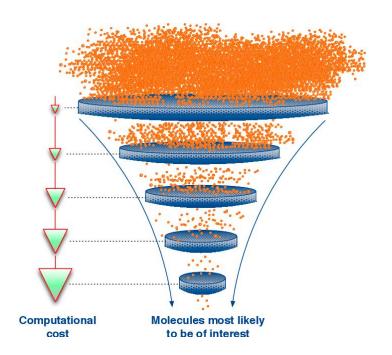
Graph Neural Networks équivariant et modèle de diffusion

GdR GDM 2023

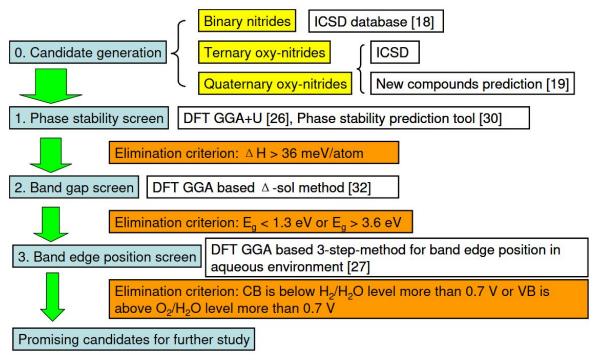
Criblage à haut débit

- Recherche de nouveaux matériaux
 - Large échelle
- Techniques employées
 - Machine learning
 - Simulation ab-initio et DM
 - Expérimentation



Criblage à haut débit: application à la photocatalyse

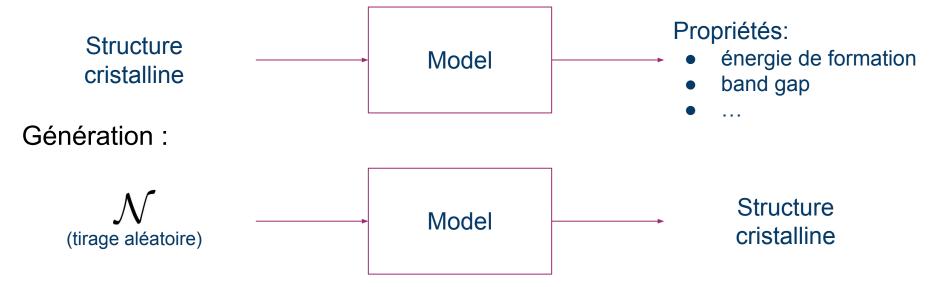
- Production
 d'hydrogène solaire
- Semi conducteur
 - Stabilité
 - Structure de bande
- Comment trouver des candidats?



First principles high throughput screening of oxynitrides for water-splitting photocatalysts *Yabi Wu et al., Energy & Environmental Science*

Paradigme d'apprentissage

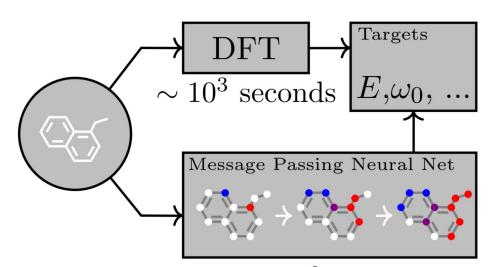
Régression:



Neural Message Passing for Quantum Chemistry

Gilmer et al., ICML 2017

- Chimie organique
- Tâche de régression/classification
- Introduction passage de message en ML appliqué à la chimie



