Proximity between elastic computations for structural damage estimation

GdR meeting - La Rochelle

A. Fau

30.06.2023

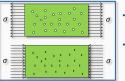
Laboratoire de Mécanique Paris-Saclay Collaboration avec M. Bhattacharyya, S. Alameddin, A. Daby-Seesaram, U. Nackenhorst, D. Néron

Continuum Damage Mechanics

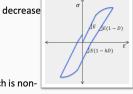
Continuum Damage Mechanics

- Evolution of micro-cracks and micro-voids of elastic modulus
- Decrease of load carrying capacity
- Described as an internal variable, damage, which is nondecreasing in nature
- Effective modulus of elasticity $\sigma = \tilde{E} \ \varepsilon^e$
- Closure parameter h

 $\tilde{E} = E(1 - D)$ in tension, $\tilde{E} = E(1 - hD)$ in compression



 Growth of micro-defects during tension
 Closure during compression



Thermodynamically-consistent material model

- Evolution equations and state laws, satisfy the second law of thermodynamics
 - $\dot{D} = k(Y)$ • $\dot{\varepsilon}^p = f(\sigma, Z, D)$ • $\dot{X} = g(\sigma, Z, D)$ • $Y = p(\sigma, D)$ • Z = q(X)• $\sigma = \tilde{E} \varepsilon^e$
- Mechanical equilibrium to be solved with boundary conditions
 - $\operatorname{div}(\sigma) + f_V = \rho a$

• Theoretical developments (choice of model, localization, ...)

• Experimental identification

• Numerical estimation

Numerical challenge for fatigue

- If 10 cycles are computed in 5 mins
 10⁶ cycles would require approximately 1 year
- No possible to provide some numerical results for parameter studies e.g.
- Need for some robust and efficient numerical scheme quicker than real-time simulations

Large Time Increment (LATIN) mthod

- At each iteration,
 - The approximation of the solution on the whole discretised time-space domain is looked for,
 - Two sub-iterations:
 - The evolution equations, which are non-linear, are solved locally.
 - The balance equation, which is a global problem, is written as a linear problem.

[Rheinboldt, 1986]

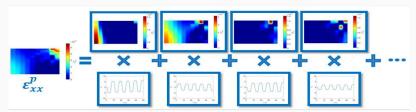
Decomposition of the quantity of interest

One Problem defined on a high-dimensional space

Several Problems defined on one- or small- dimensional spaces

$$u(x,t) = \sum_{i=1}^{\infty} X_i(x) \cdot T_i(t) \approx \sum_{i=1}^{N} X_i(x) \cdot T_i(t)$$

Space dependency



Time dependency

Proper Generalised Decomposition (PGD)

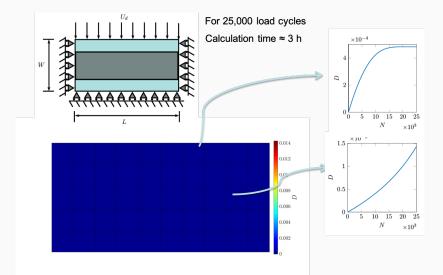
One Problem defined on a high-dimensional space

Several Problems defined on one- or small- dimensional spaces

$$u(x,t) = \sum_{i=1}^{\infty} X_i(x) \cdot T_i(t) \approx \sum_{i=1}^{N} X_i(x) \cdot T_i(t)$$

- Solved as a greedy algorithm on the fly
- Number of terms chosen automatically to satisfy the error criterion
- ++:
 - good convergence properties
 - flexible
 - time and space are decoupled, so the time problem can be specifically tackled
- --:
 - intrusive approach

Fatigue damage computation on a sandwich plate



Numerical challenges for nonlinear structural dynamics

Admissibility - \mathcal{A}_d

• Equation of motion

•
$$\nabla \cdot \boldsymbol{\sigma} + \boldsymbol{f}_d = \rho \boldsymbol{\gamma}$$

- $\gamma = \ddot{u}$
- Boundary conditions
 - $u = u_d$
 - $\dot{u} = \dot{u}_d$
- Initial conditions

•
$$\boldsymbol{u}|_{t=0} = \boldsymbol{0}$$

•
$$\dot{u}|_{t=0} = 0$$

➔ Global (linear) equations in frequency domain

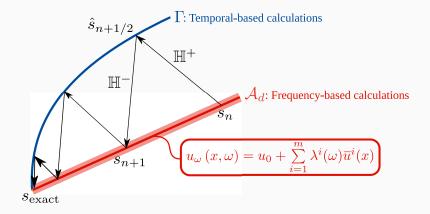
- Numerical benefits
- Frequency-dependent models

