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Introduction

Concrete at a mesoscopic scale with accurate representation of the

mesostructure, volume fraction, shapes.

• Elastic aggregates with real shapes

• Damaging mortar

• Representing properly the difference between tension and

compression requires anisotropic damage

• Dedicated model for representing cyclic/alternate loading cases
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Generation of a virtual concrete

specimen with aggregates of

arbitrary shapes



Laser-scanned aggregate database

(a) K = 394

vertices.

(b) K = 783

vertices.

(c) K = 811

vertices.

(d) K = 1590

vertices.

(e) K = 141

vertices.

(f) K = 322

vertices.

(g) K = 561

vertices.

(h) K = 691

vertices.

Examples of real-shaped aggregates from the database (Thilakarathna

2020)(top) and their FE discretization (bottom).
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Target Fuller’s curve and computed granulometry curves

(a) Real-shaped (b) Ellipsoidal (c) Spherical

All designed specimens have an aggregate volume fraction ranging from 20.0%

to 20.1%

Granulometric distribution optimised for optimal compacity (Fuller, 1907)

P(d) = 100

√
d

dmax
,

where dmax is the maximum size of the aggregates.
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Packing algorithm – Oriented Bounding Box method

The aggregates generated are used to fill a desired fraction of the virtual

concrete volume using a packing algorithm that prevents aggregates from

overlapping.

The Oriented Bounding Box method (Barequet and Har-Peled, 2001)

uses the covariance matrices of the vertices to embed the aggregates in

oriented rectangular cuboids.

It has been used

• in the context of virtual prototyping and mechanical assembly tests

(Redon et al, 2002)

• in free-form surface machining (Ding et al, 2004),

• in medical physics (Lahanas et al, 2000),

• for the interference detection in video games (Van Verth and Bishop,

2015, Lazaridis, 2021).

Seems not to have been applied to the design of concrete mesostructures.

4



Oriented Bounding Boxes
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Two Oriented Bounding Boxes (A) and (B) separated by a separating plane.
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Mesostructures with various aggregate volume fractions

(a) Real-shaped aggregates (b) Spherical aggregates (c) Ellipsoidal aggregates

Examples of mesostructures of cubic concrete specimens with different shapes

of randomly packed aggregates, for an aggregate volume fraction of 20%.

Wall effect reproduced
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A virtual concrete specimen

Section views of the FE mesh of a virtual concrete specimen

(real-shaped aggregates in yellow)
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Finite-element discretization

• linear tetrahedral elements,

• elements indexed according to their respective materials, aggregates

and mortar,

• maximum element size hmax = ℓint/5 = 2 mm equal to the fifth of

the nonlocal internal length for mortar,

• approximately 700, 000 elements and 370, 000 degrees of freedom for

the real-shaped aggregate specimens (minimum element size

hmin = 0.5 mm),

• approximately 500, 000 elements and 275, 000 degrees of freedom for

the spherical or ellipsoid aggregate specimens.
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Nonlocal anisotropic damage

model for mortar subjected to

alternate/cyclic loading



Damage models for concrete subjected to cyclic loading

Alternate/cyclic response by local isotropic damage models:

• by pure 1D damage model (La Borderie, 1991)

• by internal sliding coupled with damage (Ragueneau et al, 2000,

Richard and Ragueneau, 2013)

• by plastic-damage model (Grassl and Jirasek, 2006, 2008)

Concrete mesostruture computations

• One computation with local anisotropic damage model (Kim and

Abu Al-Rub, 2011)

• Very few computations with nonlocal/gradient/phase field

isotropic damage (Unger and Eckardt, 2011, Ren et al, 2024, Zhang

et al, 2024)

• No computation with nonlocal anisotropic damage

• No computation for cyclic loading
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Anisotropic damage model (for mortar)

Use Ladevèze (1983, 1995) 2nd order tensorial damage variable

HHH = (111−DDD)−
1
2

unbounded and such as HHH = 111 when DDD = 0

Extend to alternate/cyclic loading the model of (Desmorat, 2016)