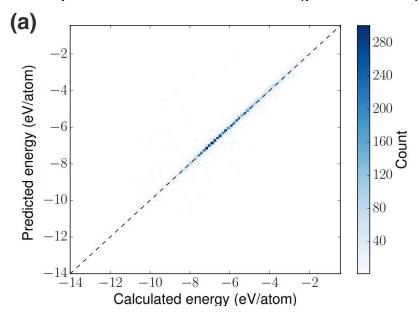
Target	BAML	BOB	CM	ECFP4	HDAD	GC	GG-NN	DTNN	enn-s2s	enn-s2s-ens5
HOMO	2.20	2.20	3.09	2.89	1.54	1.18	1.17	-	0.99	0.74
LUMO	2.76	2.74	4.26	3.10	1.96	1.10	1.08	-	0.87	0.65
gap	3.28	3.41	5.32	3.86	2.49	1.78	1.70	-	1.60	1.23
U0	1.21	1.43	2.98	85.01	0.58	3.02	0.83	-	0.45	0.33
U	1.22	1.44	2.99	85.59	0.59	3.16	0.86	=	0.45	0.34

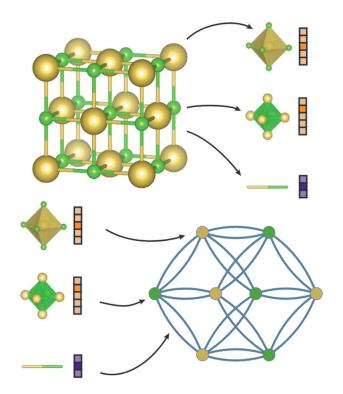
 $\sim 10^{-2}$ seconds

Crystal Graph Convolutional Neural Networks for an Accurate and Interpretable Prediction of Material Properties

Xie et al., Physical Review Letters 2018

Adaptation aux matériaux (périodicité)





Equivariance et réseau de neurone

Théorème d'approximation universelle

Théorème d'approximation universelle: Soit C(X,Y) l'ensemble des fonctions continues de X vers Y. Soit $\sigma \in C(\mathbb{R},\mathbb{R})$. Notons que $(\sigma \circ x)_i = \sigma(x_i)$, c'est à dire que $\sigma \circ x$ représente l'application de σ à chacune des composantes de x.

Alors σ n'est pas polynomiale si et seulement si

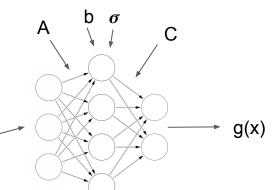
pour tout $n \in \mathbb{N}$, $m \in \mathbb{N}$, pour tout sous-espace compact $K \subseteq \mathbb{R}^n$, pour tout $f \in C(K, \mathbb{R}^m)$ et pour tout $\varepsilon > 0$,

il existe $k \in \mathbb{N}$, $A \in \mathbb{R}^{k \times n}$, $b \in \mathbb{R}^k$ et $C \in \mathbb{R}^{m \times k}$, tels que:

