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Continuum Damage Mechanics



Continuum Damage Mechanics
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Thermodynamically-consistent material model
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Challenges in continuum damage mechanics

• Theoretical developments (choice of model, localization, ...)

• Experimental identification

• Numerical estimation
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Numerical challenge for fatigue
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Large Time Increment (LATIN) mthod

[Rheinboldt, 1986]
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Decomposition of the quantity of interest
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Proper Generalised Decomposition (PGD)
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Fatigue damage computation on a sandwich plate
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Numerical challenges for nonlinear structural dynamics

• Equation of motion

• ∇ · σ + fd = ργ

• γ = ü

• Boundary conditions

• u = ud

• u̇ = u̇d

• Initial conditions

• u|t=0 = 0

• u̇|t=0 = 0

Admissibility - Ad

ú Global (linear) equations

in frequency domain

• Numerical benefits

• Frequency-dependent models

• Plasticity model

• Linear isotropic and

kinematic hardening

• Continuous damage model

governed by plasticity

[Lemaitre,1992]

• Effective stress σ̃ =

σD

1−D +
[
〈σH〉
1−D − 〈−σH〉

]
1

Nonlinear behaviour - Γ

ú Local (nonlinear) equations
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Temporal-frequency hybrid scheme
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Hybrid frequency-temporal ROM for nonlinear dynamics

[Daby-Seesaram et al., Nonlinear dynamics, 2023]
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Hybrid frequency-temporal ROM for nonlinear dynamics

[Daby-Seesaram et al., Nonlinear dynamics, 2023]
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Hybrid frequency-temporal ROM for nonlinear dynamics

[Daby-Seesaram et al., Nonlinear dynamics, 2023]
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Hybrid frequency-temporal ROM for nonlinear dynamics

[Daby-Seesaram et al., Nonlinear dynamics, 2023]
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Hybrid frequency-temporal ROM for nonlinear dynamics

[Daby-Seesaram et al., Nonlinear dynamics, 2023]
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Application to a 3D Pipe

Figure 1: Boundary conditions

Figure 2: Damage evolution

Plasticity and damage quantities of interest available over the whole

space-time domain
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Numerical results
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Figure 3: Convergence
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Figure 4: Modes comparison

uω(x , ω) = u0 +
∑m

i=1 λ
i (ω)ūi (x)
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Multi-query problem



Parametric work for material variability

(j) 

(k)

(k) (j) 

• Change in the Γ space

• The different solutions share the same admissibility

Variability in plastic behaviour [Heyberger et al. 2013]
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Parametric test: multiple loading for nonlinear dynamics

Figure 5: 2D-geometry
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Figure 6: End loading

• 2-parameters loading

• f ∈ [5 Hz, 90 Hz]

• Umax
d ∈ [0 mm, 60 mm]

• Set of 600 parameters pairs

Testing case
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Standard and enhanced nonlinear LATIN-PGD schemes

ú Initialisation of the reduced basis

ú Initialisation of the displacement field
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Maximum damage within the structure
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Enhancing the new computation

ú Discriminating wise master-guess for initialisation
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Enhanced multi-query strategy
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Proximity indicator

Singular value decomposition of each elastic solution:{
U(k)

e ≈ S(k)
Ω Σ(k) S(k)T

t

U(j)
e ≈ S(j)

Ω Σ(j) S(j)T

t ,

Complex space analysis:

‖ |Σ(j)eiΘ −Σ(k)| ‖2

Grassmann distance Θ between subspaces spanned by S(k)
Ω and S(j)

Ω

Proximity between elastic computations based on SVD
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Enhanced multi-query strategy

21



Finding an optimal path

• Ensuring some close simulations are included in the parent set

• Finding the shortest path to perform all computations once and only

once

• Travelling Salesman Problem (TSP)

• Genetic algorithm with specific crossover operators [Zhang et al.

2022] ⇒ good convergence of the algorithm
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Global strategy

1. Compute all the elastic responses U
(i)
e , ∀i ∈ [1, n]

2. Evaluate proximity between all scenarios

‖ |Σ(j)eiΘ −Σ(k)| ‖2, ∀(j , k) ∈ [1, n]2

3. Minimize the total path → optimal order for running the simulations

4. Run the first two simulations

5. From the third simulation until the last one:

• Look for the closer elastic solution

• Enhanced simulation
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Optimal path
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Figure 7: Initial route
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Figure 8: Final converged route

Negligible numerical cost compared to nonlinear computations 24



Results for the multi-query enhanced strategy
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Influence of the order of the computations
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Conclusion

• Nonlinear solver

• Takes advantage of the separation of variables

• Reduced-order modelling for the linear problem
• Multi-query framework

• Takes advantage of redundancy

• Importance of the choice of the upstream simulation

• Parametrised problem

• Combine several upstream computations

• Use the proximity indicator to take advantage of the multi-fidelity

solver

• Decrease the number of computations (metamodels)
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Thank you for your attention

Do you have any questions?
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Grassmann distance
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