
compression, (c) Mode II - Biaxial compression, (d) Mode III - Equibiaxial compression.

Pa6ern Genera7on: Symmetry
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Objective
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ANR Project: Max-Oasis
• Interest: Wave propagation properties

Direc&onality Filtering

[Rosi 2019] Continuum modelling of frequency-dependent acoustic beam focusing and steering in hexagonal lattices
[Wang 2013] Effects of geometric and material nonlinearities on tunable band gaps and low-frequency directionality of phononic crystals.
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Patterns: new properties

[Shan 2014] Harnessing Multiple Folding Mechanisms in Soft Periodic Structures for Tunable Control of Elastic Waves.
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Exis7ng Design Methodology

Geometry

Mechanical
Load

Material
Parameters

Architectured Material

Non-linear
analysis Post-bifurcated

patterns
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• Lacks robustness

Objective 15

• Problems due to symmetry

• Limited to simple geometries
• Issues for period multiplying bifurcations

• May involve trial and error



No tool or systema=c approach for designing pa?ern genera=ng
architectured materials
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Designing Pattern Generating Materials
Mechanical standpoint : analysis

Mathematical standpoint : design

Knowing the system’s energy, we find its post-bifurcated behaviour

Knowing the system’s symmetry, we find all its possible post-
bifurcated behaviours
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Objective
• Design methodology based on group theory for pattern generating

architectured materials

Geometry

D3 ?

C2 ?

Symmetry study

C6 ? 

D4 x Z2 ?

Possible 
patterns

Objective 18



Method
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Geometry of 
AM

20Method



Geometry of 
AMGeometry
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Architectured Material

Needs a description

Method



Geometry of 
AMGeometry

• Primitive cell: point group
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Cyclic group Cn: all rotations about a fixed point by 
2π/n

Example of C6 symmetry

Example of D4 symmetry

Dihedral group Dn: rota<ons of Cn and axial 
symmetries

Method



Geometry of 
AMGeometry

• Unit cell: permutation group (periodicity)

23

Cyclic group Zn: 

(Isomorphic to Cn)

Method

p1p2



Geometry
• Honeycomb symmetry group:
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Geometry of 
AMManual Input

Method



Method

Geometry of 
AM

Mesh
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Mesh
• Vector space of the problem:
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Configura<on space: 
� Each node is given n degrees of freedom (DOF)

is then a N-dimensional vector space such that the 
dof vector of the problem , 
with N the total number of dofs of the problem

Method

Mesh

Manual Input



Method

Geometry of 
AM

Symmetry Analysis

Mesh

27Method



• Representations

28

A representation of a group     on     is a homomorphism

which sa<sfies:

Symmetry Analysis

Irreducible
Representations

GAP Output
Matrix Representations

Constructed in Python

Symmetry Analysis

Method



• Matrix Representa=ons
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Symmetry AnalysisSymmetry Analysis

Method
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• Matrix Representations
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(S)  x

Symmetry AnalysisSymmetry Analysis

𝑦!"
𝑥!"

𝑦!"
𝑥!"

Method

8



• Matrix Representations

31

(c6)  x

Symmetry AnalysisSymmetry Analysis

𝑦!"
𝑥!"

𝑦!" 𝑥!"

Method

8



Symmetry Analysis
• Inputs

32

Manual Input GAP Manual Input

Difficulty: Getting GAP to work with Python

Method

Subgroups, Elements, 
Generators, Irreducible
representaPons



Method

Geometry of 
AM

Symmetry Analysis
Symmetry of 

post-bifurcated
solutions

Mesh

33Method



Equivariant Bifurca7on Theory
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• Isotypic decomposition

can be decomposed as a direct sum of    -irreducible subspaces

Symmetry of 
post-bifurcated

solutions

Method

Some may not appear in the decomposition. 



Equivariant Bifurcation Theory
• Irreducible representa=ons: Block diagonalisa=on
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Symmetry of 
post-bifurcated

solutions

Method



Equivariant Bifurcation Theory
• Critical point occurs when

36

Generically, only blocks corresponding to one irreducible representation vanish

Bifurca0on takes place in one of the G-irreducible
subspaces

Symmetry of 
post-bifurcated

solu<ons

Method



Apply Equivariant Branching Lemma for each irreducible subspace 𝕍#

For each symmetry subgroup 𝐻 of 𝐮 ∈ 𝕍#:
if dimFix𝕍! 𝐻 = 1 a bifurcated solution with symmetry group 𝐻 exists

Equivariant Branching Lemma
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Symmetry of 
post-bifurcated

solutions

Method

[Vanderbauwhede, 1980]

Symmetry Group: 𝐺𝐮 = 𝑔 ∈ 𝐺 𝐓 ℎ 𝐮 = 𝐮}

Fixed point subspace: Fix𝕍! 𝐻 = {𝐮 ∈ 𝕍#|𝐓& ℎ 𝐮 = 𝐮, ∀ℎ ∈ 𝐻)