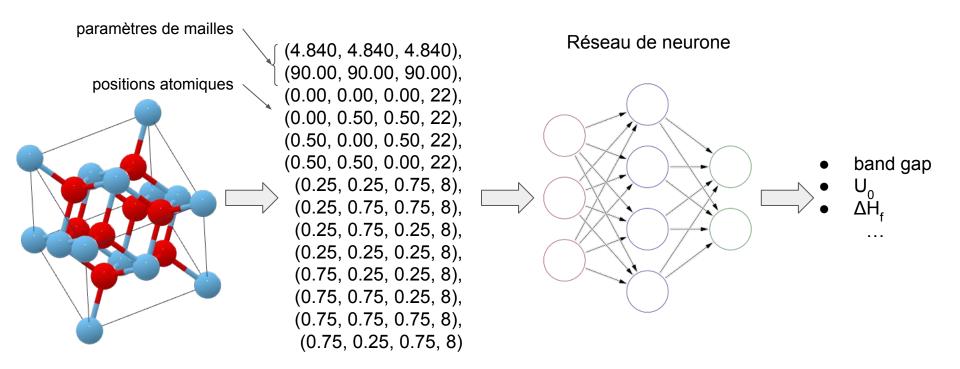
$$\sup_{x\in K}\|f(x)-g(x)\|$$

où

$$g(x) = C \cdot (\sigma \circ (A \cdot x + b))$$

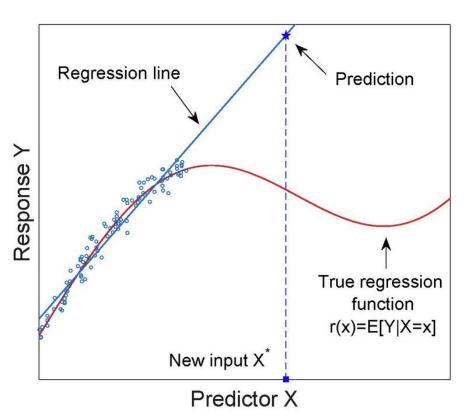


Méthode naïve



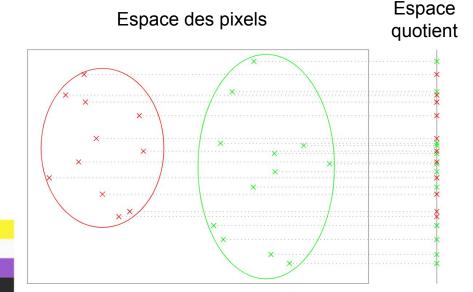
Interpolation vs Extrapolation

- Modèle de machine learning
 - Bon en interpolation
 - Mauvais en extrapolation
- Solution
 - Exploiter les symétries
 - Théorie des groupes



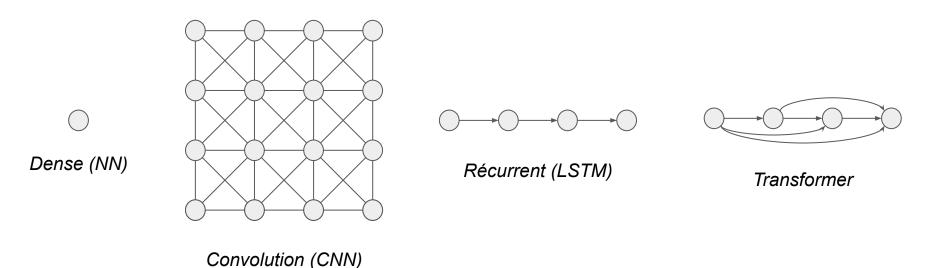
Théorie des groupes et machine learning

- On cherche à classifier en observant uniquement certains pixel
- Symétrie: translation horizontale
 - Groupe des translations
 - Relations d'équivalence entre pixel
 - Définition d'un espace quotient



Equivalence avec les MPNN

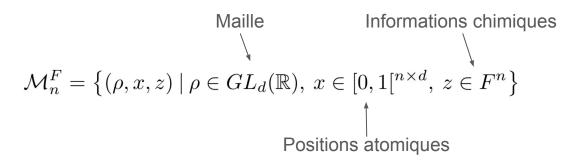
On peut généralement reformuler les modèles connues comme des MPNN



Matériaux et graphes

Notations et définitions

Ensemble des matériaux périodiques



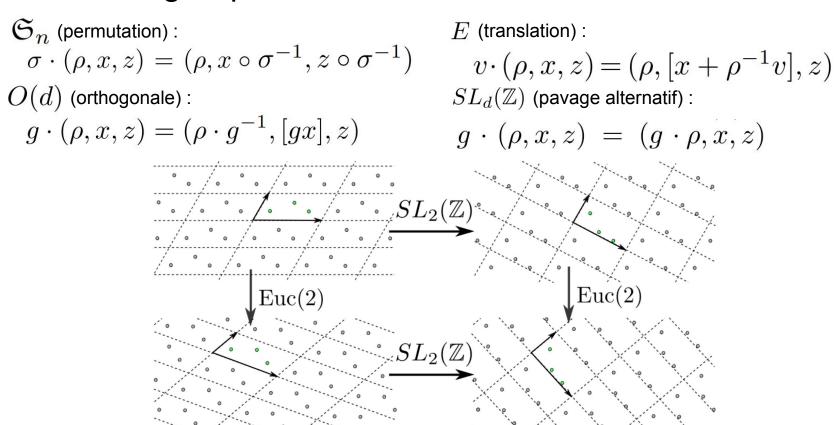
Ensemble de tous les matériaux:

$$\coprod_{n\in\mathbb{N}} \hat{\mathcal{M}}_n^F$$

Ensemble des matériaux périodiques

$$\langle M \rangle = \{ (\rho \cdot (x_i + \tau), z_i) | \tau \in \mathbb{Z}^d, 1 \le i \le n \} \subseteq \mathbb{R}^d \times F$$

