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Continuum Damage Mechanics



Continuum Damage Mechanics

Evolution of micro-cracks and micro-voids decrease
of elastic modulus

Decrease of load carrying capacity

Described as an internal variable, damage, which is non-

decreasingin nature

Effective modulus of elasticitys = E €€
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E = E(1 — D) intension, E = E(1 — hD) in compression

Stress-strain
diagram with
damage

* Growth of
micro-defects
during tension

« Closure during
compression



Thermodynamically-consistent material model

Evolution equations and state laws, satisty the second law ot
thermodynamics

« D=k(Y)

c &P =f(0,Z,D)
« X=g(0,2,D)
* Y=p(,D)

© Z=qX)

c o=EF¢°

Mechanical equilibrium to be solved with boundary conditions
* div(o) + fy =pa



Challenges in continuum damage mechanics

e Theoretical developments (choice of model, localization, ...)
e Experimental identification

e Numerical estimation



Numerical challenge for fatigue

Low-cycle fatigue : i High-cycle fatigue : i  Very-high-cycle fatigue

m number of survival cycles

= [f 10 cycles are computed in 5 mins
106 cycles would require approximately 1 year

= No possible to provide some numerical results for parameter studies
e.g.

= Need for some robust and efficient numerical scheme

quicker than real-time simulations



Large Time Increment (LATIN) mthod

* At eachiteration,

* The approximation of the solution on the whole discretised
time-space domain is looked for,

* Two sub-iterations:

* The evolution equations, which are non-linear, are solved
locally.

* The balance equation, which is a global problem, is
written as a linear problem.

[Rheinboldt, 1986]



Decomposition of the quantity of interest

One Problem defined on Several Problems defined on
a high-dimensional space one- or small- dimensional spaces
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Proper Generalised Decomposition (PGD)

One Problem defined on Several Problems defined on
a high-dimensional space one- or small- dimensional spaces
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= Solved as a greedy algorithm on the fly
= Number of terms chosen automatically to satisfy the error criterion

44
= good convergence properties
= flexible
= time and space are decoupled, so the time problem can be specifically
tackled

= intrusive approach



Fatigue damage computation on a sandwich plate

Ua For 25,000 load cycles
l l l l l l l l l | Calculation time = 3 h x10~4

0 5 10 15 20 25

N x10°
X1 -
0.014 1.5
0.012
1
20,02 A
10.008 0.5

10.006

0 5 10 15 20 25
0.004 r .
N %108

0.002

0



Admissibility - Ay

e Equation of motion
e V. .o+ fy=py
o v =i

e Boundary conditions
o u=uy
o U=ty

e Initial conditions
o ul, ,=0
o ul, ,=0

" J

= Global (linear) equations
in frequency domain

e Numerical benefits

e Frequency-dependent models

Numerical challenges for nonlinear structural dynamics

Nonlinear behaviour -

e Plasticity model
e Linear isotropic and
kinematic hardening
e Continuous damage model
governed by plasticity
[Lemaitre,1992]
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Local (nonlinear) equations



Temporal-frequency hybrid scheme

I Temporal-based calculations

.Ad : Frequency-based calculations

Uy (T, w) = ug + i by (w)uq(T)J

=1

Sexact
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Hybrid frequency-temporal ROM for nonlinear dynamics

Frequency-based

[ Elastic initialisation

[Daby-Seesaram et al., Nonlinear dynamics, 2023]
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Hybrid frequency-temporal ROM for nonlinear dynamics

Temporal-based Frequency-based
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[Daby-Seesaram et al., Nonlinear dynamics, 2023]
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Hybrid frequency-temporal ROM for nonlinear dynamics

Temporal-based Frequency-based
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[Daby-Seesaram et al., Nonlinear dynamics, 2023]
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Hybrid frequency-temporal ROM for nonlinear dynamics

