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Introduction

Pattern Generation in Architectured Materials

[Shim 2012] Buckling-induced encapsulation of structured elastic shells under pressure.
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Pattern Generation in Architectured Materials
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Undeformed specimen

Adapted from [Shan 2014] Harnessing Multiple Folding Mechanisms in Soft Periodic Structures for Tunable Control of Elastic Waves.
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Pattern Generation: Bifurcations

Architectured material’s energy:
E:RVxR)—R
(u,A) — E(u, A) 4

Equilibrium of a finite dof structure: e Critical point

Eudu=0, VéueRY |

Stability operator: AL
rmcipal patn
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Architectured Material Critical point

Tangent
stiffness
matrix



Introduction

Pattern Generation: Bifurcations

Pitchfork bifurcation

Bifurcation = loss of uniqueness A Bifurcated solution
Y4

Equilibrium of a finite dof structure: . Bifurcation point

Eudu=0, VoueRY

Architectured Material
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Pattern Generation: Bifurcations

Pitchfork bifurcation

Bifurcation = loss of uniqueness A Bifurcated solution
V4

/ /Bifurca‘tion point
C R R
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Architectured Material



Introduction

Pattern Generation: Symmetry

(a)

(a) Undeformed hexagonal honeycomb

A

Critical point

G - symmetry

Principal path

>
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[Ohno 2002] Microscopic symmetric bifurcation condition of cellular solids based on a homogenization theory of finite deformation
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Infinite medium

[Okumura 2002] Post-buckling analysis of elastic honeycombs subject to in-plane biaxial compression.
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Pattern Generation: Symmetry

(a) (b) (c) (d)
(a) Undeformed hexagonal honeycomb, (b-d) Adapted from [Ohno 2002] Identified modes for a hexagonal honeycomb under compression. (b) Mode | - uniaxial
compression, (c) Mode Il - Biaxial compression, (d) Mode Il - Equibiaxial compression.
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Unit cell

Bifurcated solution

4

Bifurcation point
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Infinite medium L.
Primitive cell
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[Okumura 2002] Post-buckling analysis of elastic honeycombs subject to in-plane biaxial compression.

[Ohno 2002] Microscopic symmetric bifurcation condition of cellular solids based on a homogenization theory of finite deformation
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ANR Project: Max-Oasis

* Interest: Wave propagation properties

Directionality
A= 10

1.5

Enzmgy (AL}

[y

(a) O(x1) =0 ' (b) O(z1) = Oupl(z1)

@ A=10

Normalized Frequency, ma / 2me..

_Iy_x

Reduced Wave Vector,k

[Rosi 2019] Continuum modelling of frequency-dependent acoustic beam focusing and steering in hexagonal lattices
[Wang 2013] Effects of geometric and material nonlinearities on tunable band gaps and low-frequency directionality of phononic crystals.
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[Shan 2014] Harnessing Multiple Folding Mechanisms in Soft Periodic Structures for Tunable Control of Elastic Waves.
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Existing Design Methodology

Architectured Material
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Objective

Post-bifurcated
patterns

* Problems due to symmetry
* Issues for period multiplying bifurcations
* Limited to simple geometries

* May involve trial and error

e Lacks robustness



Objective

No tool or systematic approach for designing pattern generating
architectured materials




Objective

Designing Pattern Generating Materials

Mechanical standpoint : analysis
Knowing the system’s energy, we find its post-bifurcated behaviour

Mathematical standpoint : design

Knowing the system’s symmetry, we find all its possible post-
bifurcated behaviours
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Objective

* Design methodology based on group theory for pattern generating
architectured materials
Symmetry study :|:|:
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python™  SymPy
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Geometry of
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Geometry of

Geometry o S

N

Architectured Material

Infinite medium Primitive cell Unit cell

Needs a description



Method

Geometry of
G

Cyclic group Cn: all rotations about a fixed point by
A 21t/n

() - -
oh o Q- | @

Geometry %5

* Primitive cell: point group

Example of C6 symmetry

Dihedral group Dn: rotations of Cn and axial
symmetries

I-L7-00 |

Example of D4 symmetry




Method

Geometry

e Unit cell: permutation group (periodicity)