Actions de groupes



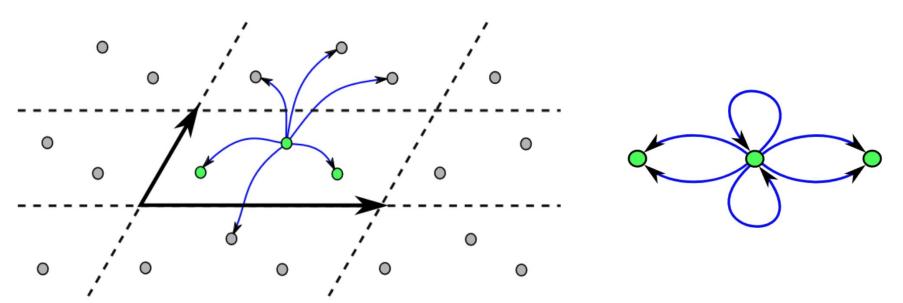
Graphe

 En fonction de l'environnement local des noeuds

$$\Gamma_0 = \{1, \dots, n\}$$

$$\Gamma_1 = \{(i, j, \tau) \in \Gamma_0 \times \Gamma_0 \times \mathbb{Z}^d \mid ||\rho(x_j - x_i + \tau)|| < c_i\}$$

$$\Gamma_2 = \{(\gamma, \gamma') \in \Gamma_1 \times \Gamma_1 \mid \operatorname{tgt}(\gamma) = \operatorname{src}(\gamma')\}$$



Géométrie et graphe

- Grandeur géométrique du graphe
 - Invariante/équivariante en fonction du groupe qui agit

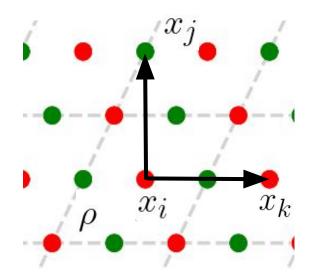
$$e_{ij}^{\tau} = x_j - x_i + \tau$$

$$v_{ij}^{\tau} = \rho e_{ij}^{\tau}$$

$$r_{ij}^{\tau} = ||v_{ij}^{\tau}||$$

$$\theta_{ijk}^{\tau\tau'} = \operatorname{atan2}(||v_{ij}^{\tau} \wedge v_{ik}^{\tau'}||, v_{ij}^{\tau} \cdot v_{ik}^{\tau'})$$

$$\mathcal{A}_{ijk}^{\tau\tau'} = \frac{1}{2}||v_{ij}^{\tau} \wedge v_{ik}^{\tau'}||$$



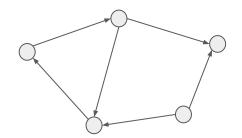
Graph Neural Network et processus de diffusion

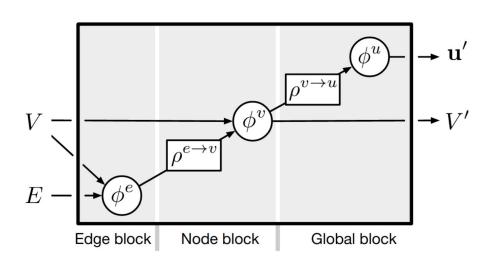
Relational inductive biases, deep learning, and graph networks

Battaglia et al., 2018

MPNN

- Propagation des messages par les arêtes du graphe
- Agrégation des messages par les noeuds