• Elasticity coupled with anisotropic damage

σ̃ = E : ε = 2G εD + K tr ε111, (·)D = (·)− 1

3
tr(·)111

where G shear modulus, K bulk modulus

• Symmetric effective stress, independent from Poisson’s ratio,

σ̃ =
(
HHH · σD ·HHH

)D
+

1

3

[
1

3
trHHH2⟨trσ⟩ − ⟨− trσ⟩

]
111

where ⟨x⟩ = max(0, x) positive part of x
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Anisotropic damage model for alternate/cyclic loading

• Lemaitre and Mazars (1980) criterion function

f = εMaz − κ ≤ 0, εMaz =
√
⟨ε⟩+ : ⟨ε⟩+

⟨·⟩+: positive part of symmetric 2nd order tensor

• Consolidation function extended to alternate loading by the active

damage concept (Souid et al 2009, Chambart et al, 2010))

κ = κ0+SRs
v

[
(HHH − 111) : Q̃QQ

]1/a
, with Q̃QQ =

⟨ε̃⟩+

maxI ⟨ε̃I ⟩
, ε̃ = E−1 : σ

Rv (trσ/σvM) : triaxiality function (and σvM =
√

3
2σ

D : σD)

• Damage evolution law

ḢHH = λ̇
∂ε̃Maz

∂ε̃
= λ̇

⟨ε̃⟩+

ε̃Maz

• Once σ̃ and HHH are known, computation of the stress tensor by

σ = HHH−1 · σ̃ ·HHH−1 − HHH−2 : σ̃

trHHH−2
HHH−2 +

1

3

[
3⟨tr σ̃⟩
trHHH2

− ⟨− tr σ̃⟩
]
111
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ḢHH = λ̇
∂ε̃Maz

∂ε̃
= λ̇

⟨ε̃⟩+

ε̃Maz

• Once σ̃ and HHH are known, computation of the stress tensor by

σ = HHH−1 · σ̃ ·HHH−1 − HHH−2 : σ̃

trHHH−2
HHH−2 +

1

3

[
3⟨tr σ̃⟩
trHHH2

− ⟨− tr σ̃⟩
]
111

11



Non-local damage theory (Pijaudier-Cabot and Bazant, 1987)

• Non-local damage criterion: f = εnlMaz − κ ≤ 0

• Non-local equivalent strain

εnlMaz(xxx) =
1

Vr (xxx)

∫
Ω

W0

(
∥ xxx − ξ ∥

ℓint

)
εMaz (ξ)dVξ

Vr (xxx) =

∫
Ω

W0

(
∥ xxx − ξ ∥

ℓint

)
dVξ

• Bump function as weight function W0(r) = exp

(
− 1

⟨1− r2⟩

)
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Monotonic and cyclic FE

computations of the realistic

virtual concrete specimens



Cubic specimens

Virtual concrete specimens L× L× L with L = 10 cm

• Elastic (undamageable) aggregates, Young’s modulus

E = 60 000MPa, Poisson’s ratio ν = 0.22.

• Nonlocal anisotropic damage model for the mortar

Table: Material parameters for the mortar

E v κ0 S s a B ℓint

30 000MPa 0.2 8 10−5 1.6 10−4 4.18 1.1 1.857 10mm

Nonlocal internal length ℓint = L/10 = 10 mm = specimen size /10

Aggregate size comprised between 8 and 30 mm

→ the equivalent strain is predominantly weighted

from the local equivalent strain of the mortar elements.
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Alternate tension-compression-tension-compression

Hysteresis loops and of the cyclic stress softening phenomenon.

Specimen with real-shaped the most resistant in the compression stages.

More sensitive to aggregate shape in cyclic load. than in monotonic load.

14



Components Dij for the tension loading at point (A) U = 20 µm

(a) Diagonal damage

component Dxx .

(b) Diagonal damage

component Dyy .

(c) Diagonal damage

component Dzz .