And its dimension: dimFix𝕍! 𝐻 = !
|(|
∑)∈+ 𝑡𝑟 𝐓 ℎ



Equivariant Bifurcation Theory
• Symmetry of the solutions
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Isotropy Subgroup = Symmetry Group 

Framework

Symmetry of 
post-bifurcated

solutions

• Symmetry of the cri=cal displacement eigenvector



Method

Geometry of 
AM

Symmetry Analysis
Symmetry of 

post-bifurcated
solutions

Reduction of DOF 
space

Mesh

Group Theory
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Reduction of DOFs
• Generalised displacement vector
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Reduction of DOF 
space

• For each post-bifurcated symmetry group

Symmetry adapted decomposition of the 
generalised displacement vector

Method



Reduc7on of DOFs
• Example:
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Reduction of DOF 
space

Initial mesh and displacements

Method

Solve
+

-

For all elements
of C6xZ2xZ2

Reduced DOF vector



Method

Material
parameters

Geometry of 
AM

Symmetry Analysis
Symmetry of 

post-bifurcated
solu<ons

Reduc<on of DOF 
space

Mesh

42Method



Material Parameters
• Euler-Bernoulli beams
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Material
parameters

Method

Elementary displacement vector:

Standard Hermitian cubic interpolation:

Node i Node j

Displacements of beam: functions of node displacements



Material Parameters
• Euler-Bernoulli beams
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Material
parameters

Method

Beam parameters:  

L Length

S Surface of cross-section

I Quadratic moment

E Young’s Modulus

Manual Input



Method

Elastic energy
minimisation

Material
parameters

Geometry of 
AM

Symmetry Analysis
Symmetry of 

post-bifurcated
solutions

Reduction of DOF 
space

Mesh
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Elas7c Energy Minimisa7on
• Aim: Obtain the post bifurcated pa?erns

46

Elastic energy
minimisation

Method

Identify how each of the beams are going to buckle



Elastic Energy Minimisation
• Compute the energy of the unit cell
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Elas<c energy
minimisa<on

Method

No body forces

Periodic boundary conditionsEnergy: 

We want to minimise: 

subject to 



Method

Post-bifurcated
paDerns

Elastic energy
minimisation

Material
parameters

Geometry of 
AM

Symmetry Analysis
Symmetry of 

post-bifurcated
solutions

Reduction of DOF 
space

Mesh

48Method



Results
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Honeycomb Patterns

50Results



Honeycomb Pa6erns

51Results

1D Irreps 2D Irreps

3D Irreps



Honeycomb Patterns

52Results

1D Irreps 2D Irreps

3D Irreps



Previously Observed Patterns
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From [Combescure 2016] From [Combescure 2016]

From [Kang 2013]

This study This study

This study



Honeycomb Patterns

54Results

1D Irreps 2D Irreps

3D Irreps



Previously Predicted Patterns

55Results

From [Combescure 2016]

This study



Summary
• Results aligned with the literature
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• Validation on other architectures
• Results
• Automation process

• Other works:
• First bifurcation point computation

Results



Conclusion
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• Lacks robustness

Conclusion 58

• Problems due to symmetry

• Limited to simple geometries
• Issues for period mul<plying bifurca<ons

• May involve trial and error

Group Theoretic approach
Set size of unit cell
Any group, elements can be implemented

Improved robustness: design based

Decorrelated trial and error



• Secondary bifurca=on points could be computed
• Itera<vely using the exis<ng method
• By digging deeper into the underlying concepts in group theory

Further work

• Stability analyses for each pattern

59

• Equivariant Branching Lemma is not exhaustive
• We only obtain generic bifurcation points

Conclusion



Further work
• Finding the appropriate mechanical load to obtain the desired

patterns
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Target 
pa)ern

Mechanical 
load

Geometry

D3 ?

C2 ?

Symmetry study

C6 ? 

D4 x Z2 ?

Possible 
paWerns

Conclusion



Additional Slides

61Additional Slides



Comparison
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Mode I Mode I, higher order

Mode I, higher order
From Combescure 2016

Mode II Mode II, higher order

Mode II, higher order
From Combescure 2016

Mode III Mode III, higher order

Mode III, higher order
From Combescure 2016

Results



Semi-direct product

63Semi-direct Product

The product is not unique as it depends on the choice of homomorphism



Semi-direct product

64Semi-direct Product

Action of c6 on p1, p2 Action of s on p1, p2



Linear Buckling Analysis
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Stability operator:

In mechanics:

The tangent s<ffness matrix can be
separated into two parts:

Stability:

Equivalent to the generalised eigenvalue
problem:



Linear Buckling Analysis
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• Elementary stiffness matrices in Euler-Bernoulli beams: 

[Yang 1986] Stiffness matrix for geometric nonlinear analysis.