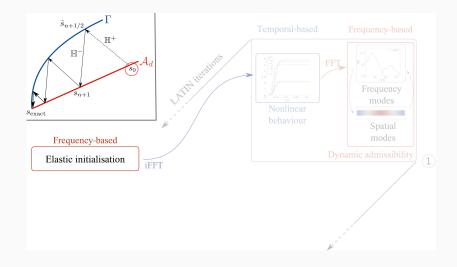
Nonlinear behaviour - Г

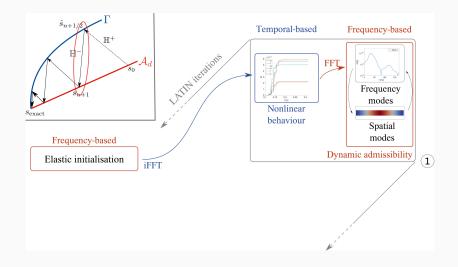
- Plasticity model
 - Linear isotropic and kinematic hardening
- Continuous damage model governed by plasticity [Lemaitre,1992]

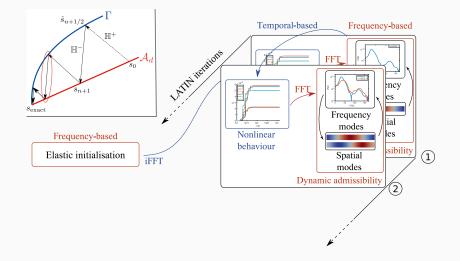
• Effective stress
$$\tilde{\sigma} = \frac{\sigma_D}{1-D} + \left[\frac{\langle \sigma_H \rangle}{1-D} - \langle -\sigma_H \rangle\right] \mathbf{1}$$

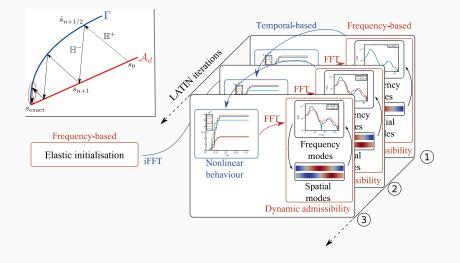
Temporal-frequency hybrid scheme

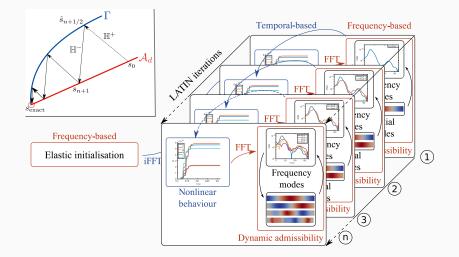




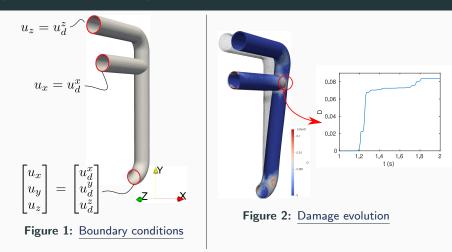








Application to a 3D Pipe



Plasticity and damage quantities of interest available over the whole space-time domain

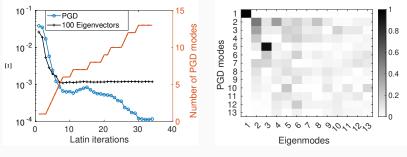


Figure 3: Convergence

Figure 4: Modes comparison

$$u_{\omega}(x,\omega) = u_0 + \sum_{i=1}^m \lambda^i(\omega) \bar{u}^i(x)$$

Multi-query problem

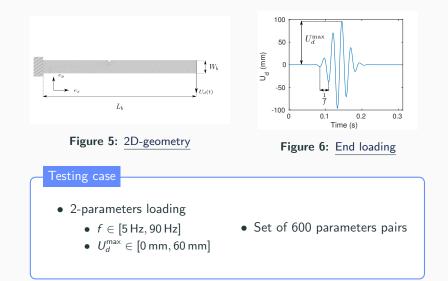
Parametric work for material variability



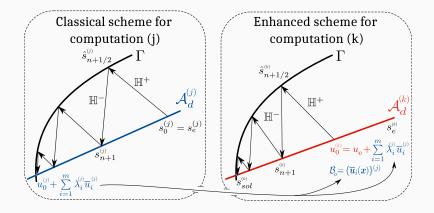
Variability in plastic behaviour [Heyberger et al. 2013]

- Change in the Γ space
- The different solutions share the same admissibility

Parametric test: multiple loading for nonlinear dynamics



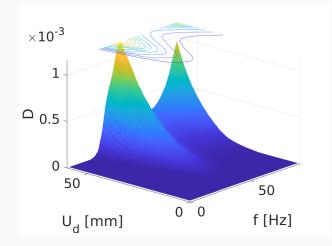
Standard and enhanced nonlinear LATIN-PGD schemes