(d) Shear damage

component Dxy .

(e) Shear damage

component Dxz .

(f) Shear damage

component Dyz .
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Interpretation of anisotropic damage results

Analysis of the damage tensor through the components is not suitable

(values depend on the considered working basis)

At a single Gauss point of a structure, a visual possibility of some

quantity of interest in direction nnn is (Rose diagram in 2D) (see Oda,

1982, Kanatani, 1984)

• to set nnn a vector of the unit sphere

• and to plot and analyze the scalar directional data f (nnn)

For continuously damaged materials, the function f (nnn) can be

• the effective Young (resp. shear) modulus Ẽ (nnn) (resp. G̃ (nnn))

(Ladevèze, 1983),

• the crack density (Lubarda & Krajcinovic 1993,Tikhomirov et al,

2001)
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Representation for heterogeneous fields

Such visualizations are not possible for full heterogeneous fields.

Since the damage variable is a symmetric second-order tensor DDD, same

possibilities as for the stress tensor:

• maximal principal damage maxI DI

• some of its invariants

The retained invariants for the stress tensor (von Mises stress σvM, stress

triaxiality...) are related to plasticity coupled with damage

Necessary to analyze the induced-damage anisotropy by considering

invariants of the damage tensor

⇒ which invariants are mechanically interesting

for pure (anisotropic) damage models ?
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Invariants for analyzing the damage tensor

The damage tensor DDD, of principal damages DI ∈ [0, 1], is obtained by

post-processing, as DDD = 111−HHH−2, DI = 1− H−2
I .

The maximum principal damage maxDI is naturally plotted as the main

indicator of the location of the further macroscopic crack.

Domain of maximum principal damage maxDI > 0.96 at the end of tension
18



Distance to isotropy

• of the damage tensor DDD,

• of the effective (damaged)

compliance tensor S̃



Distance to isotropy of the symmetric 2nd order damage tensor

Harmonic decomposition = hydrostatic/deviatoric decomposition

DDD =
1

3
(trDDD)111 +DDDD ,

such that

∥ DDD ∥2 = DDD : DDD = ∥ 1
3 trDDD 111 ∥2 + ∥ DDDD ∥2 = 1

3 (trDDD)2 + ∥ DDDD ∥2.

The distance d(DDD, isotropy) of the damage tensor to isotropy is the

minimum of the distance between DDD and the isotropic tensor

DDD∗ =
1

3
α∗ 111

d(DDD, isotropy)2 = min
DDD∗ isotropic

∥ DDD −DDD∗ ∥2 = min
α∗

∥ DDD − 1

3
α111 ∥2

= min
α∗

(
1

3
(trDDD − α∗)2 + ∥ DDDD ∥2

)
= ∥ DDDD ∥2,

since the minimum is provided by α∗ = trDDD.
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DvM =
√

3
2
DDDD : DDDD = distance to isotropy of the damage tensor

The isotropic part of DDD is therefore the orthogonal projection on the

vector space of isotropic tensors (spanned by 111/
√
3),

DDD iso =
1

3
(trDDD)111. (1)

A distance of damage DDD to isotropy is either1

d(DDD, isotropy) = ∥ DDDD ∥ =

√
2

3
DvM, (2)

or simply DvM.

⇒ The von Mises equivalent damage DvM =
√

3
2 ∥ DDDD ∥

can be interpreted as a distance to (damage) isotropy.

1DDDD = DDD − 1
3
trDDD 111 : deviatoric part of 2nd order tensor DDD
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Case of elasticity (or compliance) tensors Ê

We recall that

Ela =
{
Ê fourth order tensor, Êijkl = Êijlk = Êjikl = Êklij

}
is the vector space of elasticity tensors.

• The distance d(Ê, isotropy) of Ê to isotropy is obtained by

orthogonal projection on the vector space of isotropic tensors

(Vianello, 1997).

• We calculate d(Ê, isotropy) with 3D formulas from Abramian (2020)

related to the harmonic decomposition of elasticity tensors.

