

Rencontres GDR - GDM 2023

Phase field modeling of microstructure and cracking pattern formation

Matthieu Degeiter

Heterogeneous materials and microstructures : length scales $[10^{-9}; 10^{-6}]$ m

F. Diologent

Y. Le Bouar

E. Aeby-Gautier et al.

V. Perovic et al.

1. Influence of elasticity on the microstructure of superalloys Yann Le Bouar², Benoît Appolaire³, Mikael Perrut¹, Alphonse Finel²

2. Modeling of cracking in thin films on a stretchable substrate

Umut Salman⁴, Damien Faurie⁴, Yann Le Bouar², Alphonse Finel²

Outline

- 1. Minimal model system
- 2. Linear stability analysis
- 3. Phase field modeling

- ¹ SIAM DMAS, ONERA
- ² LEM DMAS, ONERA-CNRS
- ³ IJL Université de Lorraine-CNRS
- ⁴ LSPM Université Sorbonne Paris Nord-CNRS

Single-crystal superalloys

- Excellent mechanical properties at high temperature
- Design of high pressure turbine blades in gas turbines

Microstructure

In service

Strengthened by precipitation of γ' phase (precipitates) in the γ phase (matrix)

Epishin et al., Acta Mat., 2000

Microstructure evolution degrades the blade properties

Von Grossman et al., 1998

Microstructure modeling at the scale of the blade

Equilibrium phase diagram : binary nickel (Ni) and aluminium (AI) mixture

- given composition \overline{c} at temperature T_1
- decrease temperature $T_1 \rightarrow T_2$
- precipitation $\gamma \rightarrow \gamma + \gamma'$
- equilibrium concentrations c_{γ} and $c_{\gamma'}$

Misfit $\delta a/a$ between lattice parameters: difference in local order induce atomic size effects

 $\delta a/a = 2\frac{a_{\gamma'} - a_{\gamma}}{a_{\gamma'} + a_{\gamma}}$

Precipitation $\gamma \rightarrow \gamma + \gamma'$: solid-state phase transformation

- first order phase transition driven by diffusion
- difference in local order generates a strain field

Cubic anisotropy : precipitate shapes and arrangement strongly influenced by elasticity

Equilibrium shape of an isolated precipitate

- Competition between interface and strain energies
- Shape transition during precipitate growth

Elastic interactions among precipitates : long-range and strongly anisotropic

Elastic interaction energy

- Precipitate alignments along cubic soft directions
- Interactions induce deviations from the equilibrium shape

C. H. Su, P. W. Voorhees, Acta Mat., 1996

M.E. Thompson, C.S. Su, P.W. Voorhees, 1994

Cuboid shapes and precipitate alignments in γ/γ' microstructure :

D. Texier, Université de Toulouse, 2013

Question: origin of the $\gamma-$ and $\gamma'-$ dislocation patterns in the microstructure ?

Outline:

- 1.1 Model presentation
- 1.2 Stability analysis
- 1.3 Phase field modeling

Minimal model system : effective Ni-Al binary alloy at composition \overline{c} and temperature T_2

Fields and description

• concentration $c(\mathbf{r}, t)$

• displacement $u_i(\boldsymbol{r},t)$

- Constants
 - eq. concentrations
 - interface energy σ (J.m⁻²)
 - diffusion coefficient $D(m^2.s^{-1})$
- eigenstrain ε_0
- elastic constants λ_{ijkl} (J.m⁻³)

Small strains

$$\varepsilon_{ij}^{el}(\mathbf{r}) = \overline{\varepsilon}_{ij} + \delta \varepsilon_{ij}(\mathbf{r}) - \varepsilon_{ij}^{0}(\mathbf{r})$$
$$\delta \varepsilon_{ij}(\mathbf{r}) = \frac{1}{2} \left(\frac{\partial \delta u_i}{\partial r_j} + \frac{\partial \delta u_j}{\partial r_i} \right)$$

Assumptions

- homogeneous elasticity
- constant temperature
- no mechanical loading

Minimal model system : effective Ni-Al binary alloy at composition \overline{c} and temperature T_2

Free energy functional
$$F = \int_{V} f_{ch}(c) + f_{el}(\varepsilon_{ij}^{el}, c) \, dV$$

Chemical energy density

$$f_{ch}(c) = f(c) + \frac{\lambda}{2} |\nabla c|^2$$
$$f(c) = A(c - c_{\gamma})^2 (c - c_{\gamma'})^2$$