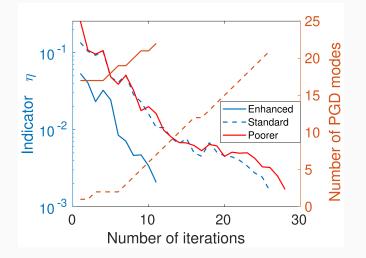
Initialisation of the reduced basis

✤ Initialisation of the displacement field

Maximum damage within the structure

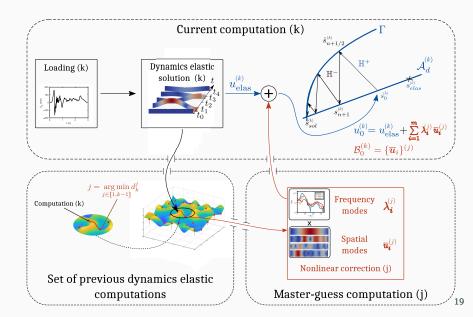


Enhancing the new computation



Discriminating wise master-guess for initialisation

Enhanced multi-query strategy



Proximity indicator

Singular value decomposition of each elastic solution:

$$\left\{ egin{aligned} oldsymbol{U}_{e}^{(k)} &pprox oldsymbol{S}_{\Omega}^{(k)} \, oldsymbol{\Sigma}_{t}^{(k)} \, oldsymbol{S}_{t}^{(k)^{ op}} \ oldsymbol{U}_{e}^{(j)} &pprox oldsymbol{S}_{\Omega}^{(j)} \, oldsymbol{\Sigma}_{t}^{(j)} \, oldsymbol{S}_{t}^{(j)^{ op}}, \end{aligned}
ight.$$

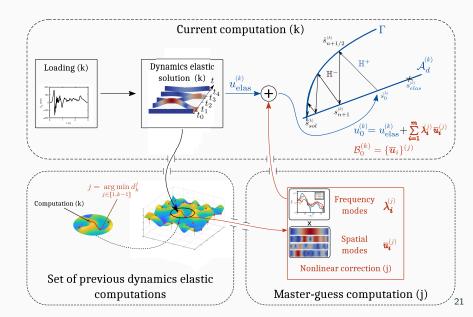
Proximity between elastic computations based on SVD

Complex space analysis:

$$\parallel |\mathbf{\Sigma}^{(j)} \mathsf{e}^{i \mathbf{\Theta}} - \mathbf{\Sigma}^{(k)}| \parallel_2$$

Grassmann distance Θ between subspaces spanned by $m{S}^{(k)}_{\Omega}$ and $m{S}^{(j)}_{\Omega}$

Enhanced multi-query strategy



Finding an optimal path

- Ensuring some close simulations are included in the parent set
- Finding the shortest path to perform all computations once and only once
 - Travelling Salesman Problem (TSP)
 - Genetic algorithm with specific crossover operators [Zhang et al. 2022] \Rightarrow good convergence of the algorithm

- 1. Compute all the elastic responses $U_e^{(i)}, \forall i \in [1, n]$
- 2. Evaluate proximity between all scenarios $\| |\Sigma^{(j)}e^{i\Theta} - \Sigma^{(k)}| \|_2, \forall (j,k) \in [1, n]^2$
- 3. Minimize the total path \rightarrow optimal order for running the simulations
- 4. Run the first two simulations
- 5. From the third simulation until the last one:
 - Look for the closer elastic solution
 - Enhanced simulation

Optimal path

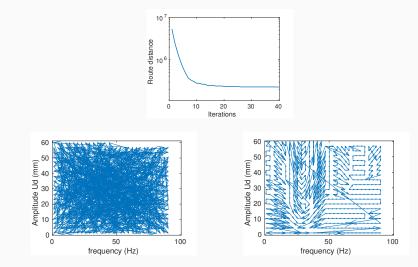
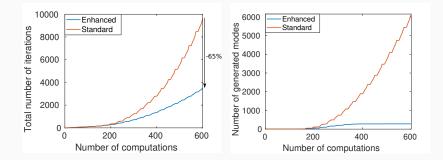


Figure 7: Initial route

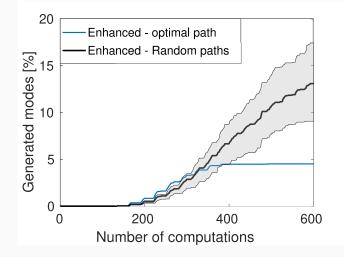
Figure 8: Final converged route

Negligible numerical cost compared to nonlinear computations

Results for the multi-query enhanced strategy



Influence of the order of the computations



Conclusion

- Nonlinear solver
 - Takes advantage of the separation of variables
 - Reduced-order modelling for the linear problem
 - Multi-query framework
 - Takes advantage of redundancy
 - Importance of the choice of the upstream simulation
- Parametrised problem
 - Combine several upstream computations
 - Use the proximity indicator to take advantage of the multi-fidelity solver
 - Decrease the number of computations (metamodels)

Thank you for your attention

Do you have any questions?

Grassmann distance