/'"\i Cyclic group Zn:
/ \

I, \\
4 \

(Isomorphic to Cn)
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Method

Geometry

* Honeycomb symmetry group:

Infinite medium

Manual Input

D6 X (ZQ X ZQ)

Primitive cell

Unit cell

Geometry of

G




Method

Method

Mesh

Geometry of

GG




Method

Mesh

* VVector space of the problem: V

Configuration space:
 Each node is given n degrees of freedom (DOF)

Mesh

Manual Input

V'is then a N-dimensional vector space such that the
dof vector of the problemu € V,

with N the total number of dofs of the problem
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Method

Mesh

Geometry of
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Symmetry Analysis
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Symmetry Analysis

Symmetry Analysis -

* Representations

A representation of a group G on V is a homomorphism
T:G — GL(V)

which satisfies:

~ ~ ~

T(gh) =T(g9)T(h) g,heG
v/ N\

Constructed in Python GAP Output

Matrix Representations Irreducible
Representations

T TH
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Symmetry Analysis

* Matrix Representations

Symmetry Analysis
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Symmetry Analysis

* Matrix Representations

Symmetry Analysis
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Symmetry Analysis

* Matrix Representations

Symmetry Analysis




Symmetry Analysis
* Inputs

Manual Input GAP Manual Input

D6 X (Z2 X Zz)

Subgroups, Elements,
Generators, Irreducible
representations

Difficulty: Getting GAP to work with Python
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Method

Mesh

Geometry of
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Symmetry of
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Symmetry Analysis




Method

Symmetry of
post-bifurcated
solutions

Equivariant Bifurcation Theory

* |sotypic decomposition

V can be decomposed as a direct sum of GG-irreducible subspaces

Some V, may not appear in the decomposition.



Method

Symmetry of
post-bifurcated
solutions

Equivariant Bifurcation Theory

* Irreducible representations: Block diagonalisation

V=PV, — |Euu(@N)|=(T")7(g) & uu (0, N) T (g)




Method

Symmetry of
post-bifurcated
solutions

Equivariant Bifurcation Theory

* Critical point occurs when det(&,uu (816, Ae)) =0

Generically, only blocks corresponding to one irreducible representation vanish

7 V:éVu

p=1

Bifurcation takes place in one of the G-irreducible
subspaces V',




Method

Symmetry of
post-bifurcated
solutions

Equivariant Branching Lemma  wvendersaunhede, 15z

Apply Equivariant Branching Lemma for each irreducible subspace V*

For each symmetry subgroup H of u € VH:
if dimFixyw(H) = 1 a bifurcated solution with symmetry group H exists

Symmetry Group: G, = {g € G | T(h)u = u}

Fixed point subspace: Fixyn (H) = {u € V¥ |T#(h)u = u,Vh € H)

And its dimension: dimFixyu(H) = ﬁZhEH tr(T(h))



Framework

Equivariant Bifurcation Theory

post-bifurcated
 Symmetry of the solutions

solutions

Isotropy Subgroup = Symmetry Group
Gu={9€G, T(g)u=u}

 Symmetry of the critical displacement eigenvector

e 0

ety — W9 € GII(g)u =1, Vu € ker(Euu (e, Ac))}
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Method

Reduction of DOF
space

Geometry of

o
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Symmetry of
post-bifurcated
solutions

Symmetry Analysis

1\ J

Group Theory



. 4 Reduction of DOF A
Reduction of DOFs
+ Generalised displacement vector 8 { )

u=(ug,..,u,)’, ueR?

* For each post-bifurcated symmetry group

{T(g)u = u}

Symmetry adapted decomposition of the
generalised displacement vector




Method

Reduction of DOFs

« Example: Cg X (Zo X Z3)

Initial mesh and displacements Reduced DOF vector

For all elements
of Cs X (Z3 x Z3)

\_

Reduction of DOF
space

(a4 Cly =00
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Method

Mesh

Reduction of DOF
space

Geometry of

o

Symmetry of
post-bifurcated
solutions

Symmetry Analysis
Material
parameters




Method

Material
parameters

G—r

Material Parameters o}

e Euler-Bernoulli beams

Elementary displacement vector:

u, :[’UJZ' V; 91 Uj Uy 93]

Standard Hermitian cubic interpolation:

Node i Node j

>:

Displacements of beam: functions of node displacements



Method

Material Parameters

e Euler-Bernoulli beams

Beam parameters:

Length

Surface of cross-section

Quadratic moment

L
S
I

E

Young’s Modulus

Manual Input

Material
parameters

G—r
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Method

Mesh -
fes Reduction of DOF A (" Elastic energy )
space minimisation

Geometry of

o

Symmetry of
post-bifurcated
solutions

Symmetry Analysis

Material
parameters




Method

(" Elastic energy )

Elastic Energy Minimisation

* Aim: Obtain the post bifurcated patterns o

Thind mode of buckling 7, =77

Identify how each of the beams are going to buckle

First mode of buckling P} = *—o-

2

Second mode of buckling P, = an”El

2
<

L

P, P,

. . 9%’ El
Third mode of buckling P53 = = =




(" Elastic energy )
: 1A 1 1 : minimisation
Elastic Energy Minimisation e
 Compute the energy of the unit cell T
Energy: Periodic boundary conditions

5—%uTK u— NJFM

No body forces

We want to minimise:

1
E = —uCTK U, subjectto llTllc =1
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Method

Geometry of

o

Symmetry Analysis

Mesh

Reduction of DOF
space

Symmetry of
post-bifurcated
solutions

Elastic energy )

minimisation

Material
parameters

Post-bifurcated
patterns
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Results

Honeycomb Patterns




Results

Previously Observed Patterns

From [Combescure 2016] This study From [Combescure 2016] This study

From [Kang 2013] This study
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Summary
e Results aligned with the literature
* Validation on other architectures % e

* Results g

* Automation process Bty Eiturnted path (G
e Other works: J () o

* First bifurcation point computation |

|
I ulmh Go)
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Conclusion



Conclusion

Geometry of

@%W g o5

Post-bifurcated
patterns

Mesh .
S Reduction of DOF Linear energy
PR space minimisation
.’. ! 2 'A.‘ ' g ... m
Ter o [ +;jy=! _,/\/L
s e Cx+Cy =[] it 1
t 1 ML

Symmetry of
post-bifurcated
solutions

s

Symmetry Analysis

L[]

i N

Material
parameters

e Group Theoretic approach

* Set size of unit cell
* Any group, elements can be implemented

* Decorrelated trial and error

« Improved robustness: design based



Conclusion

Further work

e Equivariant Branching Lemma is not exhaustive
* We only obtain generic bifurcation points

e Secondary bifurcation points could be computed
* lteratively using the existing method
* By digging deeper into the underlying concepts in group theory

e Stability analyses for each pattern



Conclusion

Further work

* Finding the appropriate mechanical load to obtain the desired
patterns

Symmetry study
c6? c27?
__s Possible
Geometry D4 xZ2? patterns
D3 ? Mechanical

load
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Results

Comparison

Mode | Mode |, higher order Mode Il Mode II, higher order Mode Il Mode lil, higher order
) ' J

\

Mode |, higher order Mode II, higher order Mode lll, higher order
From Combescure 2016 From Combescure 2016 From Combescure 2016



Semi-direct Product

Semi-direct product

Definition 21. If a : G — Aut(I') is a group homomorphism, then the group operation of
the semidirect product of GG and I' with respect to « is:

(91,71)(92:72) = (9192, 119, (72))s V91,92 € G,Vy1,72 €T (3.6)

The product is not unique as it depends on the choice of homomorphism



Semi-direct product
(91,71)(92,72) = (9192,71, Vg1,92 € G,V11,72 €T

Semi-direct Product

Action of c6 on p1, p2 Action of s on p1, p2



Linear Buckling Analysis

0
A Stability operator: det(&,uu (Ue, Ae)) =0
%Bmmmh o In mechanics:  det(ICp) =0
N Pt ath () The tangent stiffness matrix can be
. separated into two parts:
__wm Kr=K,+), MeR
| Stability: det(IC, + MC;) = 0
lllc > Equivalent to the generalised eigenvalue

problem: (K, + )\Eg)u — 0



Linear Buckling Analysis

* Elementary stiffness matrices in Euler-Bernoulli beams:

B o g o
0 12FK1 61 0
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[Yang 1986] Stiffness matrix for geometric nonlinear analysis.
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