Strain energy density

$$f_{el}(\varepsilon_{ij}^{el},c) = \frac{1}{2} \lambda_{ijkl} \, \varepsilon_{ij}^{el}(c) \, \varepsilon_{kl}^{el}(c)$$

Elastic equilibrium

$$\frac{\delta F}{\delta \overline{\varepsilon}_{ij}} = 0 \quad ; \quad \frac{\delta F}{\delta (\delta u_i(\boldsymbol{r}))} = 0$$

Cahn-Hilliard equation

$$\frac{\partial c}{\partial t} = M \nabla^2 \frac{\delta F}{\delta c}$$

Elastic relaxation time \ll characteristic time for diffusion

Origin of alignment defects ?

D. Texier, Université de Toulouse, 2013

Cubic distribution of spherical inclusions

A.G. Khachaturyan, V. M. Airapetyan, Phys. Stat. Sol.(a), 1974

Strain energy in direct space

Shape function

$$F_{el} = \frac{1}{2} \int_{V} \lambda_{ijkl} (\varepsilon_{ij}(\boldsymbol{r}) - \varepsilon_{ij}^{0} \theta(\boldsymbol{r})) (\varepsilon_{kl}(\boldsymbol{r}) - \varepsilon_{kl}^{0} \theta(\boldsymbol{r})) dV \qquad \qquad \theta(\boldsymbol{r}) = \sum_{\boldsymbol{R}} \theta_{0}(\boldsymbol{r} - \boldsymbol{R})$$

Strain energy in Fourier space

$$F_{el} = \frac{V}{2} \sum_{\boldsymbol{q}} B(\boldsymbol{q}/q) |\theta(\boldsymbol{q})|^2 \qquad \qquad F_{el} = \frac{V}{2} \sum_{\boldsymbol{q}} B(\boldsymbol{q}/q) |\theta_0(\boldsymbol{q})|^2 \sum_{\boldsymbol{R}, \boldsymbol{R}'} e^{-i\boldsymbol{q}(\boldsymbol{R}-\boldsymbol{R}')}$$

Origin of alignment defects ?

D. Texier, Université de Toulouse, 2013

Stability wrt. small perturbation : $\mathbf{R} = \mathbf{R}_0 + \mathbf{u}(\mathbf{R}_0)$

Second variation

$$\delta^2 F = \frac{1}{2} \sum_{\boldsymbol{\tau}} \kappa_{ij}(\boldsymbol{\tau}) \ u_i(\boldsymbol{\tau}) \ u_j^*(\boldsymbol{\tau})$$

Energy variation • $\delta^2 F > 0 \rightarrow$

- $\delta^2 F > 0 \Rightarrow$ stable wrt. perturbation
- $\delta^2 F < 0 \Rightarrow$ unstable wrt. perturbation

High symmetry directions

- $\Gamma(0, 0, 0)$
- $X(\pi/a, 0, 0)$
- $M(\pi/a, \pi/a, 0)$
- $R(\pi/a, \pi/a, \pi/a)$

Microstructure properties

- a = 350 nm
- $\tau_{\gamma'} = 0.37$
- $\varepsilon_0 = 0.48\%$

- $c_{11} = 250 \text{ GPa}$
- $c_{12} = 160 \text{ GPa}$
- $c_{44} = 118.5 \text{ GPa}$

Cubic arrangement of spherical precipitates

Spectrum of hessian eigenvalues

Cubic arrangement of spherical precipitates

Spectrum of hessian eigenvalues

Perturbation mode

• longitudinal $\boldsymbol{ au}_1(\zeta,0,0)$, $\zeta=2\pi/12a$

RÉPUBLIQU FRANCAISE ONERA

THE FRENCH AEROSPACE LAB

Cubic arrangement of spherical precipitates

Spectrum of hessian eigenvalues

Perturbation mode

• transverse $oldsymbol{ au}_2(\zeta,\zeta,0)$, $\zeta=2\pi/12a$

Cubic arrangement of spherical precipitates

Spectrum of hessian eigenvalues

Perturbation mode

• transverse ${m au}_3(\zeta,\zeta,\zeta)$, $\zeta=2\pi/12a$

Cubic arrangement of spherical precipitates

Spectrum of hessian eigenvalues

System stability

- $\delta^2 F > 0$ for any τ on the path
- Khachaturyan and Airapetyan
- stable arrangement at $\tau_{\gamma'} = 0.37$

Hypothesis of spherical precipitates

• cubic shape?