Temporal-based Frequency-based
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[Daby-Seesaram et al., Nonlinear dynamics, 2023]
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Hybrid frequency-temporal ROM for nonlinear dynamics

Temporal-based Frequency-based
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[Daby-Seesaram et al., Nonlinear dynamics, 2023]
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Application to a 3D Pipe

Uy, = Uuj 4
Uy = Uy
Ug uy
N 7
Uy | = |Uq
Uy ug
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Figure 1: Boundary conditions

Figure 2: Damage evolution

Plasticity and damage quantities of interest available over the whole

space-time domain
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Numerical results
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Figure 3: Convergence Figure 4: Modes comparison

Uy (%, w) = to + 317y N (w) i (x)
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Multi-query problem




Parametric work for material variability

exact
(0]

oxact
S

Variability in plastic behaviour [Heyberger et al. 2013]

e Change in the I space

e The different solutions share the same admissibility
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Parametric test: multiple loading for nonlinear dynamics

100

I
max || ||
sof |Ud (\‘ ‘H
— I
VW = 0 T —
= | || ||
€z Ua(t) -50 } \‘) v‘/
Ly -100 i
0.1 0.2 0.3
Time (s)

Figure 5: 2D-geometry

e 2-parameters loading

e f € [5Hz, 90 Hz] e Set of 600 parameters pairs
e U7 € [0mm,60 mm]

Figure 6: End loading
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Standard and enhanced nonlinear LATIN-PGD schemes

* Classical scheme for Enhanced scheme for
computation (j) b computation (k)

(k)

mo

Uy = U, +Z)\
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By= {Uili)

. +1
s 0, & GO
T+ > N,

i=1

= Initialisation of the reduced basis

= Initialisation of the displacement field
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Maximum damage within the structure

U, [mm] f [Hz]
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Enhancing the new computation
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= Discriminating wise master-guess for initialisation
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Enhanced multi-query strategy

Dynamics elastic -Ad
solution (k)
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Proximity indicator

Singular value decomposition of each elastic solution:

.
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Proximity between elastic computations based on SVD

Complex space analysis:

| =V — =0 ||,

Grassmann distance ® between subspaces spanned by Sg(zk) and Sg)




Enhanced multi-query strategy
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Finding an optimal path

e Ensuring some close simulations are included in the parent set

e Finding the shortest path to perform all computations once and only
once

e Travelling Salesman Problem (TSP)

e Genetic algorithm with specific crossover operators [Zhang et al.
2022] = good convergence of the algorithm
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Global strategy

1. Compute all the elastic responses UL, Vi € (1, n]

2. Evaluate proximity between all scenarios
| [ZDe® — 0| |15, (), k) € [1, A2

3. Minimize the total path — optimal order for running the simulations
4. Run the first two simulations

5. From the third simulation until the last one:

e Look for the closer elastic solution
e Enhanced simulation
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Optimal path

Route distance
3
>

frequency (Hz)

Figure 7: Initial route

Negligible numerical cost compared to nonlinear computations
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Figure 8: Final converged route
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Results for the multi-query enhanced strategy
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Influence of the order of the computations
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Conclusion

e Nonlinear solver

e Takes advantage of the separation of variables

e Reduced-order modelling for the linear problem
e Multi-query framework

e Takes advantage of redundancy
e Importance of the choice of the upstream simulation

e Parametrised problem

e Combine several upstream computations
e Use the proximity indicator to take advantage of the multi-fidelity
solver

e Decrease the number of computations (metamodels)
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Thank you for your attention

Do you have any questions?



0.6
0.5
0.4

0.3

Grassmann distance

20
80 100

Amplitude Ud (mm) 0 g frequency (H2)

29



	Continuum Damage Mechanics
	Numerical challenges for fatigue
	Numerical challenges for structural dynamics
	Dynamics problem
	Hybrid scheme

	Multi-query problem
	Parametric strategy
	Optimal path
	Order of the computations
	Conclusion