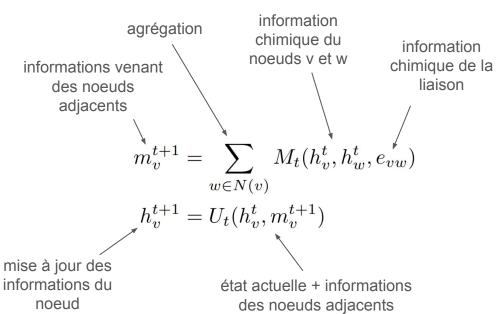
(c) Message-passing neural network

Neural Message Passing for Quantum Chemistry

Gilmer et al., ICML 2017

- Classification/régression tasks
- Introduction des MPNN en chimie
- Pas d'information géométrique

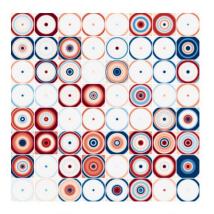
(informations cachées dans le type de liaisons)

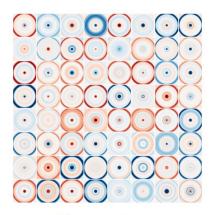


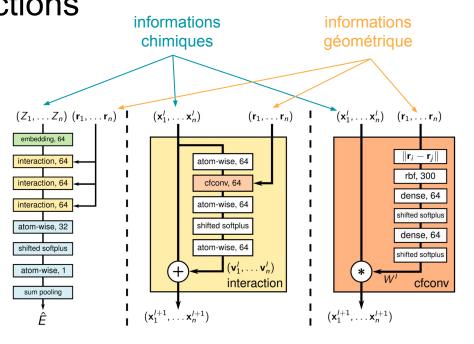
SchNet: A continuous-filter convolutional neural network for modeling quantum interactions

Schütt et al.. NIPS 2017

- Classification/régression
- Avec information géométrique
 - distances interatomique







Vue d'ensemble

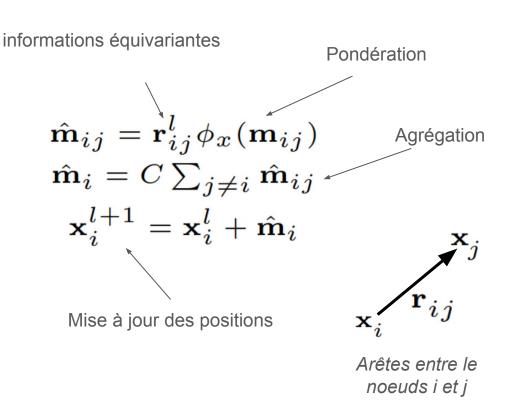
Mise à jour des noeuds

formation des messages et agrégation

E(n) Equivariant Graph Neural Networks

Satorras et al., ICML 2021

- Classification/régression + reconstruction
- Equivariant E(n)
 - Translation
 - Rotation
 - Réflexion



Problématique: extension aux matériaux

Action sur une molécule :

$$x_i' = x_i + g_i$$

Action sur un cristal:

$$\begin{cases} \rho' = g\rho & \text{Action sur la maille} \\ x_i' = [x_i + g_i] & \text{Action sur les positions atomiques} \end{cases}$$

Equivariant Message Passing Neural Network for Crystal Material Discovery

Klipfel, Peltre et al., AAAI 2023

Action équivariante sur la maille d'un matériau

$$\rho' = \exp\left(\frac{1}{|\Gamma_2|} \sum_{(\gamma,\gamma')\in\Gamma_2} \varphi_{\theta}^{\rho}(m_{\gamma}, m_{\gamma'}, \theta_{\gamma\gamma'}) \cdot \lambda_{\gamma\gamma'}\right) \cdot \rho$$