Cubic arrangement of cubic precipitates

Spectrum of hessian eigenvalues

Cubic arrangement of cubic precipitates

Spectrum of hessian eigenvalues

Most unstable branches

• longitudinal L $(\zeta, 0, 0)$, $\zeta = 2\pi/12a$

• transverse T_2 $(\zeta,\zeta,0)$, $\zeta=2\pi/12a$

1.3 Phase field modeling

Perturbation $L(\zeta, 0, 0)$

- $\zeta = 2\pi/8a$
- amplitude 28.8 nm

Remarks

- shape changes
- no precipitate migration

Eckhaus instability in pattern formation: defect creation

H. Sakaguchi, Prog. Theor. Phys., 1991

Longitudinal instability: formation of $\gamma\text{-}$ and $\gamma^\prime\text{-}\text{dislocations?}$

1.3 Phase field modeling

Perturbation $T_2(\zeta, \zeta, 0)$

- $\zeta = 2\pi/4a$
- amplitude 36 nm

Remarks

- shape changes
- no precipitate migration

Formation of chevron patterns

Ardell et al., Acta Metall., 1966

X. Li et al., J. Alloys. Compd., 2015

1. Recap and prospects

Recap

- Instability of the cubic arrangement of cubic precipitates
- Development of instabilities and formation of alignment defects

D. Texier, Université de Toulouse, 2013

Prospects

- Shape and arrangement perturbations in stability analysis
- Coupling between stable and unstable modes

Modeling of cracking of thin films on a stretchable substrate

Flexible electronics: lighting, sensors, solar panels, ...

- brittle film $h_F \sim 100$ nm
- stretchable substrate $h_S \sim 1000 \times h_F$
- functional properties

osram-oled.com

sellande.com

Uniaxial mechanical loading

M. J. Cordill et al., Frontiers in Materials, 2016.

Significant increase in the film electrical resistance

Biaxial mechanical loading

D. Faurie et al., Acta Mat. 2019

ris Nord

D. Faurie et al., 2021

Outline:

- 2.1 Model presentation
- 2.2 Stability analysis
- 2.3 Phase field modeling

Minimal system

Fields and description

- film damage α
- displacements $u_i(r)$

Small strains

$$u_i(\mathbf{r}) = \overline{\varepsilon}_{ij}r_j + \delta u_i(\mathbf{r}) \varepsilon_{ij}(\mathbf{r}) = \overline{\varepsilon}_{ij} + \delta \varepsilon_{ij}(\mathbf{r}) \qquad \qquad \delta \varepsilon_{ij}(\mathbf{r}) = \frac{1}{2} \left(\frac{\partial \delta u_i}{\partial r_j} + \frac{\partial \delta u_j}{\partial r_i} \right)$$

Sorbonn

Université

de Paris

Constants

ONERA

THE FRENCH AEROSPACE LAB

- G_c fracture energy (J.m⁻²)
- λ_{ijkl}^X isotropic elastic constants (J.m⁻³)
- κ interface stiffness (J.m⁻⁴)

Assumptions

- $l_x, l_y \gg (h_F + h_S)$ and PBC
- no delamination or plasticity

Minimal system

Functional
$$F = \int_{\Omega} h_F \times \left[f_{frac}^F(\alpha) + f_{el}^F(\varepsilon_{ij}^F, h(\alpha)) \right] + h_S \times f_{el}^S(\varepsilon_{ij}^S) + f_{bond}^I(u_i^F, u_i^S) \, d\Omega$$

NERA

Fracture energy density

B. Bourdin, G.A. Francfort, J.-J. Marigo, JMPS, 2000.

$$f_{frac}^{F}(\alpha) = \frac{G_c}{4\ell} \left(\alpha^2 + 4\ell^2 |\nabla \alpha|^2 \right) ; \quad h(\alpha) = (1 - \alpha)^2$$

Bonding energy density

$$f_{bond}^{I}(u_{i}^{F}, u_{i}^{S}) = \frac{\kappa}{2} (u_{i}^{F} - u_{i}^{S})^{2}$$

Film strain energy density : for isotropic λ_{ijkl}^F C. Miehe, et al., Int. J. Num. Meth. Eng., 2010.