We define the (3D) deviatoric projector

J = I− 1

3
111⊗ 111

the fourth order tensor J ∈ Ela such as DDDD = J : DDD
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Isotropic part of an elasticity (or compliance) tensor Ê

Let Ê be a possibly anisotropic elasticity or compliance tensor

One can decompose Ê as its isotropic part + its anisotropic part,

Ê = Êiso + Êaniso, Êiso :: Êaniso = 0,

where the isotropic part of Ê is

Êiso = 2Ĝ J+ K̂ 111⊗ 111,

2Ĝ = 1
5 Ê :: J = 1

15

(
3 tr v̂vv − tr d̂dd

)
,

3K̂ = 1
3 111 : Ê : 111 = 1

3 tr d̂dd

with (dilatation second order tensor)

d̂dd = ddd(Ê) = tr12 Ê (d̂ij = Êkkij)

and (Voigt second order tensor)

v̂vv = vvv(Ê) = tr13 Ê (v̂ij = Êkikj)
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Distance to isotropy of an elasticity/compliance-type tensor Ê

The distance d(Ê, isotropy) of the elasticity tensor Ê to isotropy is then

obtained as the minimum for G∗ = Ĝ and K∗ = K̂ :

d(Ê, isotropy)2 = min
E∗ isotropic

∥ Ê− E∗ ∥2

= min
G∗,K∗

∥ Ê− (2G∗ J+ K∗ 111⊗ 111) ∥2

= min
G∗,K∗

(
∥ Êiso − (2G∗ J+ K∗ 111⊗ 111) ∥2

)
+ ∥ Êaniso ∥2

= ∥ Êaniso ∥2

= ∥ Ê− Êiso ∥2

The distance to isotropy of Ê is

d(Ê, isotropy) = ∥ Ê− Êiso ∥
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Retained indicator of damage-induced anisotropy

Let S̃ ∈ Ela be the effective (damaged) compliance tensor

such that elasticity law recasts ε = S̃ : σ.

The relative distance to isotropy of S̃ is

δS̃ =
d(S̃, isotropy)

∥ S̃iso ∥
=

∥ S̃− S̃iso ∥
∥ S̃iso ∥

δS̃ is the distance of S̃ to isotropy normalized by the norm of its closest

isotropic compliance tensor

S̃iso =
1

2G̃
J+

1

9K̃
111⊗ 111

• The relative distance to isotropy δS̃ is dimensionless.

• It assesses the damage-induced anisotropy.

• Contrary to the maximum principal damage maxI DI ,

it is independent of the loading intensity.
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For our anisotropic damage model

The effective shear and bulk moduli of this isotropic part are

G̃ =
30G

3(trHHH)2 + trHHH2
and

K̃ =
3K

trHHH2
if trσ > 0,

K̃ = K if trσ < 0,

d(S̃, isotropy) can be expressed as

d(S̃, isotropy) = ∥ S̃− S̃iso ∥ =

√
S̃ :: S̃− 5

4G̃ 2
− 1

9K̃ 2
.
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Alternate tension-compression-tension-compression

Hysteresis loops and of the cyclic stress softening phenomenon.

Specimen with real-shaped the most resistant in the compression stages.

More sensitive to aggregate shape in cyclic load. than in monotonic load.
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Damage indicators in alternate loading

Always increasing maximum principal damage

(since DDD = 111−HHH−2, ḢHH ≥ 0 =⇒ ḊDD ≥ 0 =⇒ d
dt maxI DI )

But non-monotonic evolution of the damage-induced anisotropy

(a) Point (A) - tension (b) δS̃ point (A) - tension

(c) Point (B)- compression (d) δS̃ point (B)- compression 27



Damage indicators in alternate loading

(a) Point( C) - 2nd tension (b) δS̃ point (C) - 2nd tension

(c) Point (D) - 2nd compression (d) δS̃ point (D) - 2nd compression
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Conclusion



Conclusion

High model complexity (laser-scanned aggregates, nonlocal anisotropic

damage, cyclic loading) can be handled in mesostructures computations.