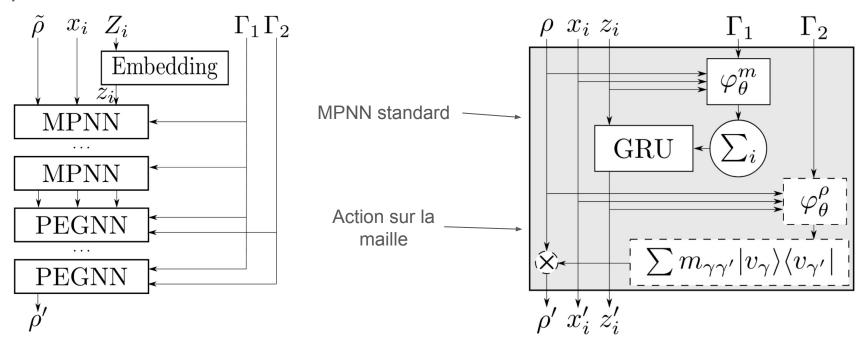
Condition:

$$\forall g \in O(d), \lambda_{\bar{\gamma}}(g \cdot M) = g\lambda_{\bar{\gamma}}(M)g^{-1}$$
$$\forall g \in SL_d(\mathbb{Z}), \lambda_{\bar{\gamma}}(g \cdot M) = \lambda_{\bar{\gamma}}(M)$$

Utilisation de gradient d'invariant géométrique

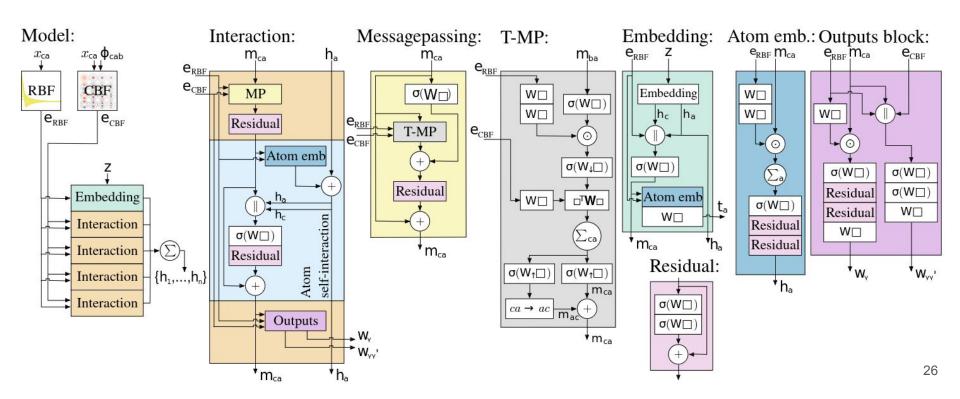
Equivariant Message Passing Neural Network for Crystal Material Discovery

Klipfel, Peltre et al., AAAI 2023



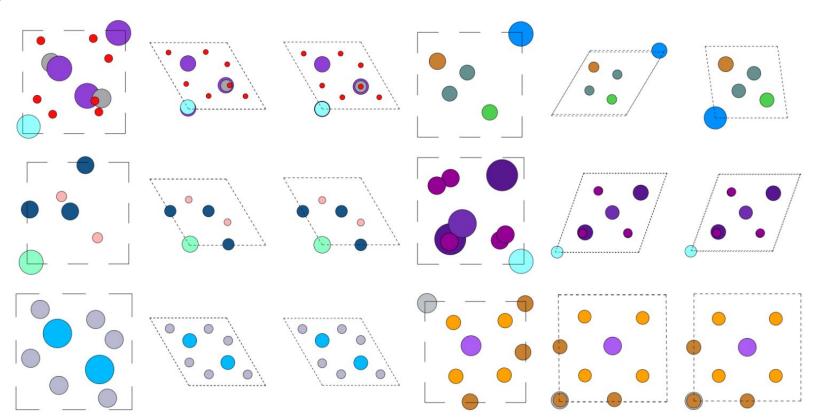
Unified Model for Crystalline Material Generation

Klipfel et al., IJCAI 2023



Unified Model for Crystalline Material Generation

Klipfel et al., IJCAI 2023



Denoising Diffusion Probabilistic Models

Ho et al., NeurIPS 2020

Processus de diffusion (vu par les informaticien):