$$f_{el}^F(\varepsilon_{ij}^F, h(\alpha)) = h(\alpha) f_{el}^{F+}(\varepsilon_{ij}^F) + f_{el}^{F-}(\varepsilon_{ij}^F)$$

Substrate strain energy density

$$f_{el}^S(\varepsilon_{ij}^S) = \frac{1}{2}\lambda_{ijkl}^S\varepsilon_{ij}^S\varepsilon_{kl}^S$$

(日) (同) (日) (日) 22 / 30

Minimal system

 $\alpha(x)$ for $\overline{\varepsilon} < \overline{\varepsilon}_c$

 $\alpha(x)$ for $\overline{\varepsilon} > \overline{\varepsilon}_c$

0

0

Equilibrium equations

1.0

1D system O.U. Salman, L. Truskinovsky, JMPS, 2021.

Homogeneous solution at equilibrium

$$\phi_0 = {}^T(\alpha_0, u^X)$$

Energy variation around ϕ_0

- $\delta^2 F > 0 \Rightarrow$ stable wrt. perturbation
- $\delta^2 F < 0 \Rightarrow$ unstable wrt. perturbation

Second variation

$$\delta^2 F = \frac{1}{2} \sum_{q} H_{ij}(q) \,\delta\phi_i(q) \,\delta\phi_j^*(q) \,, \,\,\delta\phi_i \in \{\alpha, \delta u^X\}$$

Smallest $H_{ij}(q)$ eigenvalues

System properties

- $d = 10^{-6}$ m
- $\ell = 2d$

- $G_c = 100 \text{ J}.\text{m}^{-2}$
- $E_F = 200 \times 10^9 \text{ J}.\text{m}^{-3}$

Universite

ONERA

THE FRENCH AEROSPACE LAB

- $h_F = 0.25d$ $E_S = 100 \times 10^9 \text{ J}.\text{m}^{-3}$
- $h_S = 100 h_F$ $\kappa = 7.5 \times 10^{13} \text{ J.m}^{-4}$

2D system

Homogeneous solution at equilibrium

$$\phi_0 = {}^T(\alpha_0, u_1^X, u_2^X)$$

Second variation

$$\delta^2 F = \frac{1}{2} \sum_{\boldsymbol{q}} H_{ij}(\boldsymbol{q}) \,\delta\phi_i(\boldsymbol{q}) \,\delta\phi_j^*(\boldsymbol{q}) \,, \,\,\delta\phi_i \in \{\delta\alpha, \delta u_1^X, \delta u_2^X\}$$

Hessian determinant: representation of det H(q) close to the onset of instability $\overline{\varepsilon} \simeq \overline{\varepsilon}_c$

Quasi-uniaxial loading $\overline{\varepsilon}_{11} = \overline{\varepsilon}$, $\overline{\varepsilon}_{22} = 0.2\overline{\varepsilon}$

Phase field modeling

Stability analysis: hessian determinant

- $l_x = 512d$; $l_y = 512d$
- $G_c = 100 \text{ J}.\text{m}^{-2}$
- $E_F = 200 \cdot 10^9 \text{ J.m}^{-3}$
- $E_S = 4 \cdot 10^9 \text{ J.m}^{-3}$
- $\kappa=1\cdot 10^{13}~\mathrm{J.m}^{-4}$

Computed damage field close to the onset of instability

Phase field modeling

Stability analysis: hessian determinant

- $l_x = 512d$; $l_y = 512d$
- $G_c=100~\mathrm{J.m^{-2}}$
- $E_F = 200 \cdot 10^9 \text{ J.m}^{-3}$
- $E_S = 4 \cdot 10^9 \text{ J.m}^{-3}$
- $\kappa=1\cdot 10^{13}~\mathrm{J.m}^{-4}$

Computed damage field close to the onset of instability

Phase field modeling

Thin film cracking : evolution of displacement u_1 and damage α fields

2. Recap and prospects

Recap

- Stability analysis of brittle thin films on deformable substrate
- Instability selection and formation of crack patterns with phase field modeling

D. Faurie et al., Université Sorbonne Paris Nord, 2021

Prospects

- Plasticity in the substrate, buckling and delamination of the film
- Phase diagram of crack patterns

Merci pour tout !

D. Texier, Université de Toulouse, 2013

D. Faurie et al., Université Sorbonne Paris Nord, 2021