Constitutive model and its 3D numerical implementation robust, up to

high levels of damage.

Tensorial damage (and maxI DI ) increases within the mortar matrix,

while damage-induced anisotropy may increase and decrease.

Plotting (relative) distances to isotropy provides complementary

information over the whole structure
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Supplement



Representing damage for cyclic cases

Concrete modelling with idealised aggregate shapes such as spheres is

nowadays common since Wriggers and Moftah (2004)

• representation of spheres by their centre and radius helps to avoid

overlapping particles analytically.

• ellipsoidal aggregate shapes (Liu et al, 2014, Wang et al, 2015),

• experimental data extracted from tomography images (Huang et al,

2015, Mazzucco et al, 2020) or laser scanning techniques combined

with image analysis (Fernlund, 2005, Mazzucco et al, 2018,

Thilakarathna et al, 2021) can now be exploited.
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Representing damage for mesoscale concrete specimens

Two-component modelling:

• Elastic aggregates with real shapes

• Damaging mortar

• Most models dedicated to either compression or tension loading

• Representing properly the difference in behavior of cementitious

materials between tension and compression requires anisotropic

damage

• Dedicated model for representing cyclic/alternate loading cases

• Permanent strains are neglected (Lemaitre and Mazars, 1980,

Mazars, 1984, Mazars and Pijaudier-Cabot, 1989).
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Placement of an aggregate

• As soon as a separating axis is found (in practice among 15), there

is no overlapping between the OBBs; the placement of the aggregate

with respect to this criterion is accepted.

• If all candidate axes are tested without finding a separating axis, the

OBBs are considered to overlap, the new aggregate is repositioned

randomly.

• The procedure is repeated iteratively until a collision-free

arrangement is obtained.
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Overlapping OBBs

Checking the non overlapping of aggregates as non overlapping of

oriented bounding boxes is a conservative procedure.

OBBs can intersect, without necessarily the aggregates themselves

intersecting.

Separating axis

(𝑨)
(𝑩)

𝐞2
𝐴 ത𝑋𝐴

′ ഥ𝐗𝐵
′

𝐞1
𝐵

𝐞2
𝐵

ഥ𝐗𝐴
′

𝐞1
𝐴

(a)

Separating axis

(𝑨)
(𝑩)

𝐞1
𝐴

𝐞2
𝐴 ത𝑋𝐴

′

ഥ𝐗𝐵
′

𝐞1
𝐵

𝐞2
𝐵

ഥ𝐗𝐴
′

(b)

Two scenarios of OBBs overlapping,

(a) OBBs and aggregates overlap, (b) OBBs overlap but aggregates do not

overlap.
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Algorithm to generate heterogeneous specimen geometries

Inputs: aggregates geometries, maximum element size hmax , target

volume fraction ϕag and sieve segments [d0, d1[, . . . , [dB−1, dB [.

1. Mesh the retained laser-scanned aggregates.

2. Calculate the maximum principal length d , the reference bounding

box and the volume vag of each aggregate.

3. Sort the aggregates according to the B sieve segments

[d0, d1[, . . . , [dB−1, dB [.
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4. Loop over the batch b of aggregates in a sieve segment

[dB−b, dB−b+1[, from b = 1 to b = B.

4.1 Calculate the target volume Vag (dB−b, dB−b+1) of the sieve segment.

4.2 Randomly pick an aggregate j (of volume v j
ag ) in the sieve segment.

4.3 Randomly place the aggregate j inside the specimen.

4.4 If the aggregate j crosses the specimen boundaries then reject it and

go back to (b).

4.5 Compute its Oriented Bounding Box (OBBj).

4.6 If its OBBj overlaps another aggregate OBBk then reject it and go

back to (b). If not, accept it at its place in the concrete specimen.