Forward process: $q(\mathbf{x}_t|\mathbf{x}_{t-1}) \coloneqq \mathcal{N}(\mathbf{x}_t; \sqrt{1-\beta_t}\mathbf{x}_{t-1}, \beta_t \mathbf{I})$

Reverse process: $p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_t) \coloneqq \mathcal{N}(\mathbf{x}_{t-1}; \boldsymbol{\mu}_{\theta}(\mathbf{x}_t, t), \boldsymbol{\Sigma}_{\theta}(\mathbf{x}_t, t))$

Denoising Diffusion Probabilistic Models

Ho et al., NeurIPS 2020

Algorithm 1 Training

- 1: repeat
- 2: $\mathbf{x}_0 \sim q(\mathbf{x}_0)$
- 3: $t \sim \text{Uniform}(\{1, \dots, T\})$
- 4: $\epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$
- 5: Take gradient descent step on

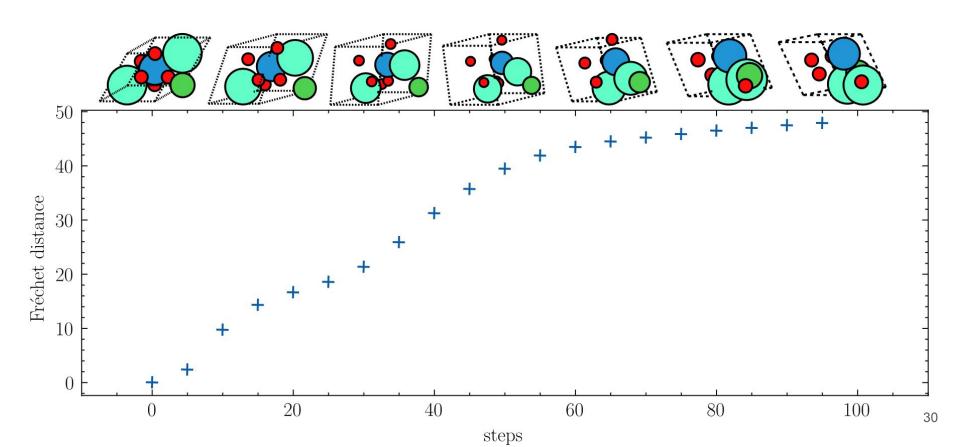
$$\nabla_{\theta} \left\| \boldsymbol{\epsilon} - \boldsymbol{\epsilon}_{\theta} (\sqrt{\bar{\alpha}_t} \mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t} \boldsymbol{\epsilon}, t) \right\|^2$$

6: until converged

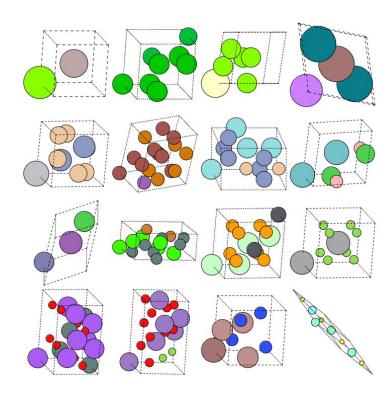
Algorithm 2 Sampling

- 1: $\mathbf{x}_T \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$
- 2: **for** t = T, ..., 1 **do**
- 3: $\mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ if t > 1, else $\mathbf{z} = \mathbf{0}$
- 4: $\mathbf{x}_{t-1} = \frac{1}{\sqrt{\alpha_t}} \left(\mathbf{x}_t \frac{1-\alpha_t}{\sqrt{1-\bar{\alpha}_t}} \boldsymbol{\epsilon}_{\theta}(\mathbf{x}_t, t) \right) + \sigma_t \mathbf{z}$
- 5: end for
- 6: return x_0

Processus de diffusion et matériaux



Processus de diffusion et matériaux



Processus de diffusion

Matériaux de *MaterialsProject*

Conclusion

- Théorie des groupes en machine learning
- Matériaux périodique et action de groupe
- Représentation graphique
- Graph Neural Networks et applications à la chimie des matériaux