4.7 Update the volume V j
ag = V j−1

ag + v j
ag of placed aggregates. Loop for

batch b (go to 5) as long as

V j
ag < Vag

(
dB−1, dB

)
+ . . .+ Vag

(
dB−b, dB+1−b

)
.

5. Mesh the virtual concrete specimen.

Output: FE mesh of the aggregate-mortar mesostructure.
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Mesoscale model for concrete

Concrete, a quasi-brittle composite material comprising

• mortar

• aggregates

Loss of bearing capacity described by Continuum Damage Mechanics

• Isotropic damage described by a scalar variable

• Anisotropy of the micro-cracking pattern oriented by the loading

⇒ Anisotropic damage described by a tensorial variable
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Numerical Scheme (1-Elastic Prediction)

Inputs: εn+1, ε̃n, HHHn (and DDDn), and TX n.

• Compute Rvn, εI n+1,

εMaz n+1 =

√∑
I

⟨εI n+1⟩2, ε̃I n and ε̃Maz n =

√∑
I

⟨ε̃I n⟩2

• If either εMaz n+1 = 0 or ε̃Maz n = 0 then f try = −κ0.

• Else:

(i) determine

P̃PPn =
⟨ε̃n⟩+

ε̃Maz n
, PPPn+1 =

⟨εn+1⟩+

εMaz n+1
, Q̃QQn =

⟨ε̃n⟩+

maxI ⟨ε̃I n⟩

(ii) calculate f try = εnlMaz n+1 − κtry for the non-local model, where

κtry = κ0 + SRs
vn

[
(HHHn − 111) : Q̃QQn

]1/a
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Numerical Scheme (2-Damage update)

• If f try ≤ 0, then

HHHn+1 = HHHn (and DDDn+1 = DDDn)

Else :

∆λ =

〈
F − (HHHn − 111) : Q̃QQn

〉
P̃PPn : Q̃QQn

, F =

〈
εnlMaz n+1 − κ0

SRs
v n

〉a

,

and

HHHn+1 = HHHn +∆λ P̃PPn (and DDDn+1 = 111−HHH−2
n+1)
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Numerical Scheme (3-Stresses and effective strain update)

• Calculate σ̃n+1 = 2G εn+1 +

(
K − 2

3
G

)
tr εn+1 111 and then

σn+1 =HHH
−1
n+1 · σ̃n+1 ·HHH−1

n+1 −
HHH−2

n+1 : σ̃n+1

trHHH−2
n+1

HHH−2
n+1

+
1

3

[
3⟨tr σ̃n+1⟩
trHHH2

n+1

− ⟨− tr σ̃n+1⟩
]
111

• Update the stress triaxiality TX n+1 = σH n+1/σvM n+1 from σn+1.

• Update the effective strain

ε̃n+1 =
1

2G
σn+1 +

1

3

(
1

3K
− 1

2G

)
trσn+1 111

Outputs: σn+1, ε̃n+1, HHHn+1, (and DDDn+1), TX n+1 and Lc
n+1 =

∂σn+1

∂εn+1
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Indicators for simple monotonic

loadings



Loadings

(a) uniaxial

tension

(b) uniaxial

compression

(c) equi-biaxial

tension

(d) equi-biaxial

compression

(e) uniaxial

tension

(f) uniaxial

compression

(g) equi-biaxial

tension

(h) equi-biaxial

compression
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Ladevèze variable

Second-order symmetric tensor HHH = (111−DDD)−
1
2

used for defining the evolution law

• 6 components: depend on the basis,

• 3 principal values

• 3 invariants:

• I1(HHH) = trHHH,

• J2(HHH) =

√
3

2
HHHD : HHHD ,

• J3(HHH) =

(
27

2
detHHHD

)1/3

,
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Ladevèze variable

(a) uniaxial

tension

(b) uniaxial

compression

(c) equi-biaxial

tension

(d) equi-biaxial

compression

(e) uniaxial

tension

(f) uniaxial

compression

(g) equi-biaxial

tension

(h) equi-biaxial

compression

42



Damage variable

Second-order symmetric tensor:

• 6 components: depend on the basis,

• 3 principal values

• 3 invariants:

• I1(DDD) = trDDD,

• J2(DDD) =

√
3

2
DDDD : DDDD ,

• J3(DDD) =

(
27

2
detDDDD

)1/3

,

Damage DDD is isotropic if and only if its deviatoric part vanishes (DDDD = 0).
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Damage variable

44



Representation for heterogeneous fields

• The deviatoric part of the damage tensor may vanish (in case of

isotropic damage DDDD = 0, DvM = 0): the standard formulas for

stress triaxiality and stress Lode parameter

TX =
1

3

trσ

σvM
, L =

27

2

detσD

σ3
vM

, σvM =

√
3

2
σD : σD

are not directly applicable to the damage variable.

• DDD ≥ 0 so that its invariants interpretation differs from the one for

the stress tensor, which carries the loading sign.

• The damage state may be anisotropic, but its effect on elasticity

close to be isotropic.

⇒ the induced-damage anisotropy has also to be studied through

the prism of elasticity, by the effective stiffness / compliance.
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Evolution of the norms during a tension test
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Relative distances to isotropy of Ẽ, of S̃

It appears pertinent to normalize the distances to isotropy.

1. to normalize them by the norm of the initial stiffness or compliance

tensor, as

∆Ẽ
∥ E ∥

=
∥ Ẽ− Ẽiso ∥

∥ E ∥
and

∆S̃
∥ S ∥

=
∥ S̃− S̃iso ∥

∥ S ∥
.

2. to normalize the distance ∆Ẽ or ∆S̃ by the norm of the isotropic

part of the current effective stiffness or compliance tensors,

δẼ =
∆Ẽ

∥ Ẽiso ∥
=

∥ Ẽ− Ẽiso ∥
∥ Ẽiso ∥

, or δS̃ =
∆S̃

∥ S̃iso ∥
=

∥ S̃− S̃iso ∥
∥ S̃iso ∥

.

In the latter normalization, the references Ẽiso and S̃iso evolve when

damage grows.
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Tension response

Computed macroscopic peak stresses close for all the concrete specimens

All specimens with same aggregate volume fraction

Higher discrepancy is exhibited in the post-peak stage.

(a) the 15 computations (b) the mean responses

Macroscopic stress-strain diagrams for tension
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Monotonic responses

(a) Uniaxial tension Uniaxial compression
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Cyclic responses

(a) Tension-Compression (b) Compression-Tension
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Virtual concrete response in

monotonic tension



Coordinate-free indicators in case of tension loading

(a) maxDI for U = 20 µm.

(b) Relative distance δS̃ for

U = 20 µm.

(c) maxDI for U = 37.5 µm.

(d) Relative distance δS̃ for

U = 37.5 µm.

Figure 16: Section views of the virtual concrete specimen (real-shaped

aggregates) for the tension loading, (a) maximum principal damage maxDI ,

(b) relative distance to isotropy δS̃ of the effective compliance tensor.
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Virtual concrete response in

monotonic compression



Compression response

Computed macroscopic peak stresses rather close for all the concrete

specimens (slightly higher for the laser-scanned aggregates)

(a) the 15 computations (b) the mean responses

Macroscopic stress-strain diagrams for compression
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Heterogeneous fields in compression

High levels of damage, more heterogeneous than in tension.

maxDI = D1 ≈ D2 almost identical to the second principal damage

(damage state ≈ equibaxial).

Field of δS̃ more homogeneous over the mesostructure than in tension.

(a) maxDI (b) Relative distance δS̃.

At the end of computed post-peak in compression (at U = 375 µm)
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Responses in cyclic loading



Concrete response in tension followed by compression

Five randomly packed specimens of each aggregate shape

Damaging tension (up to U = 20 µm) followed by a compression loading.

(a) the 15 computations (b) the mean responses

Macroscopic stress-strain diagrams for an alternate tension-compression loading 54
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